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Abstract 

 We consider the optimal design of incompressible fluid flow through a diffuser at low 

Reynolds numbers. The design problem is solved by a topology optimization approach 

providing a mechanism to create novel and non-intuitive optimal designs in a mathematical 

process. While size and shape optimization methods are limited to modifying existing 

boundaries of an initial design, topology optimization allows to merge and evolve boundaries 

without requiring an initial guess. Topology optimization of fluid flow is commonly based on 

a material interpolation approach in geometry representation. Here the solid material is 

modeled as an artificial porous region to impose zero velocities. Fluid flow is then predicted 

by the lattice Boltzmann method, which has a simpler numerical formulation than the Navier-

Stokes equations and is valid in a larger flow regime. In this paper, the potential of the 

topology optimization approach is illustrated by a two-dimensional diffuser problem. 

Moreover, we will show how the domain size may affect the optimum design.  
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Nomenclature  

f Distribution function Greek symbols 

fi Discretized distribution function ε Design variable (Porosity parameter) 

 
Equilibrium distribution function  Convergence criterion for velocity 

 
Collided distribution function  Convergence criterion for porosity 

N Number of grid points except the boundaries ρ Macroscopic density 

p Pressure τ Relaxation time 

 Speed of sound  Lattice weights 

 Macroscopic velocity subscript 

ω Speed of convergence parameter i Lattice node indicator 

V Fluid volume k Time step indicator in optimization process 
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1. Introduction 

The optimal control of fluid flows has received considerable attention by engineers and 

mathematicians, owing to its importance for many technical and scientific applications [1]. 

Traditionally, design optimization for fluids has focused on shape optimization. The reader is 

pointed, for example, to the body of work by Jameson [2], and co-workers on shape 

optimization for external and internal flows and to the work by Mohammadi, Santiago, and 

co-workers [3, 4] on shape optimization applied to micro-channels and micro-mixers. Shape 

optimization is generally limited to varying the location of the boundaries, improving the 

performance of an existing design through the optimization of a parameterized boundary. 

These limitations can be overcome by applying the concepts of topology optimization to 

generate complex, often non-intuitive optimal geometries  without requiring an initial (close 

to optimum) design to start with. We refer to the monograph of Bendsøe and Sigmund [5], for 

an overview of topology optimization methods. Here, the primary difference between shape 

and topology optimization is illustrated in figure 1. 

 

Figure 1:  Comparison of shape and topology optimization 

 

In material-based topology optimization, the geometry of a body is represented via an 

associated material distribution. Thus, each computational node/element is associated with a 

continuous material description function, which defines if a given node/element contains solid 

material, fluid, or an intermediate fluid-filled porous material. Although  the goal is to find the 

optimal design without an intermediate material distribution, referred to as ‘‘0-1” design 

solution, but having a narrow intermediate porous material is also accepted in this method. 

Topology optimization of fluids was first introduced by Borrvall and Petersson [6] for 

Stokes flows employed a porosity method which is similar to the density method in structural 

optimization of solids. In the porosity method, a design domain is filled with a porous 

medium and porosity is considered as the design variable. Moreover, the Stokes theory is only 

valid for flows with a small Reynolds number Re < 1. To overcome this limitation, Gersborg-

Hansen et al. [7] extended the approach of Borrvall and Petersson [6] to laminar 

incompressible Navier- Stokes (NS) flows at low Reynolds numbers. Othmer et al. optimized 

the layout of 3D air duct manifolds employing an incompressible Navier–Stokes model [8, 9]. 

These approaches are typically based on a finite element or finite volume discretization of the 

flow equations. Alternatively, Pingen et al. [10-12] presented a topology optimization 

framework based on steady-state lattice Boltzmann equations (LBE) for computing flow 

fields. The lattice Boltzmann method is a viable alternative to traditional Navier–Stokes based 

approaches for fluidic topology optimization. The computational algorithm of LBM is explicit 
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and simple. Additional advantages of LBM are its simplicity, parallelizability, and 

applicability beyond hydrodynamics.  

In this study, the optimized design of a diffuser at low Reynolds number for different 

design domain is considered using the method proposed by Yonekura and Kanno [13, 14]. 

The design domain is represented by a porous medium. The optimization problem is 

formulated using LBM that solves Boltzmann equations on a lattice grid for approximating 

low Mach number incompressible viscous flows [15, 16]. As the flow field is solved and the 

design domain is updated by solving the PDE with respect to flow field variables and 

porosity, the shape of the design gradually changes. This PDE is formulated using sensitivity 

analysis for the objective function that updates the design variables, and it depends on a 

current state of the transient flow field. 

The remainder of this paper is organized as follows: In Section 2, the definition of LBM 

method in porous medium and an optimization problem is introduced. Section 3, reports 

numerical results and finally, Section 4 concludes this paper. 

 

2.1 Lattice Boltzmann method for flow in porous medium 

In this paper, the Bhatnager–Gross–Krook (BGK) model [17, 18] is used for LBM 

computation, where a fluid is modeled as an assemblage of particles based on kinetic theory. 

The distribution function of the particles, denoted , is governed by following LBE including 

local collision and a global propagation step: 

 

(1)  

(2) 

 
 

Here,  is defined on each lattice grid at the ith direction,  is the direction vector for ith 

direction depending on the lattice configuration. Furthermore,  is the relaxation time 

coefficient, δt is time step size, and  is equilibrium distribution function and  is 

an external force term for flow in porous media, which are formulated by Guo and Zhao [19] 

as 

 

(3)  

(4) 

 
 

where  represents the weighting factors, the vector  is the velocity vector in the free-stream 

direction,  is the density of the fluid,  is an unit tensor,  is an external force vector. We use 

 to denote the tensor product. In order to avoid divergence in (3) and (4), we restrict 

ε>1.0e−3. 

In this paper, the two–dimensional, nine velocity vectors at each lattice site, D2Q9, is used. 

This model is very common, especially for solving fluid flow problems. The speeds are =0 

for i=0,  with =1 and =(i-1)π/2 for i=1-4, and  and =(i-5)π/2+ 

π/4 for i=5-8. Here  is the lattice velocity  where  is a lattice spacing. The 
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weighting factors are given by =0 for i=0, =1/9 for i=1-4, =1/36 for i=5-8. Moreover, 

 is the speed of the sound in lattice units is  / . The macroscopic parameters in the lattice 

Boltzmann method such as mass density, redefined velocity in porous media and pressure are 

evaluated by taking statistical moments of the distribution function , and are given by [20]  
 

(5) 
 

 

(6) 

  

(7)  

where  is the isothermal ideal gas equation of state for the LBM.  It can be shown that 

the Navier-Stokes equations can be derived from the LBE (1) and (2) through a Chapman-

Enskog expansion procedure, in which the kinematic viscosity ν is related to the 

dimensionless relaxation time as follows: 

(8) 
 

Reynolds number is also computed by  

(9) 

 
where  and  are the mean velocity and length in y-direction at the inlet, as characteristic 

properties, respectively. 

 

2.2 The Optimization Problem 

The goal of topology optimization is to modify the shape and connectedness of a domain, 

such that the desired objective function is minimized. In general terms a topology 

optimization problem for steady-state flow conditions can be written as follows: 
 

 

(10) 
 

 
 

where s. t. stands for subject to, ε denotes the design variable, and  the objective function.  

To represent both fluid and non-fluid (solid) regions, we use the porous model due to 

Borrvall and Petersson [6]. Let ε denotes porosity as a vehicle to smoothly transition between 

fluid and solid. This porosity model permits a smooth transformation from fluid sites (ε=1) 

into solid sites (ε=0) and vice versa, leading to a porous layer that represents the fluid-solid 

interface (with intermediate value of porosity). The external force vector due to the presence 

of a porous medium utilized in (4) is modeled as the frictional force, i.e., the Brinkman-

extended Darcy equation, defined as  

(11)  

with the drag coefficient  given by 

(12) 
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Here,  is a positive constant and α0 is a large constant. Note that α takes a finite value, α0, at 

ε=0; if ε=1, then α=0 representing the fully fluid region. For example, we use α0=1.0×103 and 

=1.0×10-5 in the numerical experiments. 

 In this study the objective is to minimize energy dissipation. Energy dissipation functional 

is sum of viscous dissipation D( , ε) and frictional dissipation C( , ε), ( , ε)=D( , ε)+C( , 

ε), which are formulated as: 
 

(13) 

 

(14) 

 

Here, Ω denotes a design domain. From a physical point of view, p in (13) should be 0. 

However, we use 2<p<10 in order to obtain good convergence of optimization as suggested 

by Borrvall and Petersson [6]. We use ‖.‖ to represent the corresponding norm. 

The only optimization constraints used in this study are a volume constraint and the range 

of porosity changes. The volume constraint limits the amount of fluid in the design domain, 

prescribing that at most a given fraction of the design domain is allowed to be occupied by a 

fluid, and the remainder must be solid. We define the constraints by 
 

(15)  

(16) 

 
 

where suffix k is used to show the values at the kth time step, i.e., t=kδt  t [0, T]. V(t) 

affecting on the convergence profile, is defined by V(t)=(V0−V) exp(−ωt)+V, where ω is a 

constant which controls the speed of convergence. 

 

2.3 Sensitivity Analysis for Topology Optimization 

The optimization problem (10) can be solved using gradient-based optimization 

techniques, where the derivatives of the objectives and constraints are used by the 

optimization algorithm to determine search directions for a feasible, optimal solution. In this 

approach the gradient  drives the objective  to the local optimal solution opt. In order 

to provide the gradients of the objective, we first define the corresponding Lagrangian 

function as: 

 

(17) 
 

where η1, η2 and η3 are the Lagrange multipliers. Then, the optimality condition of (10) can be 

written as follows: 
 

(18) 

 

At intermediate value of porosity, let =0, =0 and = . We seek the new value of 

 at each time step such that the design domain becomes updated. This can be done by 
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evaluating  in the form of updating porosity, 

, which is discretized as follows: 

 

 

 

(19) 

 

 

  

The scaling coefficient  > 0 relating to the speed of convergence of the porosity method 

[13, 14], is defined by 
 

 

(20) 

  

, a variable in order to control the volume of the fluid at each time step, is computed 

using the following algorithm. 

 Step 1. Compute  and   as 

temporary value based on the previous porosity.  

 Assign a number to  at each grid point so that  satisfy 

 where  is the number of grid points, except the 

boundaries, satisfying . 

 Define , where  is a volume corresponding to one cell, denoting 

the sum of volumes of all cells such that the corresponding component of  is 

greater than or equals to .  

 By using , the integral of  is expressed as 

 

 

(21) 

 
 

 Finally, find  satisfying that (21) is equal to , then (19) satisfies the volume 

constraint (16). 

At each optimization step, the design variable is  which affects flow field at the next 

time step. Hence, the derivative of  at the next time step with respect to  (19) can 

be written by using the chain rule as: 
 

(22) 

 

To solve the sensitivity equation (21), requires the evaluation of three partial derivatives: 

,  and  which are evaluated based on 

analytically derived expressions. For the first and third components, we have: 
 

 

(23) 
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(24) 

  

Here,  in (23) can be computed by LB equations after updating the design 

variable. Since we assume that the flow field becomes steady at the final step t=T and 

Reynolds number is small,  can be approximated by  depending on  and . 

Then, we have (23) as  
 

 

(25) 
 

To evaluate the second partial derivative in (22), it should be noted that the velocity  is 

a function of both porosity and distribution functions. However, by using the chain rule, we 

have 
 

 

(26) 
 

The first component of the right-hand side is obtained from the definitions (5), (6) and (11) 

as: 
 

(27) 

 

From the LB equations (1) and (2),  is differentiated with respect to ε as follows: 

 

(28) 
 

 

(29) 

  

 

(30) 

 

The convergence of the LBM time-marching scheme toward steady-state flow solutions is 

achieved when . The optimization algorithm also terminates, if the maximum 

change in the design variable is less than , i.e., . While this stopping criteria 

for monitoring the convergence does not guarantee that the optimality conditions are satisfied, 

numerical studies have shown that it is practical and sufficient to obtain visually smooth 

boundaries of the desired accuracy, and the geometry does not change noticeable even if more 

iterations are performed. In the current study, the thresholds are defined  and 

. 

 

3. Numerical implementation (a Diffuser (2D))  

The diffuser optimization problem, similar to that found in [6], is considered over the 

system while the volume fraction of fluid is restricted to at most 50%, which is equivalent to 

value used by Borrvall and Petersson [6]. The Reynolds number is set to Re=10.0 and the 
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design domain is discretized by 101 grid points in both x and y directions. The problem setup 

and the boundary conditions are shown in figure 2. The parabolic velocity distribution at the 

inlet and outlet is specified as  
 

 

 

 

(31) 

 

 

 

Figure 2:  Diffuser design domain with inlet and outlet conditions 

 

To verify the accuracy of the performance of topology optimization algorithm, the 

obtained result are compared against the one of Borrvall and Petersson [6]. According to fig. 

3, one can see that the results are similar. Figure 4 shows a good convergence pattern of the 

objective value, i.e., the summation of viscous dissipation D and frictional dissipation C, as 

the number of iterations. It should be noted that, the red region corresponds to fully fluid 

region, and blue region to fully solid region. 

 

       

Figure 3:  Optimal design for a diffuser at Re=10 on a 100 × 100 lattice (left) in this paper (right) in [6] 

 

In this study, it is also investigated that how different domain aspect ratios with a constant 

value of lattice nodes (e.g. 10,000), and constant value of the specified volume of the flow 

domain can affect the objective values. The initial and final objective values (energy 

dissipation), and the final values of viscous and frictional dissipation of the optimized designs 

of a diffuser at Re=10.0 with  are presented in table 1. From the results it can be 

seen that increasing the height and decreasing the length of the domain leads to low value of 

the objective function due to the decreased effect of viscosity rather than the case of 200 × 50. 
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Figure 4:  Convergence pattern of the objective function for the diffuser 

 

Table 1: Comparison of optimization results for different lattice sizes with constant number of lattice nodes at 

Re = 10 

Lattice size Initial 

Objective 

Final 

Objective 

Viscous 

Dissipation 

Frictional 

Dissipation 

50 × 200 3-2.429160e 5-1.556770e 1.264534e-5 5-2922355e0. 

100 × 100 3-5.933506e 5-4.512863e 5-3.957757e 5-5551064e0. 

200 × 50 3-19.197289e 5-40.298171e 5-34.034342e 5-2638283e6. 

 

 

Figure 5: Optimum Diffuser with different domain aspect ratios and constant  

 

Figure 5 illustrates the final results for the optimum diffuser design corresponding to three 

mentioned aspect ratios. In addition to the different final objective values were reported for 

these cases, the final design topologies around the outlet boundary for the 50 × 200 lattice is 

different. 

 

4. Conclusions 

 An optimization approach to fluid flow based on the lattice Boltzmann method has 

presented. 
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 A numerical study has illustrated how the topology optimization can be employed to 

make an optimized shape for a diffuser without an initial design.  

 Finally, the results have obtained and discussed for a 2-dimensional diffuser problem 

in a three kinds of a design domain leading to shapes with different values of energy 

dissipation.   
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