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Abstract Recently, it has been shown that the gauge invari-
ance requires the minimum number of independent couplings
for B-field, metric and dilaton at order o to be 60. In
this paper we fix the corresponding 60 parameters in string
theory by requiring the couplings to be invariant under the
global T-duality transformations. The Riemann cubed terms
are exactly the same as the couplings that have been found
by the S-matrix calculations.

1 Introduction

String theory is a quantum theory of gravity with a finite
number of massless fields and a tower of infinite number of
massive fields reflecting the stringy nature of the gravity. An
efficient way to study different phenomena in this theory is to
use an effective action which includes only massless fields.
The effects of the massive fields appear in the action as the
higher derivatives of the massless fields. This effective action
may be found by imposing various symmetries/dualities in
the string theory. There are various gauge symmetries in
the effective actions which are corresponding to the various
massless fields, e.g., the diffeomorphism symmetry corre-
sponds to the metric and the gauge symmetry corresponds
to the Kalb-Ramond field or B-field. In the bosonic string
theory which has only metric, dilaton and B-field, they are
the only local symmetries of the effective action. Imposing
only these symmetries, one finds the effective action has three
couplings at order a0 (two-derivative order), has 8 couplings
at order o’ (four-derivative order) up to field redefinitions [1],
has 60 couplings at order a'? (six-derivative order) [2] and so
on. The gauge symmetries, however, can not determine the
coefficients of the couplings. These parameters may be found
by S-matrix calculations [3,4], by sigma-model calculations
[5-7] or by imposing global symmetries of the string theory
in which we are interested.
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One of the global symmetries of the string theory is T-
duality [8,9]. This duality like the above gauge symmetries
may be imposed at the action level to fix the parameters of the
effective action at any order of «’. One approach for impos-
ing this symmetry is the double field theory (DFT) [10-14] in
which the D-dimensional effective action is extended to 2 D-
space. In this theory, the gauge transformations are deformed
to receive o’-corrections whereas the T-duality symmetry
is imposed without deformation simply by writing the cou-
plings as O (D, D) scalars [14—18]. Another approach is to
reduce the D-dimensional gauge invariant theory on a cir-
cle and impose the T-duality symmetry by constraining the
couplings in the (D — 1)-dimensional spacetime to be Z»
scalars [19] where Z;-group is the Buscher rules [20,21]
plus their ’-deformations [22-24]. Using this approach for
the case that B-field is zero, the known gravity and dilaton
couplings in the effective actions at orders o/, &%, a’> have
been found in [25,26], up to some overall factors. More-
over, when B-field is non-zero, the known couplings at order
o’ and their corresponding corrections to the Buscher rules
have been found in [27]. In this paper, we are going to use
this approach to find the couplings at order o2 for the case
that B-field is non-zero. These couplings, except its Riemann
cubed couplings, have not been found by any other methods
in string theory.

It is known that the effective action at order «’> depends
on the scheme that one uses for the effective action at order
a’ [28]. In the T-duality approach, this is reflected to the T-
duality transformations at order «’. It has been observed in
[27] that the T-duality transformations at order o’ depends on
the scheme that one uses for the effective action at order o’'.
The T-duality transformation corresponding to the effective
action at order o’ which has only first time derivative [29],
is given in [24]. The T-duality transformations at order o’
corresponding to the effective action at order &’ in an arbitrary
scheme have been found in [27]. In this paper we are going
to find the effective action at order o> that correspond to the
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effective action at order @’ which has minimum number of
couplings [1].

The outline of the paper is as follows: In Sect. 2, we write
the known minimum number of couplings at orders &’ and
o’? that the gauge symmetry can fix up to field redefinitions.
In Sect. 3, we impose the T-duality symmetry on the gauge
invariant couplings to find their corresponding parameter.
The calculations at order «” have been already done in [27].
That calculations produce the known couplings in the liter-
ature and the corresponding T-duality transformations. The
calculations at order > are new. We have found both the
effective action and the corresponding T-duality transforma-
tions. However, since the expressions for the T-duality trans-
formations are very lengthy we will write only the effective
action (see (40)). We have found that there are only 27 non-
zero couplings in the effective action at order a’?. Two of
them have already been found by the S-matrix calculations
[30]. All other terms are new couplings that the T-duality con-
straint produces. In Sect. 4, we briefly discuss our results.

2 Gauge invariance constraint

The effective action of string theory has a double expan-
sions. One expansion is the genus expansion which includes
the classical sphere-level and a tower of quantum effects.
The other one is a stringy expansion which is an expansion
in terms of higher-derivative or a’-expansion. The classical
effective action has the following «’-expansion in the string
frame:

oo
Sefr = Za’"sn =So+a'Si+a?S+ - ;
n=0

2
Sn ——2/de«/—6€_2®£" (1)
K

The effective action must be invariant under the coordinate
transformations and under the B-field gauge transformations.
So the metric G, the antisymmetric B-field and dilaton ®
must appear in the Lagrangian £, trough their field strengths
and their covariant derivatives. This requires the effective
action at order o to have the following couplings:

Lo = a1 R + ayVy®V*® + a3 Hyp, H*PY )

where ay, ay, az are three parameters which can not be fixed
by the gauge invariance constraints.

At higher orders of o/, one has the freedom of using field
redefinitions and the Bianchi identities. As a result, there
are no unique form for the couplings, even the number of
couplings are not unique at the higher orders of «’. There
are however, schemes in which the number of couplings are
minimum. It has been shown in [1] that the minimum number
of couplings at order o’ is 8. These eight couplings can also be
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written in different schemes. In one particular such scheme,
the couplings can be written as [2]

Ly =L]+L] 3)
where L‘{ includes the minimum number of couplings which
do not include the dilaton, i.e., ,
L] = b1 Rayps R*PY? + by Hy* H*PY Hgs  Hy
+b3 Hop® H*PY H, S Hser + byHo*  H*PY Rgsye  (4)
and E% includes the other couplings which all include non-
trivially the dilaton, i.e., ,
L3 = bsHgys HPYV, &V ® + beH,"® Hgyy s VE OVF
+b7HyY* Hpys VPV ® + bgV, @V* DV dVF D (5)
where by, . . ., bg are eight parameters which can not be fixed
by the gauge invariance constraints.
At order 2, the minimum number of couplings is 60.

In one particular minimal scheme in which there is no
R, Ry, V, H"P v, VH, the couplings are [2]

Lo =LY+ 13 (6)
where Eé has the minimum number of couplings in which
the dilaton does not appear, i.e., ,
LY = c1R ) R*PY Rprse + caRap RPYOR, cs

+c3Hy > H*PY Hgs® H,"™ He,* He eyt

+ca Hop® HPY H,<C Hs" Hee" Hyep

+es5Hop® HYPY H, € Hs ' He " Hyyepy

+c6Ho > H*PY Hg® Hs: Ry ey

+c7Hy*  H*PY Rg%5' Ry e,

+egHop® HOPY Hoe HES Ry 5

+co HPY HC Ryps' Ryec

+c10Ho*  H*PY Rg% s' Ry ier

+eii Hy  H*PY Rg® ' Ry,

+612Haﬁ§H(xﬁy R, Rsze,

+c13Hap® H*PY H,“ H.'" Ry

+c14Hy* H*PY Hps® Hy, '™ Revei

15 Hop® H*PY Hy“C Hs™ Reyzc

+c16Hy* H*PY Y, Hse V' Hg,, ¢

+c17Hy  H*PY Vi Hy o V! Hps*

+e1gHy HPY NV H,y e V! Hps*

+c19Hyp® H*PY V Hse V' H, <

+c20 Hop® H*PY V, Hye V' H) < 7
and L% has the other couplings which all include derivatives
of the dilaton, i.e., ,
L3 = o Hg  HPYP Hy o' Hyp Vo VO @

+c22Rpy5e RPV€V, OV O
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3 Hg  HPYP Ry 5 Vo OV @
+coaHy "  Hp Hy o' Hy V¥ OVFP @
+c25Ro "> Rpsy e V2 OVF @
+ca6Hy "  Hp Ry 5 VO OVFP @
+c27Hyse HY €V V5V, ®VF @
+cas HyV* HpC Hye' Hy VPV @
+c29Hy "  Hp  Hys' Her VPV @
+c30Hy " Hp € Hs ' He VPV @
+c31Hys  H* Ryepe VPV @
+c32Re "% Rps, VPV @
+c33Hy "  Hy €S Rgese VPV
+c3aHy "  Hp Ry 5 VPV @
+c35 Hy VY OVP OV, Hgs VY
136V VI OV OV DV, OV
+¢37Vo ®VYOVFA DV, V4OV @
+casHp* Hy 5V OV VYV,
+c30Hp* H, 5. VPV OV V, @
+c10VI OV DV, V5OV V, @
141 VEV? OV, V5DV V, D
+caHp* Hy 5V, @V OVY VP D
+ca3 Hy VOOV, Hps VY VPO
144V ®VI OV, Vg OV VA
+ca5 Hyy € Hpse VO OVPOVIVY @
+ca6Rayps VEOVE OVIVY @
+c47Hyy € Hps VEV? OVOVY @
+cag Rayps VPV OVIVY @

+ca9 HE* VO OVY VPOV, Hyy 5
+esoHY Ve dVPV, DV, Hp, s
+¢51 VY OVP DV Hp,  VEH,Y?
+c52 VPV Vs Hpp e VE Hy '
+¢53 VOV DV, Hp) s VEH,"?
+¢54 VPV OV, Hp, s VE Hy '
+¢55Vg OV OV, Hp, s VEHPY?
+c56HoPY Ry 5V ®VE Hp€
+cs7Hgy  HPYO Hy ' VOOV, Hye
+ess HyPY Hy H*S VOV, Hp,
+c59 HyPY Hg®€ Hs VO OV, Hyy e
+co0 Ho " Hg* H, *' VO OV, Hye, 8)

where ¢y, .. ., ceo are 60 parameters which can not be fixed
by the gauge invariance constraint.

Up to this point, the above couplings are valid for any
higher derivative theory which includes metric, B-field and
dilaton. In the string theory, however, the parameters in (2),

(3) and (6) may be fixed by imposing some other specific con-
straints which are valid only in the string theory. For exam-
ple, one may construct the appropriate S-matrix elements
with the above couplings and then compare them with the
a’-expansion of the corresponding sphere-level S-matrix ele-
ments in the string theory to fix the parameters. This method
has been used in [1] to find the parameters in (2), (3). The
parameters ¢y, ¢2 in (6) have been also found by the S-matrix
method in [30]. The S-matrix method for fixing all parameters
in (6), however, requires one to calculate six-point function
in string theory in full details which has not been done yet.

Instead of comparing the S-matrix elements of above cou-
plings with the corresponding S-matrix elements in the string
theory, one may impose some other symmetries of the string
theory to fix the parameters in (2), (3) and (6). The bosonic
string theory has the global T-duality symmetry as well as
the gauge symmetries that have been used to find the cou-
plings in (2), (3) and (6). It has been shown in [27] that the
T-duality symmetry can fix correctly the couplings in (2), (3)
up to overall factors at each order of o’. In the next section,
we show that imposing the T-duality on the couplings in (6)
can also fix all 60 parameters in terms of the overall factor at
order o',

3 T-duality invariance constraint

The T-duality constraint on the D-dimensional effective
action Seff, in the most simple form, is to reduce the the-
ory on a circle with U(1) isometry to find the (D — 1)-
dimensional effective action Sefr (1) where ¥ represents all
massless fields in the (D — 1)-dimensional base space. Then
one has to transform it under the T-duality transformations to
produce Sesr (') where v’ represents the T-duality transfor-
mations of the massless fields in the base space. The T-duality
invariance constraint is then

Sett (W) — Setr (¥ = f dP=x\/~gV, (e—zfifa) 9)

where Zup, ¢ are the metric and dilaton in the base space,
and J¢ is an arbitrary covariant vector made of the (D — 1)-
dimensional fields. It has the following «’-expansion:

oo
=" (10)
n=0

where J¢ is an arbitrary covariant vector at order o™

To have a background with U (1) isometry, it is convenient
to use the following background for the metric, B-field and
dilaton:

G - 8ab +€%8a8b €% gy
e e’gp e? )’
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B — bap + 3bagb — 3bb&a ba
we —by 0 )’

d=¢+g¢/4 (11)

where by, is the B-field in the base space, and g,, by are two
vectors in this space. Inverse of the above D-dimensional
metric is

ny __ gab _ga
where g% is the inverse of the base metric which raises the
index of the vectors.

The T-duality transformations at the leading order of o’
on the (D — 1)-dimensional fields are given by the Buscher
rules [20,21]. In the above parametrisation, they become the
following linear transformations:

¢ = -9, g;; =by, b;; = 8u> g(/xﬂ = gup> b&ﬁ
= bap. ' = ¢ (13)
They form a Z,-group, i.e., (x’) = x where x is any field in

the base space. At higher orders of &', the above transforma-
tions receive higher derivative corrections, i.e.,

y' =Y o"y, (14)
n=0

where 17/, is the Buscher rules (13), ¥ contains corrections
to the Buscher rules at order o’ and so on. The deformed
transformations must satisfy the Z,-group.

3.1 T-duality constraint at orders ’®, o’

To impose the constraint (9) on the diffeomorphism invariant
couplings (6), we first review how imposing this constraint
on the couplings at orders «’® and o’ can fix their parameters
[27]. The constraint (9) at order o’ 0is

Sov) = Sow) = [ @Pxy/=gva (ug)  as)

where J§ is an arbitrary vector at the leading order of ', and
Y, is the Buscher rules (13). Reduction of different scalar
terms in S are the following [27]:

e/ —G = 6_24;\/%

_ 1 1
aiR = a, <R — ViV, — 5va<pv“<p - Ze<"v2>

i x7a 1 1 oa 1 a
aV,dVFD = ay [ V,0V ¢+§va¢v ¢+Rva¢v @

azH? = a3(Hupe HYP + 3¢ Y W?) (16)
where V,; is field strength of the U(1) gauge field g,, i.e.,
Vab = Va&b — Vbga, and Wy, is field strength of the U (1)
gauge field b,, i.e_:., Wap = Vb, — Vpb,. The three-form
H is defined as Hape = Hape — 8aWie — 8cWap — 86Wea
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where the three-form H is field strength of the two-form
bap + %ba gh — %bb ga in (11). The three-form H is invariant
under the Buscher rules and is not the field strength of a
two-form. It satisfies the following Bianchi identity [24]:

_ 3
ViaHped) = — 3 Viab Weay (17)

which is invariant under the Buscher rules (13).

The transformations of different terms in (16) under the
Buscher rules (13) can easily be found. Then the T-duality
constraint (15) fixes the parameters ap, az, a3 in the D-
dimensional action [27], i.e.,

dee_zq)«/—G

2
S = 201

1
x (R +4V,dVD — EH2> ) (18)

which is the standard effective action at order o, up to an
overall factor. The overall factor must be a; = 1 to be the
effective action of string theory. The constraint (15) fixes also
the form of vector Ji in which we are not interested.

The constraint (9) at order o is

So() + o' S1(¥) — So(Wrh + & W}) — o' S1 (¥
_ / 4P /=g [ (5 + o) ] (19)

where J{" is an arbitrary vector at order of ', and ¥; + oV
is the Buscher rule plus its deformation at order o/, i.e.,

o =—p+ad' AV, g\ =b, +a'e?*AgD,
b, = ga +ao'e P ADY,

- _ _(1
2y = &ab + ' AZ,),

N _ - -, - _
Hipe = Hape + o AHy ¢ = ¢+ 89V (20)
where Ap(, ...  A¢p) contains some contractions of

Vo, Ve, e??V, e /2W, H, R and their covariant deriva-
tives at order «’. Since the constraint (19) should have terms
up to order &', in expanding So (¥, + '), one should keep
the terms up to order o/, i.e.,

So(Wh +a'¥)) = So(wh) +a'88y" + - - 1)

Using this expansion and the constraint (15), one can simplify
the constraint (19) to the following constraint which is only
at order o’

S1W) — S1(yg) — 885
_ /dD—lx\/Tgva [e—z‘Z’Jf] (22)

It has been shown in [27] that the above constraint can fix the
parameters in the effective action (3) as well as the parameters
in the corrections to the Buscher rules up to an overall factor.
The result is that E% is zero and all terms in K} are non-zero,
ie.,
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—2b1

S = //de€72¢\/_

1
x (RaﬁyéRaﬁ 70— S HLHY Ryyse

1
— Hes  HSPHO gV HE
Fog e p

—%HaﬂaH“ﬂV H),¢ H5€;> (23)
Up to the overall factor b1, the above couplings are the stan-
dard effective action of the string theory which has been
found in [1] by the S-matrix calculations. For the bosonic
string theory by = 1/4, for the heterotic theory by = 1/8
and for the superstring theory b; = 0.

The corrections to the Buscher rules corresponding to the
above action are the following [27]:

BB = 200V Va — W)
Ap = bzl ( vy? —<”W2)

Ag') = 2b) (VafpV“(p +efVE 4 e‘<”W2)
Ag) = b1<26_“’/2V”Wub 4?2, Ve

—4e*¢’/2v”q§Wab>

AbYD = —by (26729 V4 €9 Hope W
—4e‘/)/2v”¢3vub)
! 1
AHS) = 1201V (Wp Vea) — 36W2V[abAg£])

—3¢7?2Wiap AbYY (24)

Replacing these corrections into (20), one finds the corre-
sponding T-duality transformations at order o’ satisfy the
Zy-group as well as the Bianchi identity (17) [27]. The con-
straint (22) fixes also the vector J{' in which we are not
interested.

3.2 T-duality constraint at order

We now study in details the constraint (9) at order o” 2 to fix
the 60 parameters in (6). This constraint at order o’ is

So() + o' S1(¥) + &2 Sa(¥) — So(¥yg
+o' Yl + &) — o S1 (Y + oY) — a2 Sa(Y)
- /delx,/—gva (72 (U + o uf +a205)] 25)
where J3' is an arbitrary vector at order o/” 2o Y| represents
the corrections to the Buscher rules at order o/, e.g., (24),

and o? ¥} represents the corrections to the Buscher rules at
order o2, i.e.,

1
0 = —¢+a' MgV +§a/2A¢<2)’

g, =b, +a'e??AgD + %a’ze‘p/zAgf)

1
b, =g +a'e P AbD + Ea’ze_“’/zAb((lz) ,

_ 1
Zop = 8ab + Agah + 2o/zAga)
_ 1 )
wbe = Hape + o AH(bc + Za/ZAH;b)c
_ _ _ 1 _
® =¢+aApD+ Ea%(p(z) (26)

where Ap@, ..., A¢® contains all contractions of Vg,
Vo, 2V e~¢12W, H , R and their covariant derivatives
at order o> with unknown coefficients. Since the con-
straint (25) should have terms up to order o2, in expanding
So(W + 'Y + o’>y5) and 'Sy (Y, + o'y]), one should
keep the terms up to order o2, i.e.,

So(Wh + &'Vl + a?yh) = So(y) + '8y

+a%885” +

o' S|P+ 'Y = o' S (W) + 0/285(1) .27

Using these expansions and the constraints (15) and (22), one
can simplify the constraint (25) to the following constraint
which is only at order o'?:

S:(¥) — Sa () — 885 — 85\
= /dD’IijgVa [e%Jg] (28)

The speculation is that this constraint as well as the con-
straint that the T-duality transformations should satisfy the
Z>-group and the anomalous Bianchi identity (17) may fix
all parameters in the diffiomorphism invariant couplings (6).

The T-duality transformations (26) should satisfy the Z,-
group. This produces the following constraint between the
corrections at orders o’ and o'?:

— AP W) + AP (W) + 2880 D (Y =0
AL (Y) + AgP (W) + 288 (W) =0
AP W) + AbP (W) + 28 AV () = 0
AZD W) + AP ) + 2808 (W) =0
AHGL ) + AHG) () + 28AH,, (Yg) = 0

AP () + AP (Y() + 286D (y) = 0 (29)
where we have used the Z,-constraint at order o’ which are
[27]
=8¢V + 20V () =0

ABD () + AglP () =0

MgV ) + A (W) = 0

A W)+ Ag) W) =0
AHY) () + A (p) =0

@ Springer
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A (W) + A () =0
The perturbations § ApD (y(), . ..
defined as

MgV (g + ' yr))
= 2V (W) +a's8¢ P (Yg) + -
P+ o'y A (W + &'y
= P (Wp) + e 5NN (W) + -
e Wy + YD ALY (g + oY)
— e“’/zAb(l)(l///) + a/e‘p/ZSAbél)(lpé) 4.
1
Zop (W5 + V)
— As =(1) 'SA @ @)t
Zap (W0) +o'8Ag,, (g) +
1
AHu (UG + o' vr))
= AHQ (W) + «/SAH) (Yi) + - -
A (g + ' yr))

= AdV W) + ' 806V () + - - -
where dots represent the perturbations at higher orders of o’
which do not appear in our calculations.

The Bianchi identity (17) in terms of 3-form H and 1-

forms g, bisdH = —(3/2)dg Adb. The T-dual fields should
satisfy this identity as well, i.e.,

(30)
,8A¢W (y() in (29) are

€1y

_ _ 1 _
d(H +o'AHDY + EO/ZAH(Z) +-)
3 1
= _Ed(b +a'e?? gV + Ea/2ew/2Ag(2) T

1
/\d(g+d/€_(p/2Ab(l)+Ea/2€_(p/2Ab(2)+'-') (32)

This relation at order o gives the Bianchi identity (17). At
order o’ it gives the following relation between the correc-
tions to the Buscher rules at order o’:

AHY = A - %[db A e P AbD) + (2 agM) A dg] (33)

where HD is a U(1) x U(1) invariant closed 3-form, i.e.,
dH®M = 0, at order o’ which is odd under parity. The cor-
rections (24) satisfy this relation. At order «'2, the Bianchi
identity (32) produces the following relation between the cor-
rections at orders o’ and «?:

o =y 3
AH® = A - 5[db A e PP AbD) + (12 Ag®) A dg

+(e??agM) Ad(e 2 AbD)

+d(e**AgM) A (e_“’/2Ab(l))] (34)
where H® is a closed 3-form, i.e., d H? = 0, which con-
tains all contractions of Vg, V(i, e?/2V, e 9/2W, H, R and
their covariant derivatives at order «’2 with unknown coeffi-
cients.

Therefore, the second order corrections Agp®),
Aga (2) Ab,(lz), Ag(z) and A¢(2) should be all contractions

@ Springer

of Vo, V¢_>, e?/2V, e~?/2W, H, R and their covariant deriva-
tives at order > with unknown coefficients. The correction
AH ;ZZ is then can be calculated from (34). All corrections
should satisfy the Z,-relations (29). They produce some alge-
braic equations between the parameters of the corrections at
order «’> and the parameter b; in the corrections at order
o', i.e., (24). These parameters and the 60 parameters in the
action (6) should satisfy the constraint (28) as well.

To use the constraint (28) one needs to reduce the cou-
plings in (6). The reduction of each term at order o’ is a very
lengthy expression. However, the final result for the reduction
of each term must be an invariant term under the U (1) x U (1)
gauge transformations. Using this fact as a constraint, the
calculations of the reduction of S, can be simplified greatly.
The couplings in (6) have only Riemann curvature, H, VH,
V& and VV®. So we need to reduce these terms and then
contract them with the metric (12). In the reduction of these
terms, there are many terms which contains gauge field g,
without its field strength. These terms must be cancelled at
the end of the day for the scalar couplings. Hence, to sim-
plify the calculation we drop those terms in the reduction of
Rivags Huve, ViHyop, Vi ®, V, V, ® and G*” which have
the gauge field g,. Using this simplification, the reduction of
Riemann curvature becomes'

_ 1
Raped = Rabea + Zew(vad Ve = VacVoa — 2Vap Vea)

1
Rabey = Zew(vhcvaﬁﬂ = VaeVop = 2VapVep — 2V Vyp)

1
Rayey = 3¢ (Vi Voo = VagVep = 29:Vap)  (35)

All other components are either zero or related to the above
terms by the Riemann symmetries. The reduction of different
components of VV® and V® become

-1
V,Vp® =V, Vo + ZV,N;,q;

1 @ b7 1 b
VaVy® = —2e¥ (VapV'$ + Var V9
1
VyVy® = ~e¥ ( VapVih + — Vach”<p)

1
Vi® = Voo + JVagt Vy® =0 (36)

The reduction of different components of V H and H become
1 -
VaI"Ihcd = E(Vad Wie — VacWha + Vap ch + 2VaI"Ihcd
1 _
VaHpey = 5 (€ HpeaVa = WoeVag +2VaWhe)

1 @O0 a 7 a 7 a
VyHpeq = € (Hpaa Ve — Heaa Vo — Hpea Va®)

1 We have used the package “xAct” [31] for performing the calculations

in this paper.
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1
+5(Wdec<ﬂ — WeaVpp — WpeVap)

1 (N3 a a a
VyHpey = Ee (Hpea V0 — V" Wpa + V" Wea)
Hype = _abL‘; Haby = W 37

The covariant derivatives on the right-hand side of (35), (36)
and (37) are (D — 1)-dimensional, and the indices are raised
by the inverse metric g%”. The reduction of inverse of the
D-dimensional metric in this case also becomes

sab
w _ (8 0
Gm — ( . e_q,> (38)

Using above reductions, one can calculate the reduction of
different scalar terms in (6).

Then using the constraint (28), one finds some equations
involving the 60 parameters in (6), the arbitrary parameters
of J2” and the parameters of A(p(Z), A gc(,z), Abflz), A gfj},
AP® and H?. The parameters of Ap®@, Ag?, Ab{,
Agﬁ), A¢?® and H?® should also satisfy the constraints
(29) and (34). To solve these constraints, one has to write the
couplings in them in terms of independent couplings. Then
coefficients of the independent couplings which involve the
above parameters should be zero. To perform this last steps,
one has to impose the following Bianchi identities into the
constraints as well:

Rappea; = 0,
ViaRpelge = 0
[V,V]O = RO
ViaVbe; =0
ViaWbe) =0
Via a3 Vs Wea) = 0 (39)

To impose the last identity above, we contract it with tensors
Vo, Vq_ﬁ, e?’2V, e ?/2W, H, R and their derivatives with
arbitrary parameters and then add them to the constraints.
To impose the first three identities above, we use the locally
inertial frame in which these identities are automatically sat-
isfied. In the locally inertial frame, the metric g, takes its
canonical form and its first derivatives are all vanish, i.e., ,

8ab = Nabs 0a8pc =0

The second and higher derivatives of metric, however, are
non-zero. In this coordinate, by rewriting the covariant
derivative in terms of partial derivatives, one finds the first
three identities in (39) are satisfied. To satisfy the Bianchi
identities dV = 0 = dW as well, in the couplings which
involve derivatives of V and W, we rewrite them in terms
of their gauge fields, i.e., V,p = 0,8 — 0pgq and Wy, =
0abp — Opby,.

After using the above steps to write the couplings in the
constraints (28), (29) and (34) in terms of independent cou-

plings in the local frame, one can set their coefficients to
zero to produce some algebraic equations involving only the
parameters. Interestingly, these algebraic equations fix all the
60 parameters in (6) in terms of b1, the overall factor at order
a’ which should be by = 1/4 for the bosonic string theory.
All 20 parameters in (7) are non-zero and only 7 parameters
in (8) are non-zero. They are

—2b
S, = 2la/2dexe_2¢\/—G
K

1
% <_EH0[56 HeBy Hﬂég Hyu( HSLMHQ(M
1
+%Haﬂ5H“ﬁVHV€§H(;”‘HE;”HL,(,L

3
+EHaﬁsH“ﬂV H, Hs H " Hype

13
“FEHae{ Hﬂm 1234 Hsyc RaﬂyS

2
+§HﬂHﬂe‘Hﬂ"H5mRaﬁV‘3

18
—i—?HayéHﬁc‘Hg;"HEmR“ﬂV‘s

43
—?HayeHﬂc‘ng’(H;mR“ﬂV‘s

16
_?HQVGHﬁBCHGLKH{LKRaﬂ]/(S

—2Hg Hse Ry )" R*PY® — 2Hgs' Her Ry ¢ ROPY°

4 4
—§Ra6y§Raﬁy5Rﬂ{3€ + §RaﬂE§Raﬁy8R]/65{

+3Hg " Her RPYPR € 45
+2Hpe Hse [R*P7O R, €0 + 2Hype Hse RPYO R, €

13
+BHD,V‘3H,§},GH55‘H@LV’3V“®
13
+?Hy€§HSE;RaV Vv o

52
—?Hﬂaé“Hye; R,V VAVYD

26
—?HayeHﬁ(;{ RV€¢VAV* P

13
+?V’3VQCDV€H/3V5VEHQV‘S

13
—i—EHﬁyeHﬂV‘sH(;“V“@VLHae;

13
—%HaﬁVH(;;HMv%leﬂy;

1

+%HQSGHW3V V,Hse: V' Hp,*
1

+§HQ‘SEH“’3”V§ H,e, V' Hps®
6

—§Ha85H“ﬁV V.Hye: V' Hgs*

6
—gHaﬁ'SH“ﬂV V¢ Hse V' H, ¢
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+Eﬂaﬁ5H“ﬁV V,Hsee V' H, ¢ ) (40)

Note that the 60 parameters are fixed when the Bianchi con-
straint (34) is imposed as well as the T-duality constraint (28)
and (29). If one only uses the constraint (28) and (29), then
12 parameters of (6) remain arbitrary. It is the constraint (34)
which fixes these 12 parameters as well.

The algebraic equations also fix some of the parameters
in the T-duality transformations and the parameters of total
derivative terms at order a2 in terms of b 1, and leave many of
them to be arbitrary. Some of the arbitrary parameters in the
T-duality transformations may be removed by the Bianchi
identities and some of them are related to the coordinate
transformations at order o’?>. Even when all the arbitrary
parameters are set to zero, there are still too may terms in
the T-duality transformations at order a2, so we do not write
them explicitly. On the other hand, those corrections are only
needed if one would like to extend the above couplings to
the order o3 in the bosonic theory in which we are not inter-
ested in this paper. The important part of the calculations is
that there are 60 relations between the 60 parameters in (6)
and the parameter b1, i.e., the T-duality constraint fixes all
60 parameters at order o> in terms of the overall factor of
the couplings at order «’! This ends our illustration of the
fact that the T-duality constraint on the effective action can
fix uniquely the effective action of bosonic string theory at

order a2

4 Discussion

In this paper, we have shown that imposing the gauge sym-
metries and the T-duality symmetry on the effective action
of string theory for metric, B-field and dilaton at order o'Z,
can fix the effective action, i.e., (40), up to an overall factor
which is the overall factor of the effective action at order
o'. This is extension of the similar calculation at order o’
done in [27] which fixes the effective action at order o’ up to
the overall factor by, i.e., (23). In fact, the gauge symmetries
require to have 60 couplings at order o> with unfixed coeffi-
cients [2], and the T-duality symmetry which is imposed on
the reduction of the effective action on a circle, fixes these
60 parameters.

In the base space, we have done the calculations in the
local frame in which the first derivatives of the base metric
is zero. After solving the constraints, we have imposed the
solution for the parameters in the constraints (28), (29), (34)
and found that they are satisfied even when the first derivative
of metric is non-zero. Itis as expected, because the constraints
are some covariant identities. If they satisfy in one particular
frame like the local inertial frame, they would satisfy in all
other frames as well.

@ Springer

Most of the couplings in (40) are new couplings which
have not been found in the literature by other methods in
string theory. When B-field is zero, the couplings (40) reduce
to two Riemann cubed terms that their coefficients, after
using the cyclic symmetry of the Riemann curvature, become
exactly the same as the coefficients that have been found in
[30] by the S-matrix method. These couplings are invariant
under the field redefinitions. However, the couplings which
have B-field are not invariant under the field redefinitions.
When B-field is non-zero, one may check the couplings
involving four fields with the corresponding four-point S-
matrix elements in bosonic string theory. To check this com-
parison, one has to use a field redefinition that change the Rie-
mann squared terms in (23) to the Gauss-Bonnet combination
in which the propagators do not receive o’-correction. That
field redefinitions would then change the form of the cou-
plings in (40). The resulting couplings then may be checked
with the corresponding S-matrix elements. We leave the
details of this calculation for the future works.

We have found that seven dilaton couplings in (8) are non-
zero. On the other hand, it is known that the couplings at order
a? depends on the effective action at order &’ [28]. We have
used the minimal action (23) and the corresponding T-duality
transformations (24). Using another scheme for the couplings
at order o', some of the parameters in (40) may be changed.
It would be interesting to check if there is a scheme for the
couplings at order o’ for which all the dilaton couplings in
(8) become zero.

We have found the effective action (40) by imposing only
the symmetries of string theory, i.e., the B-field gauge invari-
ance, diffeomorphism and T-duality invariances. As a result,
the effective action (40) is background independent. How-
ever, the total derivative terms are ignored in imposing the
T-duality constraint. Hence the effective action (40) is valid
for all backgrounds that have no boundary. It would be inter-
esting to take into account in details the total derivative terms
to find the boundary terms as well as the bulk terms for the
general case that the background has boundary.

We have done the calculations in the curved base space to
make sure that the constraints (28), (29), (34) are satisfied in
full details. We have performed the calculations in flat base
space as well and found exactly the same parameters for (6)
as in (40). In the T-duality calculations at order o’ [27] which
have correctly reproduced the effective action at order o/, it
is also assumed that the base space is flat. Hence, for the
calculations at the higher orders of &’ which would be very
lengthy calculations, one may safely assume the base space
is flat. The most simple calculations at order &’ is for super-
string theory in which the T-duality transformations have no
deformation at orders «’ and «'2. It would be interesting to
perform this calculations at order > in the superstring to find
the B-field couplings which are not known in the literature.
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If one extends the calculations in the bosonic theory to the
order o3, one would find a set of couplings which are pro-
portional to b1 and another set of couplings that their overall
factor is arbitrary. The comparison with the four-point S-
matrix elements dictates that this factor should be ¢(3). At
order ™, again one should find a set of couplings which are
proportional to by, a set of couplings proportial to ¢(3) and
some other sets of couplings that their overall factor may be
fixed by the corresponding S-matrix elements. Continuing
these logic, one would find sets of couplings at each order
of @’ which are proportional to b;. Hence, one expects the
T-duality constraint produces a set of couplings at each order
of &’ that are proportional to b;. They form a complete set of
couplings which would be invariant under the T-duality trans-
formations at all orders of o’. That T-dual set of couplings
may have de Sitter solution [32]. It would be interesting to
find this T-dual set.

In this paper, while we have deformed the T-duality trans-
formations, we have assumed the gauge transformations are
the standard diffeomorphisms and B-field gauge transfor-
mations which are the correct transformations in the bosonic
and superstring theories. In the superstring theory b; = 0,
hence, the couplings (40) are zero in the superstring theory
as expected. On the other hand, the 60 parameters in (40) do
not dependent on the dimension of spacetime. That does not
indicate the result (40) is valid also for the heterotic theory
for by = 1/8. The reason is that in the heterotic theory the
B-field gauge transformation is deformed at order &’ which
is resulted from the Green-Schwarz anomaly cancellation
mechanism [33]. To produce the heterotic result, one has to
add to the couplings (6) the fixed couplings at order «’> which
are resulted from the deformed gauge transformations, i.e.,
—‘}‘—ZQ woa QMY where Q is the three-form Chern—Simons
which can be written in terms of spin connection,

j S P T,
Quva = o’ dhwy); + ga’[ui wyj" Wk

wpi’ = dueglePi —T e, P, (41)

where eﬂievj nij = Gv. Adding this term, the correspond-
ing T-duality transformations and the 60 parameters in (6)
may be fixed in the heterotic theory. We didn’t perform this
calculations, however, one expects all parameters in (6) to be
zero. Similar calculation at order o’ has been done in [27].
The T-duality structure of the couplings in the heterotic the-
ory has been studied in [34-38] in the DFT formalism.
There is another deformation of B-field gauge transfor-
mations which correspond to the Chiral string theory [39].
The deformation at order «’ is the same as the deformation
in the heterotic theory in which spin connection is replaced
by the Christoffel connection [40]. The low energy effec-
tive action of this theory at the leading order, is given by
the T-duality invariant action (18) and at the order o/, it is

given by the T-duality invariant coupling H"*"*&,,,« [417?
where the three-form Chern-Simons £, is resulted from
the deformed gauge transformation, i.e.,

Qe = Cpup? Tapy” + %F[uﬂyrvaf’\ra]kﬁ (42)
To find the effective action at order a2, one has to add
to the couplings (6) the fixed couplings at order o', i.e.,
—"{—/ZZSZMWSZ””“. Adding this term, the corresponding T-
duality transformations and the 60 parameters in (6) may be
fixed in the Chiral string theory by the T-duality constraint
method. It would be interesting to perform this calculation
to find the o’?-order terms. This theory has been studied in
the DFT formalism in [42,43].

In general, both the diffeomorphisms and the B-field
gauge transformations may receive higher derivative defor-
mations in a general gauge invariant higher-derivative the-
ory. One may impose these gauge transformations and the
deformed T-duality transformations to study the effective
action of a higher-derivative theory which is invariant under
the gauge transformations and under the T-duality transfor-
mations. The effective action at the leading order of o’ is
given by (18). At order o/, the parity invariant part of the
effective action would be more general than the action (23).
It would be interesting to find this effective action.
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