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Abstract
In this paper, we propose a presmooth product-limit estimator to draw statistical inference on the unbiased distribution 
function representing the population of interest. The strong consistency of the estimator proposed is investigated. The finite 
sample performance of the proposed estimator is evaluated using simulation studies. It is observed that the proposed esti-
mator exhibits greater efficiency in comparison with the alternative method in de Uña-Álvarez (Test 11(1):109–125, 2002).
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Introduction

In practical studies, it is not feasible sometimes to collect a 
random sample from the population of interest, called the 
target population. In such occasions, a biased or weighted 
sample from the underlying population is obtained. In other 
words, the data are collected from another distribution, 
which may induce a type of bias to our inferences. Thus, 
the biased sampling problem is to make inference about the 
target population, while our samples are generated from 
another distribution function. The most common case, 
called length-biased, is when the biased data are collected 
according to the chance proportional to their value (meas-
ures, lengths, etc.), arising in many types of sampling. There 
can be found many examples of such situations in various 
articles and books from different disciplines, e.g., biology, 
biotechnology, genetics, forestry, economics, industry and 
medical science. For more information, we refer readers to 
the following studies: Rao [19, 20], Patil and Ord [18], Zelen 
and Feinleib [28], Song et al. [22] and Kvam [12].

Wicksell [26] found in the study blood cells microscope 
that only those cells which are bigger than a threshold are 
detectable and the existing smaller cells are not visible. At 
that point in time, he called this phenomenon corpuscle 
problem, which was later known as the length-biased sam-
pling. McFadden [15], Blumenthal [2] and Cox [5] are of 
the first scientists who address this phenomenon in statistics. 
In the past two decades, many more studies have been per-
formed to extend the statistical inferences in regard to the 
problem of length-biased sampling [21, 14, 17].

For example, Efromovich [8] attempted to draw statistical 
inference for the police investigation, in which they looked 
at the ratio of alcohol in liquor-intoxicated drivers. Since 
there is a higher chance for drunker drivers to be suspected 
by the police, their data collection suffers from the length-
biased problem.

Definition 1 Suppose that F(·) is an absolutely continuous 
cumulative distribution function. The random variable Y has 
the length-bias distribution corresponding to F(·), if it satis-
fies the following distribution function.

where � = ∫ ∞

0
u dF(u).

It is easy to obtain Eq. (1.1) for the distribution function 
F(·) as follows

(1.1)G(t) = �−1 �
t

0

u dF(u), t ≥ 0,
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Here, the problem is to draw statistical inference about the 
underlying population (F(·)), while the available data are 
collected from length-bias distribution G(·). Accordingly, 
when encountering the length-biased sampling problem, we 
obtain a data collection which may be used to estimate the 
distribution function G(·) empirically. Having obtained the 
empirical estimation of G(·), the distribution function F(·) 
can be estimated using Eq. (1.2). For a sample consisting of 
complete observations (excluding censored data), the non-
parametric estimation of the distribution function F(·) under 
length bias has been investigated by Vardi et al. [25], Vardi 
[24], Horváth et al. [9] and Jones [10].

The other obstacle commonly faced, specially in sur-
vival analysis, is that some of the subjects are not com-
pletely observed owing to right censoring. There have 
been many studies in the literature concerning length-
biased and right-censored data. Let Y1, Y2,… , Yn denote 
iid random variables with distribution function G(·). 
Also, suppose that C1,C2,… ,Cn are iid random variables 
from the distribution function G̃(⋅) and independent from 
Y1, Y2,… , Yn . Define I(A) as the indicator function of the 
event A. Under the right random censorship model, obser-
vations are {(Zi, �i) ; i = 1, 2,… , n} in which the variables 
Zi = min(Yi,Ci) are iid copies of distribution function H(·) 
and �i = I(Yi ≤ Ci) . Ci denotes the censored random vari-
able, and �i = 0 indicates that the ith subject is censored, 
while �i = 1 denotes for the uncensored observations. We are 
interested in estimating the distribution function F(·) based 
on the pair of observations (Zi, �i).

In the presence of length bias and right censoring, Winter 
and Földes [27] introduced a conditional method to estimate 
the distribution function F(·). Their proposed estimator is 
applicable under the left-truncation of observations in gen-
eral, when the values of truncation variable for each subject 
are specified. de Uña-Álvarez [6] showed that ignoring the 
extra information of the length-bias model (unconditional 
approach) in the structure of conditional estimators, like 
Winter and Földes [27], results in lower efficiency.

When a sample only includes censored data, but not 
length-biased or truncated observations, the nonparametric 
maximum likelihood product-limit estimator [11] may be 
used. The Kaplan–Meier estimator of distribution function 
F(·) is defined as follows

(1.2)F(t) =
∫ t

0
u−1 dG(u)

∫ ∞

0
u−1 dG(u)

, t ≥ 0.

(1.3)FKM
n

(t) = 1 −

n∏

i=1∶Z(i)≤t

[
1 −

�[i]

n − i + 1

]
,

where the Z(i) variables are the ordered observations of Zi 
and �[i] is the responsible value of �i for the variable Z(i) . 
Equation (1.3) could be simply rewritten as follows

where

To study the statistical properties of the estimator FKM
n

(⋅) , 
we refer readers to Andersen et al. [1]. It is deduced from 
Eq. (1.4) that the Kaplan–Meier estimator is a step function 
with jumps at the non-censored observations. The sizes of 
jumps in each step depend not only on the complete observa-
tions, but also on the number of censored observations prior 
to the step. It can be easily checked that when the sample 
does not consist of any censored data, the Kaplan–Meier 
estimator is equivalent to the empirical distribution func-
tion estimator.

de Uña-Álvarez [6] first estimated the distribution func-
tion G(·) on the basis of biased observations using the 
Kaplan–Meier estimator. Afterward, by substituting the 
estimator for G(·) in Eq. (1.2), they have obtained the fol-
lowing estimator, called the length-bias-corrected product-
limit estimator, for the target distribution.

It is simply followed from (1.5) that

where

w̃i is calculated applying the jumps of Kaplan–Meier estima-
tor in (1.4).

In the rest of this study, we first introduce the pres-
mooth estimator in “The presmooth estimator” section. 
Next, by substituting the presmooth estimator for the esti-
mator GKM

n
(⋅) in Eq. (1.5), we obtain a smoother method 

(1.4)FKM
n

(t) =

n∑

i=1

wi I(Z(i)≤t),

wi =
�[i]

n − i + 1

i−1∏

j=1

[
1 −

�[j]

n − j + 1

]
.

(1.5)F̂n(t) =
∫ t

0
u−1dGKM

n
(u)

∫ ∞

0
u−1dGKM

n
(u)

, t ≥ 0.

(1.6)

F̂n(t) =

∑n

i=1
wiZ

−1
(i)
I(Z(i)≤t)∑n

i=1
wiZ

−1
(i)

=

n�

i=1

w̃iI(Z(i)≤t),

w̃i =
wiZ

−1
(i)

∑n

i=1
wiZ

−1
(i)

.
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for the distribution function F(·), which is expected to pos-
sess higher efficiency in predicting the true distribution 
function. In “Strong consistency” section, the strong con-
sistency of the proposed estimator is investigated. Finally, 
the simulations studies for two estimators are presented 
and their behaviors are discussed in “Simulation” section.

The presmooth estimator

In this section, inspired by the expression of the product-
limit estimator of de Uña-Álvarez [6], we will propose the 
presmooth estimator for the distribution function using 
length-biased right-censored data.

Presmooth estimator in LB distribution

Suppose that

denote the conditional probability of non-censored event 
given the observation Z = z. Cao et al. [4] introduced a 
presmooth estimator by substituting the nonparametric 
regression estimator proposed in Nadaraya [16] for the 
censoring indicator variables. Following that, Cao and 
Jácome [3] assessed the limit distribution and the asymp-
totic mean squared error of the estimator presented in Cao 
et al. [4]. Stute and Wang [23] discussed the significance 
of p(·) to prove the consistency of an integral ∫ � dFKM

n
 

where � is a measurable function over ℝ and FKM
n

 is the 
Kaplan–Meier estimator. Given the pairs observations 
{(Zi, �i); i = 1, 2,… , n} , we propose the following estimator 
for p(z),

where K(·) is a kernel function and Kb(⋅) =
(

1

b

)
K
(

⋅

b

)
 , in 

which {b ≡ bn, n = 1, 2,…} is the sequence of bandwidth.
By replacing �[⋅] in Eq. (1.4) with pn(⋅) , the presmooth 

estimator of the distribution function F(·) is defined as 
follows:

where

p(z) ∶= P(� = 1 | Z = z) = E(� | Z = z)

(2.1)pn(z) =

n�

i=1

Kb

�
z − Zi

�
�i

∑n

i=1
Kb

�
z − Zi

� ,

(2.2)FP
n
(t) =

n∑

i=1

�i I(Z(i)≤t),

�i =
pn(Z(i))

n − i + 1

i−1∏

j=1

[
1 −

pn(Z(j))

n − j + 1

]
.

Remark 1 Even though the proposed presmooth estima-
tor seems similar to the Kaplan–Meier estimator in (1.4), 
they mainly differ in �[⋅] which has been replaced with the 
smoothing function pn(Z(⋅)) in (2.2). Adapting the Kaplan–
Meier estimator to the smoother method by plugging in 
pn(Z(⋅)) might be invaluable, as the presmooth estimators 
exhibit superior accuracy in estimating the distribution func-
tion. By contrast, the Kaplan–Meier estimator only assigns 
equal jumps to all of the complete observations, excluding 
the censored data.

Remark 2 It is of note that when n → ∞ , the bandwidth 
defined in (2.1) decreases and converges to 0, and very 
small values of b ≃ 0 implies pn(Zi) ≃ �i . Accordingly, 
when n → ∞ , the presmooth and the Kaplan–Meier estima-
tors become equal.

The presmooth estimator of the unbiased 
distribution

In this section, we present a presmooth product-limit 
estimator for a distribution function in the length-biased 
and random right-censored sampling. For this purpose, 
we substitute the presmooth estimator of the right-cen-
sored data, say GP

n
(⋅) , for the distribution function G(·) in 

Eq. (1.5). Hence, we obtained the presmooth product-limit 
estimator through

Given Eq. (2.3), it can be deduced that

with

�̃i is calculated from the jumps of a presmooth estimator of 
distribution function in Eq. (2.2).

Corollary 1 Cumulative hazard rate function of F(·) is 
defined as

(2.3)F̂P
n
(t) =

∫ t

0
u−1dGP

n
(u)

∫ ∞

0
u−1dGP

n
(u)

, t ≥ 0.

(2.4)

F̂P
n
(t) =

∑n

i=1
�iZ

−1
(i)
I(Z(i)≤t)∑n

i=1
�iZ

−1
(i)

=

n�

i=1

�̃iI(Z(i)≤t),

�̃i =
�iZ

−1
(i)

∑n

i=1
�iZ

−1
(i)

.
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By plugging in F̂P
n
(⋅) in Eq. (2.5), the presmooth estimator 

of the cumulative hazard rate can be obtained by means of

Strong consistency

In this section, we study the strong consistency of F̂P
n
(⋅) . For 

this purpose, we define

Similarly, �G , �
G̃

 and �H are defined for the distribution func-
tions G(·), G̃(⋅) and H(·). Apparently, it could be claimed that 
�F = �G and �H = min(�F, �G̃).

Theorem 1 Let �(⋅) be a measurable function, �1(x) = x−1 
and �2(x) = x−1�(x) are G(·)-integrable. Assuming that 
�H = �F is reasonable, then we have

Proof Suppose

and

Using Eq. (2.4), it is obtained that

(2.5)Λ(t) = ∫
t

0

1

1 − F(u−)
dF(u).

(2.6)

�ΛP
n
(t) =�

t

0

1

1 − �FP
n
(u−)

d�FP
n
(u)

=

n�

i=1

�̃�i

1 − �FP
n
(Z−

(i)
)
I(Z(i)≤t)

=

n�

i=1

𝜈iZ
−1
(i)

∑n

j=1
𝜈jZ

−1
(j)
I(Z(i)≤Z(j))

I(Z(i)≤t).

�F = inf{t ∶ F(t) = 1}.

(3.1)lim
n→∞∫ �(x) dF̂P

n
(x) = ∫ �(x) dF(x) a.s.

Ŝ� = ∫ �(x) dF̂P
n
(x),

S� = ∫ �(x) dF(x).

(3.2)

Ŝ� =

n�

i=1

�̃i�
�
Z(i)

�

=

∑n

i=1
�iZ

−1
(i)
�
�
Z(i)

�

∑n

i=1
�iZ

−1
(i)

⋅

According to Theorem 2.1 of de Uña-Álvarez and Rod-
ríguez-Campos [7], regardless of the presence of covariates 
in this case, when n → ∞ , we have

and

Now, considering Eqs. (3.2)–(3.4), it can be deduced that

Therefore, the proof of Theorem 1 is completed.   ◻

Corollary 2 Let 0 < 𝜇 < ∞ . Using Theorem 1, we have

for any t > 0 , when n → ∞.

Moreover, given the relation Λ(t) = − ln(1 − F(t)) , if 
n → ∞ , we have

Simulation

In this section, simulation studies are carried out to inspect the 
finite sample performance of the presmooth limit-product esti-
mator. For better illustration, we have examined the proposed 
estimator behavior (2.3) in comparison with the product-limit 
estimator introduced in (1.5). For this purpose, we have studied 
the relative efficiency of the two estimators (RE) through the 
ratio of their values of MSE(·), which is defined as follows.

where

and

(3.3)�̃ =
1

∑n

i=1
�iZ

−1
(i)

a.s.
⟶

1

E(�1(Y))
=

1

∫ �1(y) dG(y)
= �,

(3.4)
n∑

i=1

�iZ
−1
(i)
�(Z(i))

a.s.
⟶E(�2(Y)) = ∫ �2(y) dG(y).

Ŝ�
a.s.
⟶S�.

F̂P
n
(t)

a.s.
⟶F(t)

ΛP
n
(t)

a.s.
⟶Λ(t).

(4.1)RE(t) =
MSE(F̂n(t))

MSE(F̂P
n
(t))

,

MSE(F̂n(t)) = E(F̂n(t) − E(F̂n(t)))
2,

MSE(F̂P
n
(t)) = E(F̂P

n
(t) − E(F̂P

n
(t)))2.
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We have approximated the value of RE in (4.1) using Monte 
Carlo simulations. The amounts of RE are calculated based 
on B = 5000 replications of estimations using samples sizes 
n = 20, 50 and 100. Suppose distribution F(·) is a member 
of gamma family with density

Given Eq. (1.1), it can be easily deduced that if the distri-
bution of target population is Gamma(�, �) , the resulting 
length-biased distribution is Gamma(� + 1, �) . Similarly, the 
corresponding length-biased distribution to the Weibull(p, �) 
is a generalized gamma distribution, G(�, �, �) , with the 
probability density function:

where � = 1 + 1∕p , � = 1∕� , and � = p are the shape, scale 
and family parameters, respectively.

Figure 1 compares the performance of the presmooth esti-
mator with that of the product-limit estimator in predicting 
the survival function of the U(0, 4) distribution. The figure 
consists in 5000 iterations for the moderate sample scenario 
(n = 50). It can be observed that applying the proposed 
method has considerably reduced the amount of deviations 
from the true survival function by comparison with the 
product-limit estimator.

Figures 2 and 3 illustrate the approximated values of 
RE(·) for the Weibull(0.5, 1) and Gamma(1, 1) (the expo-
nential distribution, EXP(1)) unbiased distributions, respec-
tively. The diagrams were estimated based on 5000 iterations 

f (t) =
1

Γ(𝛼)𝛽𝛼
t𝛼−1e

−
t

𝛽 , 𝛼 > 0, 𝛽 > 0, t ≥ 0.

f (y) =
�y�−1

(�∕�)��Γ(�)
y�(�−1) exp(−(y�∕�)�),

of the different sample sizes generated from the correspond-
ing length-biased observations. The U(0, 4) distribution was 
considered as the censoring distribution, resulting in about 
24% incomplete data in all surveys. Considering the sample 
sizes n = 20 and 50 in the both diagrams, it can be observed 
that the proposed method for all values of t exhibited supe-
riority over the product-limit estimator in terms of MSE. 
Similarly, the proposed presmooth estimator indicated much 
better results for the large sample scenario (n = 100) of the 
Weibull(0.5, 1) target population (Fig. 2). However, turning 
to the large sample scenario (n = 100) of the Gamma(1, 1) 
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Fig. 1  Presmooth estimator versus PL-estimator for Exp(1) with 
n = 50 and C ∼ U(0, 4)
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unbiased population, while for the values of t smaller than 
roughly 0.5 the product-limit estimator performed better, 
the proposed method revealed better efficiency for t larger 
than 0.5.

For better illustration, we have compared the efficiency 
of the estimators under different levels of censoring via RE 
in Fig. 4. For this purpose, we calculated the values of RE 
based on 5000 replications of the large sample scenario 
(n = 100). The data were generated from the length-biased 
distribution corresponding to the Exp(1) target population. 
The censoring times were generated from the U(0, �) dis-
tribution, in which the values of 3, 2 and 1 were chosen for 
� resulting in 63%, 43% and 32% incomplete observations, 
respectively. Accordingly, it can be obtained that although 
for the small values of t the product-limit estimator exhib-
ited better results, the presmooth estimator has significantly 
reduced the amount of MSE in all levels of censoring as the 
value of t increased. Broadly, the presmooth estimator exhib-
ited superior efficiency in comparison with the product-limit 
method.

It has been revealed in the all above RE diagrams that the 
figures have become closer to the line RE = 1 by rising in the 
sample sizes. This increasing tendency for the two methods 
to perform similar as the sample size increased is clearly 
justified by Remark 2.

To calculate the estimated F̂P
n
(⋅) , the Nadaraya–Watson 

estimator method, presented in Eq. (2.1), has been used 
to estimate p(·). Thus, it is crucial to select the bandwidth 
properly as it plays a key role the Nadaraya–Watson estima-
tor. For this purpose, Cao and Jácome [3] and Cao et al. 
[4] obtained an optimal bandwidth for their presmooth 
pug-in method by minimizing the asymptotic mean inte-
grated squared error, avoiding any bias in results. Later, the 

simulation results for this estimator was studied through the 
Simpson’s rule using the survPresmooth package López-de 
Ullibarri and Jácome Pumar [13].

Conclusion

In this paper, we have proposed a presmooth estimator by 
adapting the product-limit estimator of de Uña-Álvarez [6] 
for length-biased and (random) right-censored data. The 
limit properties of the proposed estimator have been inves-
tigated. To inspect the performance of the method, simula-
tions studies were conducted to make comparisons between 
the proposed estimator and the product-limit estimator of 
de Uña-Álvarez [6]. As mentioned, it is very important to 
select the bandwidth for the Nadaraya–Watson regression 
estimation appropriately. We have overcome this issue by 
applying the MISE(·) estimator.
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mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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