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Abstract—In this paper, a new scheme for diagnosis of epileptic
seizures in EEG signals using Tunable-Q wavelet transform
(TQWT) framework is proposed and benchmarked with Bonn
dataset. First, a segmentation of the EEG signals into smaller
windows is performed, then a high-pass Butterworth filter with
a cutoff frequency of 0.5 Hz is applied to eliminate possible
noise. After that, a TQWT with parameters J=8, r=3, Q=1
has been utilized for decomposing the segmented EEG Signals
into nine sub-bands. Next, a combination of statistical, entropy-
based, and fractal dimension features are extracted from each
sub-band. Finally, different ensemble learning-based classifiers,
specifically, Adaboost, Gradient Boosting (GB), Hist Gradient
Boosting (HistGB), and Random Forest (RF) are employed to
classify signals. Also, a feature ranking is driven from classifiers
to further analyze the importance of each feature in this partic-
ular task. Comparing our method to previous ones, introduced
scheme outperforms most of the state-of-the-art works in this
field, indicating the effectiveness of the proposed epileptic seizures
detection method.

Keywords—Seizure Detection, TQWT, Ensemble Learning,
EEG.

I. INTRODUCTION

Epilepsy, a brain disorder, affects the life quality of patients
of all age and sex groups. Epileptic seizures can cause irre-
versible damages to the brain and body[1], which makes the
research on detection and prevention of them crucial. Elec-
troEncephaloGraphy(EEG) is one mean to diagnose epileptic
seizures[2]; however, the process of interpreting EEG can be
time-consuming[3] and challenging due to the large variety
of seizure types. This work aims to present a system for
automated seizure detection in EEG signals. A common ap-
proach to process EEG signals is to decompose them using
wavelet transforms for feature extraction[4], [5]. Here, we
adopted Tunable-Q Wavelet Transform(TQWT) introduced by
Selesnick[6].

Applying TWQT on EEG signals for preprocessing and
feature extraction has been done before in a few different
works. Sharaf et al. [7] used TWQT to decompose EEG

signals, then extracted two different groups of features; a
set of statistical, chaotic, and power spectrum features, and
a co-occurrence matrix of gray-level, with interpreting the
signals as images. Finally, they applied a firefly optimization
for feature selection and random forest for classification and
benchmarking.

Ghayab et al. [8] attempted to improve the results of
utilizing this wavelet by changing features and classifiers.
They extracted ten different statistical features from signals
and applied them to K-Nearest Neighbor(KNN), Bagging
Tree(BT), and Support Vector Machine(SVM) classifiers; and
concluded that KNN has the best performance.

Combination of multivariate Fuzzy Entropy(mvFE) with
TWQT and effect of segment length was investigated in [9]
by Bhattacharyya et al. They split signals into various time
segments and found out that mvFE has better performance than
statistical features in longer segments. Least-Squares Support
Vector Machine(LS-SVM) was used as the classifier in their
work.

Employing entropy-based feature to TWQT subbands has
been examined in other works as well. [10] utilized K-Nearest
Neighbor entropy estimator (KnnEnt), Centered CorrEntropy
(CCorrEnt), and Fuzzy Entropy (FzEnt), and [11] applied
Kroskov Entropy for feature extraction to TWQT subbands.
Both works classified signals with an LS-SVM classifier.
Table III compares previous works with ours and give addi-
tional information about dataset and performances.

In this work, we merged several statistical and entropy-
based features with features extracted from the fractal di-
mension to further improve accuracy in seizure detection.
Additionally, we analyzed the importance of these features
as well. The rest of the paper is organized as follow: Section
II discusses the elements of our proposed method, including
dataset, each feature details, and classification algorithms.
Results are in section III, and section IV concludes the paper.
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II. METHODS AND MATERIALS

Figure 1 shows a brief overview of the proposed method.
First, each segment of data is preprocessed using a Butterworth
high-pass filter to remove potential noises in low frequencies.
Next, all signals are decomposed using TWQT into subbands;
here, J is selected equal to 8, which produces nine subbands.
Also, in order to prevent the undesired decay to low frequency
in wavelet during decomposition, the value of parameter r
was chosen equal to 3. Then, all features discussed in section
II.C are extracted from each subband, delivering a total of
135 features per segment. Finally, a classification algorithm
is utilized to evaluate the quality of the extracted features.
Because the count of features comparing to the number of data
samples is considerably larger, we applied ensemble learning
algorithms for classification, so that results do not suffer from
overfitting.

Fig. 1. Proposed method overview.

A. Dataset

Dataset employed in this work was gathered by Bonn
university [12], which is used widely for benchmarking seizure
detection methods[7], [8], [11]. It consists of five different
classes: Healthy with an open(A) and closed(B) eye, Epilepsy
patient in seizure-free time, from the epileptogenic zone(D)
and the hippocampal formation of the opposite hemisphere
of the brain(C), and Seizure activity(E). The dataset is col-
lected from five patients and five healthy volunteers; 100
23.6s Single-Channel samples for each class. Since identifying
different classes from others are not equally important, six
different classification problems are suggested by previous
works, A vs. E, B vs. E, C vs. E, D vs. E, ABCD vs. E and
a multiclass classification problem, AB vs. CD vs. E. Figure
2 illustrates a sample from each class of dataset.

Fig. 2. Bonn EEG dataset.

B. Tunable-Q Wavelet Transform

The TQWT, introduced by Selesnick[6], is a well-known
member of wavelet transform family and demonstrated to be
suitable for the decomposition of biomedical signals, like EEG
[9].

TQWT parameters are Q-Factor(Q), redundancy (r), and
the number of subbands (J). Q measures of the number of
oscillations in wavelet, r is the over-sampling rate, and J
determines the count of subbands for the decomposition of
the signal. This method is implemented based on low-pass and
high-pass filter banks operation, which are defined as HJ

0 (ω)
and HJ

1 (ω), respectively [6]. In TQWT, the low-pass filter and
high-pass frequency response are expressed as below [6]:

H
(J)
0 (ω) =

{∏J−1
m=0H0( ω

αm ), |ω|≤ αJπ
0, αJπ ≤ |ω|≤ π

(1)

H
(J)
1 (ω) =


H1( ω

αJ−1 )
∏J−2
m=0H0( ω

αm ), (1− β)α(J−1)π|ω|
≤ αJ−1π

0, for other ∈ [−π, π]

(2)

where
H0(ω) = θ(

ω + (β − 1)π

α+ β − 1
) (3)

H1(ω) = θ(
απ − ω
α+ β − 1

) (4)

and θ(ω) is the frequency response of the Daubechies filter
that is obtained by Eq. 5.

θ(ω) = 0.5(1 + cos(ω))
√

2− cos(ω) (5)

Also, α and β can be derived from Q, r, and J using equation
6:

r =
β

1− α
,Q =

2− β
β

, J =
log(βN8 )

log( 1
α )

(6)

Here, we selected Q, r, and J equal to 1,3 and 8, respectively.
The produced subbands of TQWT with mentioned Q, r, and J



using a sample of Boon dataset(set E) are presented in figure
3. Moreover, figure 4 shows the frequency response for TQWT
with specified parameters.

Fig. 3. Subband decomposition of TQWT.

Fig. 4. TQWT frequency response with Q=1, r=3, J=8.

C. Feature Extraction

1) Statistical Features: Statistical features provide valuable
information in EEG signals; here, we chose these features the
same with the ones in [8] :
Mean :

Xmean =
1

N

N∑
i=1

xi (7)

Variance :

Xvar =

N∑
i=1

(xi −Xmean)
2

N − 1
(8)

Standard Division (STD) :

Xstd =

√√√√ N∑
i=1

(xi −Xmean)
2

N − 1
(9)

Kurtosis :

Xku =

N∑
i=1

(xi −Xmean)
4

(N − 1)X4
std

(10)

Skewness :

XSke =

N∑
i=1

(xi −Xmean)
3

(N − 1)X3
std

(11)

2) Entropy Features: Entropies are measures of complexity
in systems; their features, demonstrated to be efficient for
obtaining subtle information [13], have non-linear and chaotic
behavior. In this work, seven non-linear entropy-based
features, including Shannon, log energy, Spectral, SURE,
Kroskov, threshold and normalized entropy are extracted from
TQWT sub-bands. This section devotes to describe mentioned
entropies in summary; more details can be found in references.

SHANNON ENTROPY[13]
The Shannon entropy is an elementary yet practical entropy;

equation 12 displays the formula for computing EShan:

EShan = −
x∑
n=1

P (Sn) log2(P (Sn)) (12)

where P (Sn) is the occurrence probability of the Sn, the nth
sample of the signal.

LOG ENERGY ENTROPY[13]
The ELOG−EN computes the complexity in EEG signals

using Eq. 13.

ELOG−EN =

x∑
n=1

log(S2
n) (13)

where x presents the EEG signal length.

SPECTRAL ENTROPY[14]
Spectral Entropy is a normalized version of Shannon

entropy, which works in frequency-domain, and its formula
is same as Eq. 12.

SURE ENTROPY[13]
It can be determined using Eq. 14.

ESURE = X − [n such that |Sn|<= m] +
∑
n

min(S2
n,m

2)

(14)



where m is a positive value, which is set to 3.

NORMALIZED ENTROPY[13]

Enorm =
∑
n

|Sn|k= Skk ,with 1 ≤ k (15)

here, k is defined as the power and selected equal to 1.1.

KROSKOV ENTROPY[11]
Kraskov entropy uses k nearest neighbors samples with a

measure of distances (Euclidean, etc.) to calculate Shannon
entropy or differential statistical entropy of signals. Assuming
a random variable X having d dimensions and density function
f(x), the differential statistical entropy is calculated using Eq.
16. [11]:

H(x) = −
∫
f(x) log(f(x))dx (16)

Using the above equation, Kraskov entropy is expressed as
follows:

Hk = φ(n)− φ(k) + log(Cd) +
d

n

∑
i=1

(ξki ) (17)

where φ(t) denotes the digamma function, Cd expresses the
volume of the unit ball with d dimensions which depends
on sample space and ξki presents the distance between xi, a
sample from X , and neighbors of xi in k-NN [11].

THRESHOLD ENTROPY[13]
Eth(Sn) = 1 if |Sn|> p and 0 otherwise so Eth(Sn) counts

the time instants when the signal exceeds a threshold p. In this
work, we used p = 0.2.

3) Fractal Dimension Features: In addition to entropies,
Fractal Dimension approaches are another nonlinear family
of techniques used to obtain information concerning the
complexity of EEG signals[15]. Higuchi, Katz, and Petrosian
fractal dimension algorithms are applied in this work. This
section describes the calculation specifications for these
algorithms; more details about them can be found in [15].

HIGUCHI'S ALGORITHM
In this algorithm, first, smaller time series Xm

k are sampled
from the signal using equation 18 for all m = 1, 2, ..., k.

Xm
k = X(m), X(m+k), X(m+2k), ..., X(m+

⌊
N −m
k

⌋
k)

(18)
Here, m is the beginning point, and k represents the discrete-
time interval between all points(selected equal to 10 for this
work). Then, length Lm(k) is obtained by equation 19.

Lm(k) =
1

k
(

N−m
k∑

i=1

|X(m+ik)−X(m+(i−1)k)|) N − 1⌊
N − m

k

⌋k
(19)

Finally, the Higuchi's algorithm Fractal Dimension(HFD) is
formulated as :

HFD = − logL(k)

log(k)
(20)

PETROSIAN'S ALGORITHM
Another method in the Fractal Dimension is Petrosian's

algorithm(PFD), which is computed as follow :

PFD = − log10 n

log10 n+ log10( n
n+0.4N∆ )

(21)

where n represents the signal length and N∆ indicates the
number of dissimilar points in the generated binary sequence
[15].

KATZ'S ALGORITHM
The final method introduced in this section is the Katz's

algorithm (KFD), which has the following formula:

KFD = − log10 n

log10( dL ) + log10 n
(22)

where L demonstrates the summation of the intervals between
successive points, and d denotes the distance between the
initial point and the furthest point of the sequence [15].

D. Classification Algorithms

In this work, we used ensemble learning algorithms for
classification, which combine a few weak classifiers to create
a strong one. This section presents details of these algorithms.

1) Random Forest: Random Forest, an ensemble learning
based algorithm, was first introduced by Breiman et al.[16]
in 2001 to address the decision tree overfitting problem. In
this algorithm, numerous decision trees are trained, and in test
time, voting is performed between all of them. Two key points
should be considered for this algorithm: first, each tree is
trained on a random fraction of features. Second, training data
for trees are chosen by bootstrapping. By taking into account
these two key points, the algorithm is capable of overcoming
the overfitting problem and is more robust against outliers. In
this work, we applied Random Forest with 100 trees, and the
number of features for each tree is the square root of total
features count.

2) Boosting Algorithms: Boosting algorithms are another
collection of ensemble learning family, in which the combina-
tion of the weak classifier is performed sequentially; in each
step best classifier respecting subsequent ones is picked, and
a weight parameter is assigned to this classifier αj . Lastly, the
classification is performed using equation 23.

Y (X) = sign(

M∑
i=1

αiyi(X)) (23)

where M is number of weak classifiers and yi is label weak
classifier i assigns to X .

Two most notable boosting algorithms are AdaBoost[17]
and Gradient Boosting(GB)[18]. In AdaBoost, a weight pa-
rameter wi is considered for each data point; best classifier is
chosen based on this parameter, and after every step, each wi
is updated using equation 24.

wi = wi exp(−αjyj(xi)ti) (24)



Where ti is true label of xi (-1 or 1).
However, in GB, the goal is to minimize a pre-defined loss
function; therefore, in every step, the best classifier is the one
that changes results somehow that loss function is minimized.

In this work, we employed AdaBoost, GB, and Histogram-
based Gradient Boosting(HistGB)[19], and kept the hyperpa-
rameters(such as number and type of weak classifiers) same
as default values suggested by the scikit-learn[20]. HistGB is
nearly the same as GB, except that features are pre-binned
into integer-valued bins to increase speed and accuracy[19].

III. RESULTS

For the implementation and evaluation of the proposed
method, we used two different programming languages; pre-
processing and feature extraction in Matlab and classification
and evaluation in Python. TWQT codes are available as
a free Matlab toolbox[6], and scikit-learn[20] provides the
implementation of classification algorithms.

For the evaluation of our method, we split data samples into
two groups, 80 percent of data are used for training, and the
remaining 20 percent for testing. In the interest of data aug-
mentation and improving performance, we divided the signal
into shorter segments, and in test time, averaged over results
of those segments for each signal. For the choice of segments
length, three different values(5, 10, and 23 seconds) have been
used; table I summarises all results. Also, segmentation is done
after train-test splitting, to ensure that parts of the same signal
are not presented in both groups.

TABLE I
RESULTS FOR DIFFERENT SEGMENT LENGTH.

Window
Classifier

Accuracy
length A-E B-E C-E D-E ABCD-E AB-CD-E

5-Sec

GB 97.5% 100% 100% 100% 100% 98%
AdaBoost 100% 97.5% 100% 100% 100% 94%
HistGB 100% 100% 100% 100% 99% 98%

RF 97.5% 100% 100% 100% 99% 98%

10-Sec

GB 97.5% 97.5% 100% 100% 99% 97%
AdaBoost 97.5% 97.5% 100% 100% 99% 93%
HistGB 100% 97.5% 100% 100% 99% 97%

RF 97.5% 97.5% 100% 100% 99% 98%

23-Sec

GB 97.5% 97.5% 100% 100% 100% 95%
AdaBoost 97.5% 97.5% 100% 100% 99% 92%
HistGB 97.5% 100% 100% 100% 99% 97%

RF 97.5% 100% 97.5% 100% 99% 98%

As can be observed in table I, best accuracies are reached
using 5-sec as the length of segments, with GB and HistGB
algorithms. To further analyze the outcomes of the proposed
method, we have derived feature importance and ranking in
GB algorithm for AB-CD-E problem by averaging over im-
portance value of each feature in all subbands. Table II demon-
strates those values and rankings. Comparing our method to
previous works in table III reveals the solid performance of
our method. Also, for works evaluated on Bonn dataset, best
results in binary problems(A-E, B-E, C-E, D-E, ABCD-E)
and multi-class problem(AB-CD-E) are separated (by problem
type column) to make comparisons more straightforward.

TABLE II
FEATURES IMPORTANCE AND RANKING.

Rank Feature name Importance Value

1 Higuchi Fractal 3.09914047e-03

2 Spectral Entopy 2.70371775e-03

3 Log Energy Entropy 2.33703507e-03

4 Petrosian Fractal 3.78900708e-04

5 SURE Entropy 2.39987372e-04

6 Norm Entropy 2.19771590e-04

7 Katz Fractal 1.63817608e-04

8 Shannon Entropy 1.38518036e-04

9 Kurtosis 1.31737199e-04

10 Variance 4.84794458e-05

11 Kroskov Entropy 2.67663184e-05

12 STD 2.56152255e-05

13 Skewness 9.63929171e-06

14 Threshold Entropy 6.80286120e-07

15 Mean 7.77152687e-08

TABLE III
SUMMARY OF PREVIOUS WORKS.

Method DataSet Overview Problem Type Accuracy

[7] Bonn
TQWT + Hybrid Features (1D and 2D

Multi-Class 99%
Features) + Firefly Feature Selection + RF

[8] Bonn
TQWT + Statistic Features + Different Binary 100%

Classifiers Multi-Class 99%

[9] CHB-MIT TQWT + Mu-FE + LS-SVM — 84.67%

[10]
Bern TQWT + KNN-Ent + CCorrEnt + Fen

— 95%
Barcelona + LS-SVM

[11] Bonn
TQWT + Kr- Ent + KruskalWallis

Binary 97.75%
+ LS-SVM

Ours Bonn
Butterworth Filter + TQWT + Hybrid Features Binary 100%

+ Ensemble Learning Classification Multi-Class 98%

IV. CONCLUSION

In this paper, we proposed a method for seizure detection,
which can be used as the core of a Computer-aided device
to help epileptic patients. This approach has a few stages:
preprocessing, feature extraction, and classification. First, low-
frequency noises are removed from signals using a high-pass
Butterworth filter. Next, each signal is decomposed into nine
subbands using a TQWT wavelet, then statistical, entropy-
based, and fractal features are extracted from these subbands.
Finally, a classification algorithm is used to distinguish a
seizure from normal signals. Comparison of our system to
others shows its state of the art performance, and due to its
simplicity, it could be applied to help specialists to diagnose
accurately.

REFERENCES

[1] M. Li, W. Chen, and T. Zhang, “Automatic epilepsy detection using
wavelet-based nonlinear analysis and optimized svm,” Biocybernetics
and biomedical engineering, vol. 36, no. 4, pp. 708–718, 2016.

[2] M. Li, W. Chen, and T. Zhang, “Automatic epileptic eeg detection using
dt-cwt-based non-linear features,” Biomedical Signal Processing and
Control, vol. 34, pp. 114–125, 2017.

[3] O. Faust, U. R. Acharya, H. Adeli, and A. Adeli, “Wavelet-based eeg
processing for computer-aided seizure detection and epilepsy diagnosis,”
Seizure, vol. 26, pp. 56–64, 2015.



[4] M. Sharma, R. B. Pachori, and U. R. Acharya, “A new approach to
characterize epileptic seizures using analytic time-frequency flexible
wavelet transform and fractal dimension,” Pattern Recognition Letters,
vol. 94, pp. 172–179, 2017.

[5] E. Alickovic, J. Kevric, and A. Subasi, “Performance evaluation of
empirical mode decomposition, discrete wavelet transform, and wavelet
packed decomposition for automated epileptic seizure detection and
prediction,” Biomedical signal processing and control, vol. 39, pp. 94–
102, 2018.

[6] I. W. Selesnick, “Wavelet transform with tunable q-factor,” IEEE trans-
actions on signal processing, vol. 59, no. 8, pp. 3560–3575, 2011.

[7] A. I. Sharaf, M. A. El-Soud, and I. M. El-Henawy, “An automated
approach for epilepsy detection based on tunable q-wavelet and firefly
feature selection algorithm,” International journal of biomedical imag-
ing, vol. 2018, 2018.

[8] H. R. Al Ghayab, Y. Li, S. Siuly, and S. Abdulla, “A feature extraction
technique based on tunable q-factor wavelet transform for brain signal
classification,” Journal of neuroscience methods, vol. 312, pp. 43–52,
2019.

[9] A. Bhattacharyya, R. Pachori, and U. Acharya, “Tunable-q wavelet
transform based multivariate sub-band fuzzy entropy with application
to focal eeg signal analysis,” Entropy, vol. 19, no. 3, p. 99, 2017.

[10] R. Sharma, M. Kumar, R. B. Pachori, and U. R. Acharya, “Decision
support system for focal eeg signals using tunable-q wavelet transform,”
Journal of Computational Science, vol. 20, pp. 52–60, 2017.

[11] S. Patidar and T. Panigrahi, “Detection of epileptic seizure using
kraskov entropy applied on tunable-q wavelet transform of eeg signals,”
Biomedical Signal Processing and Control, vol. 34, pp. 74–80, 2017.

[12] T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Indications of
nonlinear structures in brain electrical activity,” Physical Review E,
vol. 67, no. 4, p. 046204, 2003.

[13] U. R. Acharya, Y. Hagiwara, J. E. W. Koh, S. L. Oh, J. H. Tan, M. Adam,
and R. San Tan, “Entropies for automated detection of coronary artery
disease using ecg signals: A review,” Biocybernetics and Biomedical
Engineering, vol. 38, no. 2, pp. 373–384, 2018.

[14] Y. Tian, H. Zhang, W. Xu, H. Zhang, L. Yang, S. Zheng, and Y. Shi,
“Spectral entropy can predict changes of working memory performance
reduced by short-time training in the delayed-match-to-sample task,”
Frontiers in human neuroscience, vol. 11, p. 437, 2017.

[15] R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, “A comparison of
waveform fractal dimension algorithms,” IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, vol. 48, no. 2,
pp. 177–183, 2001.

[16] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[17] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[18] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics
& data analysis, vol. 38, no. 4, pp. 367–378, 2002.

[19] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
Advances in Neural Information Processing Systems, 2017, pp. 3146–
3154.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.


