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Macromodel-based simulation of membrane action
in reinforced concrete structural members

Behrooz Yousefi , Mohammad Reza Esfahani , and Mohammadreza Tavakkolizadeh

Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT
This paper is devoted to present a two-stage fiber element-based method
for studying the membrane action of RC structural members. The proposed
method combines small and large displacement formulations through two
separate stages. These stages include compressive arch action in small dis-
placements and catenary stage in large displacements, separately. For
structural problems with both geometric and material nonlinearity, the
total Lagrangian and the updated Lagrangian formulations are taken into
account to derive the governing equations. Also, the suggested method is
able to consider the bond-slip behavior of reinforcing bars and shear
deformations in the structural members. Finally, the accuracy of the
authors’ method is compared with the available experimental results and
previous analytical methods in the literature. The results show that such a
modeling method is capable of simulating compressive arch stage concur-
rently with the catenary action behavior.
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1. Introduction

Accidental extreme events, such as imposed loads in the sudden loss of columns scenario, can
apply abnormal loads to structures, which sequentially may suffer heavy damages, local failures or
even collapse. A large number of researches have been examined and developed to study the pro-
gressive collapse behavior of RC frame structures (Sasani, Werner, and Kazemi 2011; Bao, Lew,
and Kunnath 2014; Pham, Tan, and Yu 2017). In order to accomplish the simulation of material
and geometrical nonlinearity, structural element models and relevant numerical procedures
should aim at satisfying the accuracy, reliability, computational time, and robust algorithmic per-
formance concurrently.

Based on the aforementioned aspects, some kinematic approaches are referred to as “lumped-
plasticity” or “distributed-plasticity” models in the literature to account for material nonlinear-
ities. The first element with concentrated plasticity comprises hinge model formulation and elastic
section properties which is limited to axial, flexural and/or shear springs at the element ends
(Franchi, Grierson, and Cohn 1981; Wu, Oehlers, and Griffith 2002; Kaewkulchai and
Williamson 2004; Oehlers, Liu, and Seracino 2005; Izzuddin et al. 2008; Tsai and Lin 2008;
Vlassis et al. 2008; Zhang, Lu, and Yin 2009; Parisi and Augenti 2012). The second element type,
termed distributed-plasticity or fiber-based models, can essentially be classified as force-based
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(FB) and displacement-based (DB) frame element. The FB frame element formulations stem from
an equilibrium between a section and nodal forces which can be induced exactly in frame ele-
ments cases. The exact flexibility matrix can be computed for an arbitrary variation of the cross-
section and constitutive law models (Valipour and Foster 2010; Li et al. 2011; Brunesi and
Nascimbene 2014; Limkatanyu et al. 2014; Brunesi et al. 2015; Feng et al. 2016; Yu et al. 2017;
Brunesi and Parisi 2017). However, in large displacement problems, the accuracy of the flexibil-
ity-based analysis depends on discretization, despite the fact that noticeable expansions have man-
aged to reduce the mesh density (De Souza 2000). Discretization is required for field
inconsistencies due to bending and membrane modes coupling to be moderated, which increases
the computational cost significantly in highly geometrically nonlinear problems. Additionally, the
adopted corotational transformation, implemented to exclude rigid body modes, can introduce
important rotational limitations that can potentially lead to early analysis termination or prevent
realistic results (Neuenhofer and Filippou 1998; Felippa and Haugen 2005). The vast majority of
these formulations focused on elastic or hardening material responses, but only a few considered
softening material behavior (e.g., Valipour and Foster (2010)). On the other hand, in a DB meth-
odology, interpolations of transverse and axial frame element displacements are applied by a
cubic and linear Hermitian polynomials, respectively, which are only approximations of the actual
displacement fields in the presence of non-uniform beam cross-section with nonlinear material
behavior (Bathe and Bolourchi 1979). Polynomial interpolation introduces field inconsistencies in
this formulation, locking phenomena emerge, and even dense meshes are often practically insuffi-
cient to obtain accurate responses, or the convergence is carried out at a low speed (Alemdar and
White 2005), or numerical instabilities (Gerasimidis et al. 2015). Several approaches have been
proposed in the past to provide a mathematical formulation to cover these vulnerabilities
(Kabeyasawa et al. 1983; Dvorkin, Onte, and Oliver 1988; Lodygowski and Szumigala 1992;
Crivelli and Felippa 1993; Kara and Dundar 2010; Ben-Dor, Dubinsky, and Elperin 2009; Ghaisas
et al. 2017; Bocciarelli and Barbieri 2017; Gharib, Vaziri, and Memarbashi 2019; Zhai, Wang, and
Sun 2019). Moreover, the classical beam theory suffers from convergence failures and instabilities
of the numerical solution algorithms in the presence of softening material such as concrete
model. In addition, some specific failure modes, e.g., bond-slip and bar fracture, cannot
be reflected.

In response to these challenges, research efforts from displacement-based to force-based stand-
points have managed to significantly advance the efficacy of nonlinear analyses, proposing various
structural element formulations and improved algorithms. Moreover, there are limited models
which could cover the overall development of probable mechanisms, including the transition
from compressive arch action (Yu and Tan 2014) to membrane action (Li et al. 2014), as well as
their initial stiffness and ultimate capacities with increasing deformations. Therefore, the objective
of this study is to present a two-stage formulation method for studying the RC compressive arch
action in the first stage and RC membrane action in the second stage. Although the literature
presents plenty of other interesting formulation approaches based on Timoshenko theory, there is
still a lack of methods that consider the shear deformation effects concurrently with bond-slip
behavior associated with the important attributes that affect the membrane action behavior of
reinforced concrete (RC) structures, such as the material and geometric nonlinearities.

2. Stage 1: Kinematics of updated lagrangian in compressive arch action

At this stage, the formulation of the authors’ scheme is presented. This new scheme can be
applied for studying the compressive arch action in RC structures. It is able to consider the action
of bonding forces with associated slip and cracking, as well as, shear deformations. The objective
of the current stage is to develop a fiber model for the Timoshenko frame based on the modified
cubic Hermitian polynomials and interface elements, extending the work on the classical
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Bernoulli-Euler beam reported in Orakcal, Massone Sanchez, and Wallace (2006). The main pur-
pose of using interface elements among each fiber (as is demonstrated in Fig. 1) is to improve
the behavior of the proposed solution by employing shear constraint elements. To achieve this
goal, the theory of fiber model based on Timoshenko straight plane frame elements is employed.
Recall that, in the theory of fiber model, the interface element is not modeled as a discrete, but,
each frame consists of a set of frame elements, and the analytical process is performed through a
nonlinear analysis.

The suggested approach evolves from cubic Hermitian polynomials and local stress field theory.
The main advantage of the developed expressions of shape functions over the classical shape functions
is the shear deformation factors. Moreover, these expressions satisfied the completeness and continuity
conditions. For this purpose, this research extended the work in Bazoune, Khulief, and Stephen
(2003) to account shear effects of fibers by an inner sub-program based on local stress field theory. In
what follows, the authors’ methodology is explained in more details.

According to cubic Hermite interpolation, the degrees of freedom for each element are the dis-
placements vector in orthogonal directions ðu, vÞ and rotational bending deformation of two
neighbor nodes ðhÞ as Eq. (1):

d xð Þ ¼ uðxÞ
vðxÞ

( )
¼ ad xð Þ:q [ d xð Þ ¼ eðxÞ

cðxÞ

( )
¼

@ðu� yhÞ
@x

@ðu� yhÞ
@y

þ @v
@x

8>>><>>>:
9>>>=>>>; (1)

where x denotes the longitudinal axis, uðxÞ is the axial displacement, and vðxÞ is the transverse
displacement, y is the distance of a point from the centroid axis of the cross-section, and q is the
nodal displacement vector as fu1 v1 h1 u2 v2 h2g: Hence, cubic Hermite interpolation matrix
ad xð Þ is expressed as Eq. (2):

adðxÞ ¼
u1ðxÞ 0 0 u2ðxÞ 0 0

0 u3ðxÞ u4ðxÞ 0 u5ðxÞ u6ðxÞ

" #
u1ðxÞ ¼ 1� x

L
[ u2ðxÞ ¼

x
L

(2)

u3ðxÞ ¼
1
Uz

2
x
L

� �3

� 3
x
L

� �2

þ Uz

 !
[u4ðxÞ ¼

1
2Uz

2L
x
L

� �3

� ð3þ UzÞL x
L

� �2

þ ð1þ UzÞðxÞ
 !

u5ðxÞ ¼
1
Uz

�2
x
L

� �3

þ 3
x
L

� �2

þ ðUz � 1Þ x
L

� � !

u6ðxÞ ¼
1

2Uz
2L

x
L

� �3

þ ðUz � 3ÞL x
L

� �2

þ ð1� UzÞðxÞ
 !

(3)

in these relations Uz is shear slenderness as Eq. (4):

Uz ¼ 1þ 12EIz
jyGAL2

[ EIz ¼
Xntf ðxÞ
nf¼1

Enf ynf
2 (4)

in which, the variable G is shear modulus obtained by a subroutine according to local stress field
and direct displacement analysis which detailed explanation is given in the following. The variable
jy ¼ 5þ 5tð Þ= 6þ 5tð Þ is defined as shear stress correction factor for rectangular sections with
Poisson’s ratio of t ¼ 0:15 � 0:18 (Dong, Alpdogan, and Taciroglu 2010). In the following, elem-
ent stiffness gKlocal is derived from the weak form of governed equations.
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@Niðx, tÞ
@x

¼ 0 [ � @Viðx, tÞ
@x

¼ qA
@2Viðx, tÞ

@t2
þ q

� @2Miðx, tÞ
@x2

¼ qA
@2Viðx, tÞ

@t2
þ q [ � @Ni

barsðx, tÞ
@x

þ fi
barsðx, tÞ ¼ 0

(5)

By using the equilibrium conditions of an infinitesimal segment (@x) with bond interfaces at

bars fi
barsðx, tÞ

� �
and constant external force in the y direction (eq), the differential (strong) form

of these equations can be formulated by the dynamic free body diagram of a 2D RC frame elem-
ent as shown in Fig. 2: in these relations, each structural node has five degrees of freedom
(DOF), namely, the axial equilibrium of the concrete element Niðx, tÞð Þ and steel bars
Ni

barsðx, tÞ
� �

and the vertical Viðx, tÞ and moment components Mi x, tð Þ with respect to the longi-
tudinal axis (x) and time (t). Also, q and A are the element material density and cross-section
area, respectively. It is worth pointing out that the degrees of freedom introduced in Fig. 3 lead
to a vector form uf g as Eq. (6) consisted of axial translation of concrete (uN), vertical translation
of concrete (uv), rotation about z-direction (uM), and axial translation of top bars (ust) and bot-
tom bars (usb), respectively. Moreover, q is an external force along the element length (L) and the
rotation h is positive when DOF is counter-clockwise.

uf gi ¼ uN1 uN2 uV1 uM1 uV2 uM2 usb1 usb2 ust1 ust2
� 	T ¼ uNf g uwf g uslipf g

� 	T
(6)

Figure 2. Dynamic free body diagram of frame element.

Figure 1. Proposed fiber planar frame approach.
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In what follows, the internal forces of an arbitrary cross-section in the beam element are defined
according to known uniaxial stress state of concrete (rc), concrete shear stress (sxyÞ and stress state of
bars (rs) with the coordinate of the ith fiber with respect to the centroidal bending axis ðyÞ as the fol-
lowing relations:

Niðx, tÞ ¼
ð
A

rc dAþ
X
j

ðAsjbrsjb þ AsjtrsjtÞ [ Viðx, tÞ ¼
ð
A

sxy dA ¼ jAGc

Miðx, tÞ ¼
ð
A

rc y dAþ
X
j

ðAsjbrsjbyjb þ AsjtrsjtyjtÞ

Nib
barsðx, tÞ ¼

X
j

ðAsjb � rsjbÞ[ Nit
barsðx, tÞ ¼

X
j

ðAsjt � rsjtÞ

fibðx, tÞ ¼
X
j

ðp� dsjb � sjbðx, tÞÞ[ fitðx, tÞ ¼
X
j

ðp� dsjt � sjtðx, tÞÞ

(7)

in which, the subscript i is an indicator of element number, ds and As are circumference and
area of steel bars in each fiber, s is the local bond stress and subscript b and t represent bottom
and top bars, respectively.

In what follows, deformation of the beam at the current configuration, as well as the displace-
ment field vector (Eq. (8)) in the corotational system based on Timoshenko beam theory are
demonstrated in Fig. 4.

ux
uy

" #
¼ ux0 � ysin h

uy0 þ ycos h� y

" #
[ h ¼ @Viðx, tÞ

@x
¼ @uw

@x
¼ wþ c (8)

In the following, an infinitesimal element of the member axis at the current configuration is
illustrated as Fig. 5.

w � tanw ¼ duy
dx þ dux

� �
¼

duy


dx

� �
1þ dux=dx

� �
0@ 1A ¼ u0y

1þ u0x

 !
(9)

The bending rotation of cross-section (w) is obtained by the configuration of the element and
displacement at points on axis:

After deformation, an infinitesimal element length of fiber from the member axis at current
configuration is given by:

Figure 3. Proposed degrees of freedom.
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dS0 ¼ ds
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u0xð Þ2 þ u02y

q
(10)

Furthermore, the following relations can then be obtained:

1þ u0x ¼ dS0 cos w
u0y ¼ dS0 sinw

(11)

in these relations, uX and uY ðuwÞ are the displacements of the projection of X0 on the neutral
axis in the X � Y system. Also, h represents the summation of bending rotation and shear rota-
tion at the cross-section, dS0 as the arc length along the neutral axis in the current configuration,
primes denote the derivatives with respect to X, and L and L0 are current and reference element
lengths, respectively. As can be inferred in Fig. 4, the following relations can be written:

sin h ¼ @uw
@x

! @2uw
@x2

¼ jcos h ! cos h ¼ @2uw
j@x2

(12)

The nonlinear strain vector (e) including the axial strain (exx) and the transverse shear strain
(eyxÞ defined as:

�e ¼ exx
2eyx

( )
¼ e� yj

c

( )
e

c
j

8><>:
9>=>; ¼

ð1þ u0xÞ cos hþ u0y sin h� 1

�ð1þ u0xÞ sin hþ u0y cos h
j

8><>:
9>=>;

(13)

in which, the three strain quantities (e, c, j) characterize axial strains, shear strains, and curva-
tures, respectively. The bond-slip between the surrounding concrete and the ith fiber of reinforce-
ment (uslip), the normal strain of the concrete (exxcon), and steel bar strain of ith layer (exxbars) are
defined through the following compatibility relations. It worthwhile to point out that derivative
of uX and uY with respect to X can be substituted by mentioned relations in Fig. 4:

uslip ¼ uxi
s � uxi ¼ uxi

s � ux
0 � y sin h

exx
con ¼ ð1þ u0xÞ cos hþ u0y sin h� 1� yj

exx
bars ¼ exx

con þ @uslip
@x

(14)

Figure 4. Beam configuration and displacement field considering the theory of Timoshenko beam.
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where uxi with the superscript s is an indicator of bar slip in the ith fiber. By
using u0y ¼ ð1þ u0xÞtanw and Eq. (12), the exxcon is rewritten as:

exx
con ¼ 1þ @uN

@x

� �
cos hþ 1þ @uN

@x

� �
tanw sin h� 1

� 

� yj

¼ 1þ @uN
@x

� �
sechð Þ � 1

� 

� yj ¼ 1þ @uN

@x

� �
j

@2uw
@x2

� �
� 1

" #
� yj

(15)

Hence, Eqs. (14) and (15) together with the equilibrium equations (Eq. (5)) make it
possible to express the force-displacement relations of the strong form through stress-
deformation relations.

To obtain element stiffness, the weak formulation of structural elements is extracted by using
arbitrary test-functions. Thus, the variational form of Eq. (5) are turned into a weak form by left-
multiplication of duN , duw, duslipb and duslipt which respectively correspond to the nodal axial
displacement, nodal deflections, and rotations at the reference axis, and nodal relative slip at bot-
tom bars and top bars as: ð

L
Ni x, tð Þ @duN

@x
dx ¼ duN Niðx, tÞ½ �L0 (16)

�
ð
L
Mi x, tð Þ @

2duw
@x2

dx ¼
ð
L
duw qA

@2Vi x, tð Þ
@t2

þ q

� �
dx� @duw

@x
Mi x, tð Þ

� 
L
0
þ duw Viðx, tÞ½ �L0 (17)ð

L
Nib

bars x, tð Þ @duslip
b

@x
dx �

ð
L
duslip

bfib
bars x, tð Þdx ¼ dus

b Nib
bars x, tð Þ

� �L
0 (18)ð

L
Nit

bars x, tð Þ @duslip
t

@x
dxþ

ð
L
duslip

tfit
bars x, tð Þdx ¼ dus

t Nit
bars x, tð Þ

� �L
0 (19)

It is worth highlighting that Eqs. (16), (18) and (19) are obtained through the integration by
parts once and twice for Eq. (17) over the whole domain. Also, the boundary terms can be deter-
mined by a function of the natural degrees of freedom or essential boundary conditions. In what
follows, by substituting Eqs. (7), (16)–(19), the element stiffness matrix for continuum finite ele-
ments from the governing differential equation can be derived. Considering an incremental for-
mulation of equilibrium, the tangent stiffness matrix is obtained through the first variation of the
internal force vector in each degree of freedom direction. Therefore, the directional derivatives of
the obtained equations in the direction of fuNf g, fuwf g, and guslip� 	

can now be stated as follows.
The first row of stiffness matrix is written by the directional derivative of equations in the

Figure 5. Member differential element.
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direction of fuNf g, fuwf g, and guslip� 	
as:

fuNf giT
ð
L
kN

j
Bw fuwf g

� �
BNdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kfuNfuN

DfuNf gi

kN ¼ BN
T
ð
A

@rc
@e

dAþ
X
j

Asjb
@rsjb
@e

þ Asjt
@rsjt
@e

� �24 35
(20)

fuNf giT
ð
L
� kN

j 1þ BN fuNf gð Þ
Bwfuwf g2 Bwdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kfuwfuN

Dfuwf gi (21)

fuNf giT
ð
L

ksN 0
0 ksN

h i
Bslipdx|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k
guslipfuN

Dguslip� 	
i
[ ksN ¼ BN

T
X
j

Asjb
@rsjb
@e

þ Asjt
@rsjb
@e

� �" #
(22)

In the following, the second row of stiffness matrix is written by the directional derivative of equa-
tions in the direction of fuNf g, fuwf g, and guslip� 	

as:

fuwf giT
ð
L
� kw

j
Bw fuwf g
� �

BNdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kfuNfuw

DfuNf gi

kw ¼ Bw
T
ð
A

rcy dAþ
X
j

ðAsjbrsjbyjb þ AsjtrsjtyjtÞ
" # (23)

fuwf giT
ð
L
kw

j 1þ BN fuNf gð Þ
Bwfuwf g2 Bwdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kfuwfuw

Dfuwf gi (24)

fuwf giT
ð
L
� ksw 0

0 ksw

h i
Bslipdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k
guslipfuw

Dguslip� 	
i
[ksw ¼ Bw

T
X
j

ðAsjbrsjbyjb þ AsjtrsjtyjtÞ
� 


(25)

Finally, the third row of the stiffness matrix is written by the directional derivative of equa-
tions in the direction of fuNf g, fuwf g, and guslip� 	

as:

guslip� 	
i
T
ð
L
Bslip

Tkrslip
j

Bw fuwf g
� �

BNdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kfuNguslip

DfuNf gi

krslip ¼
P

j Asjb
@rsjb
@x

� �
0

0
P

j Asjt
@rsjt
@x

� �
264

375 [ksslip ¼
P

j p� dsjb � @sjb
@x

� �
0

0
P

j p� dsjt � @sjt
@x

� �
264

375
(26)

guslip� 	
i
T
ð
L
�Bslip

Tkrslip
j 1þ BN fuNf gð Þ

Bwfuwf g2
 !

Bwdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kfuwguslip

Dfuwf gi (27)
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guslip� 	
i
T
ð
L
Bslip

TkrslipBslipdxþ
ð
L
Nslip

TksslipNslipdx
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k
guslipguslip

Dguslip� 	
i

(28)

In conclusion, the resulting local stiffness matrix (gKlocal ) can be written by using relations (20)
to (28) as the following established form:

gKlocal ¼
kfuNfuN kfuwfuN kguslipfuN
kfuNfuw kfuwfuw kguslipfuw
kfuNguslip kfuwguslip kguslipguslip

2664
3775 (29)

In order to take the shear failure mode into account in formulations of this stage, it is neces-
sary to assemble a series of elements along with fiber frame elements. These elements are known
as interface elements. Several developments of interface elements were provided by researchers
presented as the four-node iso-parametric elements (Goodman, Taylor, and Brekke 1968;
Herrmann 1978). Usage of suitable interface elements and their assembling with fiber elements
could increase the numerical strategy accuracy. Moreover, these elements should have a consist-
ency to other elements and be capable of assemblage. In this work, a new consistent interface
element is proposed with a four-node iso-parametric element in correspondence to each node
with zero thickness length. Stress interface zones are described by normal and shear stress, and
these are calculated based on the specific rule of such elements as Eq. (30).

s
r

� �
¼ D½ � ef g [ ef g ¼ cyx

ey

� �
¼ uupp � ulow

h

vupp � vlow
h

� �T

(30)

where D½ � is the elastic constitutive matrix, r and s represent the normal and tangential (shear)
stress, ey and cyx represent the normal and tangential (shear) strains, h is element thickness, and,
ðuupp, vuppÞ and ðulow, vlowÞ are displacements in the upper and lower faces about Cartesian axes
ðx, yÞ, respectively.

In the proposed method, the springs are separated in a classification of axial (kn), rotating (ks)
and shear stiffness (kt) which represents the interface behaviors. The stiffness matrix of the inter-
face element is introduced according to the following shape:

Kinterface ¼

kt 0 0 �kt 0 0
0 kn 0 0 �kn 0
0 0 ks 0 0 �ks

�kt 0 0 kt 0 0
0 �kn 0 0 kn 0
0 0 �ks 0 0 ks

26666664

37777775 (31)

in this matrix, kt , kn, and ks are stiffness of springs in shear, axial, and moment respectively. The
shear stiffness ðksÞ is earned through relative tangential displacements between the two nodes
ðx, yÞ from a displacement vector in the local coordinate and local stress field direct analysis
approach. Herein, the analytical procedure of interfaces along with the related governing method-
ology is expressed.

In order to introduce the local stress field into the average stress of an interface element on
each fiber element, a “Simultaneous-Processing” concept has been added to the main finite
element body of the program to evaluate the local mechanisms by mesoscale calculations. This
localized concurrent processing enriches the adopted common smeared crack by considering
local and average characteristics, simultaneously (for more details, see Soltani, An, and
Maekawa 2005). It concentrates on the probable local mechanisms between cracks length,
therefore it can easily evaluate the effect of any parameter, e.g., rebar diameter, reinforcement
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ratio, and direction, and crack direction on the cracking procedure and the average behaviors
of steel bars and concrete.

The proposed simultaneous-processing also obtain more exact values for displacement domain
(i.e., crack spacing, opening and sliding among classic smeared crack approaches). Accordingly,
the direct displacement-based constitutive models are implemented with no simplifications nor
conservative assumptions through the main finite element body of the program in each computa-
tional step state. The nonlinear behavior of the RC element can be obtained using an iterative
solution method by applying in-plane incremental stresses or strains. The analytical process is
executed by a implementation of direct displacement control with performing the iterative pro-
cedure that was introduced by Jir�asek and Bazant (2002). In the numerical process, the structural
secant stiffness matrix relates the increments of load to corresponding increments of
displacement.

Finally, shear stress and shear modulus (Gshear ) are extracted from each shear strain with shear
cross-section area of each fiber (As) and fiber element length (L). Hence, Eq. (32) should be satisfied
by employing stiffness of computed shear spring (Kt ). The interface stiffness matrix is obtained. It

Figure 6. Flowchart of two-stage nonlinear analysis.
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should be mentioned that very large amounts are considered for axial springs (Kn ) and rotating
springs (Ks).

Kt ¼ Gshear
As

L
(32)

Moreover, analysis of panel based on the local stress field approach is implemented using secant
stiffness (Gshear). For detail, the algorithm of interface element analysis is organized in the following
subsequent flowchart as Fig. 6.

3. Stage 2: Kinematics of total lagrangian in catenary stage

The aim of this stage is to present a developed fiber element even when displacements are large.
This new scheme can be applied for studying the catenary stage beside Stage 1. For this purpose,
the current stage should construct separately in considering inelastic large displacements in com-
panion with material nonlinear constitutive laws.

In this section, the general formulations of total Lagrangian (TL) kinematics are implemented
to derive the finite element equations of a two-node plane beam element. Formulations are used
based on Timoshenko model with local first-order effects of shear deformation. Also, the theory
can account for geometrically nonlinear behavior due to large displacements and rotations besides
material nonlinearity due to constitutive behavior of each set of fiber elements (for more details,
see Felippa 2001; Yousefi, Esfahani, and Tavakkolizadeh 2018). In the following, the paper sum-
marizes the most important steps of its implementation.

Under the planar frame assumptions, the following basically relations can be obtained as
Eq. (33):

x
y

� 

¼ X þ ux � Ysin h

uy þ Ycos h

� 

[ h ¼ cþ w (33)

in which, uX and uY are the displacements of the projection of X0 on the neutral axis in the
X � Y system. In addition, h represents the rotation of the cross-section and primes denote the
derivatives with respect to X:

The deformation gradient matrix ðFÞ and displacement gradient matrix ðGÞ are derived from
Eq. (33) as follows:

F ¼
@x
@X

@x
@Y

@y
@X

@y
@Y

2664
3775 ¼ 1þ u0x � Yjcos h �sin h

u0y � Yjsin h cos h

" #
[ G ¼ F � I (34)

Strain-displacement relations can be written according to Eq. (34). The plane portion of the
Green-Lagrange (GL) strain tensor (20eij

0) is obtained by Eq. (35):

2
0eij

0 ¼ e ¼ 1
2

@2xk
@0xi

@2xk
@0xj

� dij

 !
¼ exx exy

eyx eyy

� 

) 2e ¼ FTF � Ið Þ ¼ Gþ GT þ GTG (35)

In the following, a consistent-linearization technique is used by definition an orthogonal
matrix ðKÞ :

K ¼ cos h sin h

�sin h cos h

" #
[ F ¼ K F ¼

1þ u0x
� �

cos hþ u0ysin h� Yj 0

� 1þ u0x
� �

sin hþ u0ycos h 1

" #
¼ Cþ I (36)
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Therefore, the Green strain matrix can be rewritten and replaced by the simpler form as
Eq. (37):

2e ¼ F
T
F � I

� �
¼ Cþ Ið ÞT Cþ Ið Þ � I
� �

¼ CT þ Cþ CTC ¼)CTC�0
e ¼ C ¼ exx exy

eyx eyy

� 

(37)

Hence, the axial strains ðexxÞ and shear strains ðeyxÞ can be arranged in a strain vector eð Þ (as Eq.
(38)):

e ¼ exx
2eyx

( )
¼ e� Yh0

c

( )
[ H ¼

e

c
j

8><>:
9>=>; ¼

L
L0

coswcos hþ L
L0

sinwsin h� 1

� L
L0

coswsin hþ L
L0

sinwcos h

h0

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

s0cos ðw� hÞ � 1
�s0sin ðh� wÞ

h0

8<:
9=; (38)

where the three strain quantities (e, c, j) characterize axial strains, shear strains and curvatures,
respectively. In the following, strain displacement relation can be obtained by nodal displacement
variations (B) as Eq. (39).

dH ¼ de dc dj
� �T ¼ B duX1 duY1 dh1 duX2 uY2 dh2

� �T
�B ¼ 1

L0

� cos x � sin x cu4, xðxÞL0 cos x sin x cu6, xðxÞL0
sin x � cos x �ð1þ eÞu4, xðxÞL0 � sin x cos x �ð1þ eÞu6, xðxÞL0
0 0 �1 0 0 1

264
375
(39)

The discretization of the variables is performed using the shape functions of the reference
element. To approximate the deformations of element nodes, cubic Hermitian polynomials are
formulated. Based on these interpolations the degrees of freedom for each element are the dis-
placements in orthogonal directions and slopes at the two nodes.

h xð Þ ¼ u3, xðxÞ u4, xðxÞ u5, xðxÞ u6, xðxÞ
� �� v1 h1 v2 h2

� �T
(40)

in which, u3, x xð Þ, u4, x xð Þ, u5, x xð Þ and u6, x xð Þ are defined as mentioned in section 2. Moreover,
Uz is presented as the shear slenderness. The section resistance forces F sð Þ are computed from
the fiber stress distribution and section stiffness Ks xið Þ� �

is assembled from the fiber stiffness

based on the given stress of the fiber state. This force vector is implemented according to Eq.
(41), and the following stages lead to the calculation of element resistance force:

Ks xið Þ ¼

Xntf ðxÞ
nf¼1

EnfAnf 0 �
Xntf ðxÞ
nf¼1

Enf Anf ynf

0
Xntf ðxÞ
nf¼1

Gnf Anf

Xntf ðxÞ
nf¼1

Gnf Anf ynf

�
Xntf ðxÞ
nf¼1

Enf Anf ynf
Xntf ðxÞ
nf¼1

Gnf Anf ynf
Xntf ðxÞ
nf¼1

Enf Anf ynf
2

266666666666664

377777777777775
[ F s ¼

N

V
M

8><>:
9>=>; ¼

Ð
r dsÐ
Gc dsÐ
ry ds

8><>:
9>=>;
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¼

Xntf ðxÞ
nf¼1

Enf Anf e

Xntf ðxÞ
nf¼1

Gnf Anf c

Xntf ðxÞ
nf¼1

Enf ynf
2j

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(41)

By using principle of increment of virtual displacements, the following incremental virtual
work is obtained based on the last known calculated configuration for a planar beam-column
element: ð

Eeijdeij
1dV þ

ð
sijdgij

1dV þ 1
1R

1 ¼ 2
1R

1 (42)

U ¼ 1
2

ð
eTijKs xið Þeij dV ¼ 1

2

ð
L0

Xntf xð Þ

nf¼1

Enf Anf e
2

� �
þ

Xntf xð Þ

nf¼1

Gnf Anf c
2

0@ 1Aþ
Xntf xð Þ

nf¼1

Enf ynf
2j2

0@ 1A0@ 1AdX

0@ 1A
(43)

dU ¼
ð
L0

Xntf xð Þ

nf¼1

Enf Anf e
� �

deþ
Xntf ðxÞ
nf¼1

Gnf Anf c

0@ 1Adcþ
Xntf ðxÞ
nf¼1

Enf ynf
2j

0@ 1Adj

0@ 1AdX

¼
ð
L0

dhT :F s

� �
dX ¼

ð
L0

�B:duð ÞTF s dX

¼ du
ð
L0

�BTF s dX ¼ du
XnGP
i¼1

wi:�BðxiÞT :F sðxiÞ

dU ¼ Fintdu ! Fint ¼
ð
L0

�BTF s dX ¼
XnGP
i¼1

wi:�BðxiÞT :F sðxiÞ

(44)

Based upon a total Lagrangian approach, the incremental matrix equilibrium equation for a
system can be formulated using the variation of the increment of total potential energy and gov-
erned equations are simplified as:

dFint ¼ d
ð
L0

�BTF s dX

0@ 1A ¼
ð
L0

�BTdF s þ d�BTF s

� �
dX

¼
ð
L0

�BTKs�B:duþ @�BT

@u
du F s

 !
dX ¼ ðKMat: þ KGeo:Þdu

dF s ¼ Ksdh ¼ Ks�B:du

(45)

in which, KMat: and KGeo: are the stiffeness of fiber planar Timoshenko frame element due to
material and geometric nonlinearity, respectively.

KMat: ¼
ð
L0

B
T
KsB

� �
dX ¼ L0

2

XnGP
i¼1

wi: B xð ÞT :Ks xð Þ:B xð Þ
� �

x¼L0
2 1þxið Þ

(46)
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KGeo: ¼
ð
L0

@B
T

@u
F s

 !
dX ¼

ð
L0

@B
T

@u

N
V
M

8<:
9=;

0B@
1CA dX (47)

in these relations, @B
T

@u is the first variation of B respect to increment of displacement.

4. Two-stage solution procedure

In the previous sections, the kinematics of the planar fiber element were presented. To simulate
the removal of a load-bearing element scenario, interface elements among each fiber elements are
assembled. In addition, the shear behavior and bond-slip effect were considered based on local
stress field theory. Here, an incremental solution approach has been proposed, based on a mixed
formulation in terms of displacements, strains, stresses, damages and load parameters in the
incremental step. To switch from a small-displacements analysis to a large-displacements analysis,
a criterion should be defined. For this purpose, it can be assumed that large displacements occur
beyond an elastic limit. The limit elastic displacement is related directly to the rotation at bars
yielding. This criterion is usually achieved at vertical displacement of beam depth which compres-
sive arc action is ended. The mentioned stages are gathered together to trace the behavior of RC
structures in the field of small displacements and large displacements, simultaneously.

To overcome disadvantages of each approach, a new two-stage formulation is proposed to
ameliorate RC element simulations without losing accuracy and instability problems which can be
developed for general cases (i.e., arbitrary materials, geometrics, loadings, and incremental steps).
Moreover, a new formulation to attain the shear response along with flexural behavior for any
load cases is suggested as local stress field model in interface elements.

5. Constitutive models

5.1. Compression behavior

Under uniaxial compression or biaxial compressive stress state of the material, nonlinear material
characteristics are considered. A realistic stress-strain model is used for concrete behavior in com-
pression, a linear response is considered for the uncracked region in a concrete constitutive
model and an exponential relationship is employed in the crack region which requires three
parameters (for more details, see Maekawa, Okamura, and Pimanmas (2003), and Ghorbi,
Soltani, and Maekawa (2013)). The constitutive relation in the uncracked state is restricted to lin-
ear elasticity. When tension criterion is violated, this linear elastic relation is replaced by expo-
nential forms.

In this research, a function of strains in the perpendicular direction is used referring to
Collins, Vecchio, and Mehlhorn (1985), for uniaxial compression model. The decrease in the stiff-
ness of the cracked RC element is implemented by multiplying the compressive stress by strength
reduction factor (b) as Fig. 7 in these relations, E1 is the tensile strain in the principal direc-
tion 1.

5.2. Tension behavior

The concrete constitutive model in tension is usually regarded as linear until the tension strength
(ftÞ has been reached. After cracking strain (ecrÞ, crack localization of a narrow process zone and
crack initiation occurs. Subsequently, the tension-softening model is usually expressed as a rela-
tionship between crack width and bridging stress (Okamura and Maekawa 1991). Here the model
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of Vecchio and Collins (1986) is adopted for analysis which is an exponential post-cracking soft-
ening model for concrete units.

5.3. Shear behavior

The constitutive shear model is adapted according to Li (1989) which was developed for mod-
eling the nonlinear behavior of concrete elements. This shear model is embedded based on
local stress-field approach applied in sub-program. More details are explained in Section 2.

5.4. Local behavior of steel bars

An accurate local bond-slip model is of fundamental importance in the modeling of RC struc-
tures, particularly for membrane behavior cases. In other words, the bond stress transfer between
steel bar and concrete on the distribution of local strain of rebar is noticeable. For this purpose,
steel-concrete interaction mechanisms are considered with an inner iterative computational
approach (Soltani, An, and Maekawa 2003).

In the present paper, the universal bond-slip-strain model proposed by Shima, Chou, and
Okamura (1987) which is applicable for both elastic and post-yield ranges, is used. The effect of
elasticity, hardening strain and the stiffness in strain hardening zone, in other words, the strain-
stress characteristics of bare bar, is considered in this model.

In addition to the common features of the bond stress distribution, the specific bond deterior-
ation in near crack locations is also estimated in the iterative approach. In order to consider this
effect, the ‘Bond Deterioration Zone’ is considered beside the crack surface, as introduced by
Qureshi (1933), which is a function of bar diameter.

6. Nonlinear solution algorithm

In this section, two numerical methods for solving the nonlinear equations is implemented. At
first, the arc-length method is adopted to solve the incremental equilibrium which deployed for
self-adaptive changing of the loading direction at the limit points beside numerical stability at the
critical points. Schweizerhof and Wriggers (1986) are proposed a direct solution by means of the
two iterative displacement vectors known as a linearized arc-length method. Afterward, a direct
displacement control method is implemented in sub-program to evaluate local stress bars in RC
structures. In this work, the most important steps of each method are described below.

Figure 7. Strength reduction factor.
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For a problem with n displacement variables in the load level (k), the following relations are
considered by Schweizerhof and Wriggers (1986):

ddi

dki

� �
¼ � Kt �qe

2 Ddið ÞT 2Dkidkiw2qe
Tqe

" #�1
ri

ai

� �
(48)

where Kt is the tangent stiffness matrix, ri is constraint equation, qe is the nodal load pattern,
ai ¼ ðDdiÞTDdi þ ðDkiÞ2w2qe

Tqe � Dl2, in which, Dl is the fixed radius of the desired intersection
with the equilibrium path, also known as incremental length, w is the scaling parameter to com-
bine different dimensions for the load and displacement terms. This value is chosen zero for dis-
placement control criteria, and the vector Ddi and the scalar Dki are increments and are related
back to the last converged equilibrium state. This approach is known as Linearized arc-length
method. A convenient decomposition is described as follow:

ddi ¼ �Kt
�1ri þ dkiddt

i (49)

ddi ¼ dd
i þ dkiddt

i (50)

dd
i ¼ �Kt

�1ri [ ddt
i ¼ Kt

�1qe (51)

Therefore the iterative load level dki is yielded by using the Taylor expansion:

dki ¼
� ai

2

� �
� Ddið ÞT dd

i
� �

Ddið ÞT ddtð Þ þ Dkiw2qe
Tqe

(52)

Hence, the new incremental displacements and load level are determined:

Ddiþ1 ¼ Ddi þ ddi

Dkiþ1 ¼ Dki þ dki
(53)

To predict the continuation direction of the equilibrium path, the criterion proposed by Feng,
Peri�c, and Owen (1995) is considered as Eq. (54) which is insensitive to limit points, turning
points and bifurcation points.

sign Dk1ð Þ ¼ sign Dd0f gTddt0
� �

(54)

In the following, the second algorithm is implemented in a RC interface element analysis based
on the well-known Newton–Raphson method. The nonlinear behavior of the membrane element
can be obtained using an iterative solution method by applying in-plane incremental stresses or
strains. The analytical process is executed by the implementation of direct displacement control
that was introduced by Jir�asek and Bazant (2002) as Eq. (55) which displacement vector is div-
ided into two groups. The first one contains unknown displacements at nodes that are left free
(DUi

f , n), and the second one consists of prescribed displacements at nodes that are controlled

(DUi
r, n). Please refer to Jir�asek and Bazant (2002) for more details on the algorithm and

variables.

Rf , n � Pi
f , n

Rr, n � Pi
r, n

 !
¼

Ki
ff , n Ki

fr, n

Ki
rf , n Ki

rr, n

" #
DUi

f ,n

DUi
r,n

 !
DUi

f , n ¼ Ki
ff ,n

�1 Rf , n � Pi
f ,n � Ki

fr, nDU
i
r, n

� �
Rr, n ¼ Ki

rr, nDU
i
r, n þ Ki

rf , nDU
i
f , n þ Pi

r, n

(55)

in these relations, Rf , n and Rr, n are external force vectors at nodes that are left free and con-
trolled, respectively. Also, Pi

f , n and Pi
r, n are internal force vectors at nodes that are left free and
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controlled in each increment step, respectively. The matrix Ki
ff , n, K

i
fr, n, K

i
rf , n, and Ki

rr, n are par-

titioned form of tangent stiffness (Kt) for free nodes and controlled nodes in increment step of i.
Based on the aforementioned aspects, the approach is implemented in a specific program organ-
ized on two level bases. A Newton-Raphson iteration loop at the interface level and another iter-
ation loop at each element state determination of element level in fiber planar frame element.

7. Numerical implementation and solution

In the previous sections, the theoretical models for simulation of a fiber element with the frame
approach were summarized. Here, an incremental solution approach has been followed based on
the governed formulations in terms of displacements, strains, stresses, damages, and, load param-
eters in the incremental step. Previously mentioned formulations are gathered together to trace
the behavior of RC structures in the field of membrane action behavior. The following four sets
of numerical examples are used to illustrate the validity and efficiency of the proposed
fiber element.

7.1. Validation of interface elements

In this section, in order to introduce the local stress field into the average stress-strain of inter-
face elements, a separate program is implemented to evaluate probable local mechanisms between
cracks length. To verify the accuracy of the sub-program performed at the element level, a set of
panels tested by Vecchio and Collins (1986) and Pang and Hsu (1995) were analyzed under uni-
form stresses inside the plate as Fig. 8:

In specimen PV3 and PV4, shear slip is not activated at the crack interface due to isotropic-
ally arrangement of reinforcements in two directions. Moreover, the compressive stress parallel
to the crack direction is not large enough to show great influence. Thus these specimens can be
used to check the tension stiffening and reinforcing bar model. As can be inferred in theory, the

Figure 8. The panel analysis results.
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average yield strength of bar embedded in concrete is smaller that of a single bare-bar due to
bonding effects (Soltani, An, and Maekawa 2003). In addition, the average yield stress of bar in
PV4 and A2 is assumed to be equal to bare bar yield strength. In the PV4 and A2 panel, results
show greatly overestimate of yield strength and initial stiffness in comparison with the experi-
mental one, respectively. Also, the ultimate capacity of PV22 is governed by concrete compres-
sion failure and the influence of the degradation effect due to orthogonal tensile strain is
demonstrated.

Based on the mentioned scheme, the local bond-slip-strain relation is calibrated on the base of
the results of experimental investigations previously performed by the authors. Noghabai (2000)
and Deluce (2011) results from experiments aimed at better understanding the influence of ten-
sion stiffening on reinforcing bars embedded in concrete prisms. To ensure the reliability of local
strain profile for embedded steel bars in related fibers, the comparative analysis was done between
the experimental and predicted load-strain and tension stiffening relations as Fig. 9.

Hence, comparison with an experimental tests shows that the existed local constitutive steel
model based on iterative approach and adapted local bond-slip-strain relationship could yield
accurate and convergent results in agreement with the problems. Thus, implemented existed local
steel behavior model can be used in the main program.

7.2. Validation of stage 1: updated lagrangian

In what follows, the iterative-incremental method with a variable stiffness scheme was applied to
analyze RC structures. Thus, the ability of the proposed method to predict the nonlinear behavior
of the different cases is validated in this section by comparing the analytical and experimental
results of the tests performed by Palermo and Vecchio (2003), and Chun and Kim (2004).

As the first specimens, three shear wall cases were studied and the proposed analytical results
were compared with the corresponding experimental results. The Palermo and Vecchio’s experi-
mental test as shown in Fig. 10 is consisted of a shear panel and two lateral flanges, at the top
and bottom of them have placed two concrete slabs. The RC wall geometry consists of
1910� 102� 4570 mm3 and two flanges of 305� 305� 4570 mm3 with the additional boundary
condition given by two concrete slabs placed at the top and bottom of the specimen (for more
details, see Palermo and Vecchio (2003)). The equilibrium path was constructed by 180 unequal
steps and an absolute norm of displacement with a 0.001 convergence tolerance was adopted.
Accordingly, the results of the nonlinear computer analysis are compared with the available
experimental data as Fig. 10.

It is observed that the value of the yield point load predicted by the presented approach
P¼ 58 ton (at horizontal displacement of 20mm) correlates relatively well with the experimental
result of P¼ 60 ton (at horizontal displacement of 24mm). Moreover, the post-pick behavior of

Figure 9. Comparison between analytical approach predictions and (a) Noghabai’s experiments and (b) Deluce’s experiments.
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response is reasonably estimated. Also, the difference of first secant stiffness is implicit in fiber
formulations and test setup assumption.

In the following, to evaluate the performance of updated Lagrangian formulation, an exterior
beam-column joint tested by Chun and Kim was simulated (For more details, see Chun and Kim
(2004)). From the beam flexural failing experiments, the specimen had similar yield strength, yield
displacement, and member capacity through a comparison with proposed approach as Fig. 11.

As a result, the contribution of flexural deformations and shear effects can cover experimental
result in a reasonable manner as well. Moreover, the adaptability and capability of interface-fiber
elements based on local stress field approach had more accuracy in governed flexural modes at
the initial stages (e.g., medium span-to-depth ratios and joint connections).

7.3. Validation of stage 2: total lagrangian

In this section, the iterative-incremental method (linearized arc-length method) with a variable
stiffness scheme was applied to analyze cased. Hence, several numerical investigations were per-
formed with the proposed model in order to study the effects of nonlinear shear deformations
and flexural responses, simultaneously. These examples are considered as “classic” benchmark
since some of them have been widely used by several researchers to evaluate their nonlinear
frame models. At first, a cantilever beam subjected to an end-point was illustrated in Fig. 12.
This classical problem had been analyzed by many researchers, including Bathe and Bolourchi
(1979), and Limkatanyu et al. (2014). It consists of a prismatic fiber beam with total cross-section
area A¼ 1.27� 10�2 m2 with 20 fiber in each 10 set of elements, the moment of inertia

Figure 11. Performed test by Chun and Kim (2004).

Figure 10. Performed test by Palermo and Vecchio (2003).
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I¼ 3.66� 10�6 m4, length L¼ 4m, and elastic modulus E¼ 200GPa. The obtained results are
compared with the elliptic integral solutions as Fig. 12 (Left).

In the following, Williams’ Toggle frame‘s example is solved analytically (Williams 1964). It
was a toggle frame with two fixed ends, with rectangular shape cross-section of
19.13mm� 6.17mm, modulus of elasticity was 71018MPa, the number of fiber cells and the
number of element was 20. The number of iterations required for convergence criteria varied
from 5 to 10 at different displacement step levels. The results indicate good agreement between
the present solutions and existed solutions as shown in Fig. 12 (Right).

The analytical solution to the frame problem shown in Fig. 13 was given by Lee et al.’s frame
(Limkatanyu et al. 2014). This model is employed to assess the capability of present formulation
in a snap-back instability phenomenon. In the analysis process, every element was devised into
ten elements, the cross-section was devised into 20 fibers. Good agreement between the analytical
and the numerical responses is clearly observed in vertical and horizontal reference point under
applied load.

7.4. Validation of two-stage numerical approach

Based on the mentioned scheme, the implemented program can cover different structures in small
displacement domains (section 2) and large displacement cases (section 3). In this section, the abil-
ity of the proposed method to predict the nonlinear behavior of the structures in column collapse
scenario is validated by comparing the numerical and experimental results of the tests performed
by Sasani, Werner, and Kazemi (2011), and Pham, Tan, and Yu (2017) (as Fig. 15 and Fig. 17).
Rebar detailing and material test of all specimens are presented in Sasani, Werner, and Kazemi
(2011) and Pham, Tan, and Yu (2017), while Fig. 14 and Fig. 16 shows the configuration of the
tests. As specific details on section width and concrete cover were not available from the paper of

Figure 13. Load-displacement responses for Lee et al.’s frame (Left) load-vertical displacement diagram and (Right) load-hori-
zontal displacement diagram.

Figure 12. Load-vertical displacement responses for (Left) a cantilever beam and (Right) Williams’ Toggle frame.
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Sasani, Werner, and Kazemi (2011), a section width of 168mm and a cover of 20mm have been
assumed in the simulation (For more details, see Sasani, Werner, and Kazemi (2011)). According
to material properties, the concrete tension strength is assumed about 0.36 ksi (2.5MPa) with
strain cracking at the peak tensile stress of about 0.00015. Also, the confining effect of transverse
reinforcement on the concrete compressive strength and stiffness is also taken into account using
proposed model by Ghorbi, Soltani, and Maekawa (2013). The number of sub-step increments is
considered 130 steps with the initial displacement increment of 3mm in each applied load factor.

It is observed that the value of the ultimate load predicted by the presented approach
P¼ 7056 kg (at vertical displacement of 30mm) correlates relatively well with the experimental
result of P¼ 7143 kg (at vertical displacement of 40mm). Moreover, according to reported experi-
mental observations, at vertical displacements of about 190mm, the two bottom bars fractured
which are equal to the beam section’s depth.

As can be inferred in Fig. 15 and experimental observations, following the bar fracture, caten-
ary action provided by the top reinforcement results in increased resistance of the beam in a col-
umn collapse scenario. At a vertical displacement of about 190mm, the top continuous bars at
the center of the beam, which were previously in compression, yielded in tension. The tensile
strain in these bars increased to about 0.05 at a maximum vertical displacement of about
400mm. Therefore, the post-peak response obtained from the presented methodology correlates
relatively well with that of the experiment and captures the arch-action and membrane action of
the member quite accurately.

Figure 15. Load-displacement responses for Sasani et al.’s frame.

Figure 14. Specimen setup and reinforcement detail (Sasani, Werner, and Kazemi 2011).
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Another quasi-static verification was conducted by Pham et al. at Nanyang technological
university which is chosen to investigate membrane action behavior in RC elements (Fig. 16).
The test series included eight specimens with the same geometry and different reinforcement
ratios and arrangement (six specimens) and different beam-spans (two specimens). For more
details of rebar detailing and material properties of all specimens refer to Pham, Tan, and
Yu (2017).

It is observed that the value of the ultimate load predicted by the presented approach to
be about P¼ 4300 kg (at vertical displacement of 79mm) correlates relatively well with the
experimental result (Specimen S1) of P¼ 4100 kg (at vertical displacement of 85mm). As can
be inferred from results of presented methodology, the membrane segment of response is
obtained underestimation relative to experimental test due to some assumption of analysis
which was not available in Pham et al.’s paper such as concrete cover and ultimate strength
of bars.

The equilibrium path was constructed by 50-100 unequal steps and an absolute norm of dis-
placement with a 0.001 convergence tolerance was adopted. The number of iterations required
for convergence criteria varied from 10 to 20 at different displacement step levels. Moreover, the
longitudinal strain profile of concrete and fiber sets are demonstrated, respectively. Both experi-
mental tests are simulated as Fig. 18a and strain distributions correspond to the maximum verti-
cal resisting force at the vertical displacement of 30mm (for Sasani et al.’s test) and 79mm (for
Pham et al.’s test) as Fig. 18b obtained from fibers with red colors. Note that the bars did not
fracture together during the experiment due to lack of complete symmetry in geometry and
material properties, while the simulation is completely symmetric and the bars fracture simultan-
eously in the present model.

Figure 17. Load-displacement responses for Pham et al.’s frame.

Figure 16. Specimen setup and reinforcement detail (Pham, Tan, and Yu 2017).
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8. Conclusions

This paper studied the membrane action behavior of RC structural members according to the
scenario of a potential progressive collapse of structures as a result of the removal of a load-bear-
ing element. For this purpose, a two-stage fibers based method was proposed in a Lagrangian
description. Its first stage dealt with the compressive arch action by the updated Lagrangian for-
mulation. In this stage, the probable shear deformation and bond-slip effect were implicitly
included. Moreover, the first stage assembled a displacement-based interface and Timoshenko
fiber planar elements in order to consider the nonlinear flexural-shear interactions and local
stress-strain behaviors in RC members. In the second stage, the total Lagrangian approach was
developed to express the catenary stages in the large displacement cases and the effect of second
order strain terms is considered in the formulation of this stage. The suggested method is capable
of taking into account both geometric and material nonlinearity. Additionally, it can be easily
applied in practical engineering problems. The numerical results showed that the development of
catenary action could be investigated through two separate stages of resisting mechanisms: com-
pressive arc action and catenary action with flexure and shear interaction. It is worthwhile to
highlight that the capability and accuracy of the suggested formulation were assessed by compar-
ing the obtained results with those of other researchers’ experimental and numerical ones. The
comparison shows that the proposed method can yield relatively accurate and convergent results
in dealing with the problems, and the formulation has the potential to be employed for simulat-
ing multi-storey RC frames subjected to large deformations.
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