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Abstract
A detailed study on the performance and accuradhefrokker Planck (FP) approach in treating
shear driven flows over a wide range of Knudsen men:i and Mach numbers at subsonic and
supersonic regimes is considered. One-dimensionakfiz flow and the two-dimensional cavity
problem are considered. The FP method is evaluatgtle Couette flow at a subsonic Mach
number of 0.16 (W=50 m/s) and at the supersonic Mach number of B3,E=1000 m/s), where
Knudsen numbers range from 0.005 to 1. Correspghdithe cavity flow is investigated at a wall
Mach number of 0.31 (=100 m/s) and wall Mach number of 0.93,&300 m/s) at Knudsen
numbers ranging from 0.05 to 20. Interestingly, iégults show that by increasing the wall velocity
and Knudsen numbers, the accuracy of the FP apprioaceases in treating the cavity flow. In
addition to the standard Knudsen number, we shat dghadient length Knudsen number,dtn
should be considered to determine the range ofracgwf the FP scheme. The latter depends on
the strength of the center vortex of the cavityidishing at higher rarefied conditions. The results

demonstrate that the computational efficiency ef P approach enhances at higher lid velocity.

Keywords. Fokker Planck approachRarefied flows, Knudsen number, Shear-driven flow,

Micro/nanoflow.
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1. Introduction
Investigation of micro-nano flows attracted attentof researchers during the last three decades.
Flows at small scale geometries usually experieravefied conditions. Flow rarefaction is

expressed in term of the Knudsen number (Kn),ithdéfined as
A
= 2 1
Kn I 1)

, WwhereA andL are the molecular mean free path and the chaistatelength of the flow
conduit, respectively. Depending on the degreehef arefaction, different flow regimes were
considered [1]-[3]. Kn<0.001 is categorized asdbrtinuum (non-slip) regime, 0.001<Kn<0.1 is
the slip regime, 0.1 <Kn <10 is transitional regiared Kn > 10 is considered as free molecular
regime [4].

Direct simulation Monte Carlo method (DSMC) wagadluced to simulate rarefied gas flow in
the early 60's by Bird [5]. In this method, flow adysis is made possible by simulating the
movement and collision of a series of represerdgagas particles. Although the method has a very
suitable efficiency at higher Knudsen numberss tirhe-consuming at lower Knudsen numbers

The Fokker Planck (FP) method was first examine&ibkwood for liquids [6]. The application
of this method is for high-density flows. This methwas later developed by Cercignani for dense
gases [7]. Jenny et al. [8] extended the methodrdoefied gases and presented a statistical
algorithm based on the FP approximation. Their Iteswere very consistent with the DSMC,
Boltzmann linearized equation, and experimentala.ddtevertheless, the heat transfer and
temperature were miscalculated, because of wromgddr number. Gorji et al. developed an
algorithm to solve the problem of wrong Prandtl tneémby introducing a cubic drift term [9]. Thus,
their results led to correct Prandtl number and esasfer They showed the accuracy of this
model for various test cases [10]. Singh proposeBRequation to fix the Prandtl number problem

[11]. Later, the FP model was extended for mixtures [12] arlggtomic gas [13]-[16].



FP models were suggested for studying rarefiedlgassimulations [17]-[19]. In particular, the
Ellipsoidal-statistical (ES)-FP model devised [2D[d was compared with the cubic-FP model [21].
The comparison suggests that the former gives racoeirate shock profiles, while the latter
provides a better heat-transport prediction at fafreuidsen number regimes.

There are hybrid particle methods for treating hgpeic continuum-rarefied flows [22].
Recently, hybrid Fokker-Planck-DSMC method was tgwed to reduce computational costs of
simulations [23]. Jenny et al. [24] analyzed thasberror of the FP method for rarefied gas. As an
effective means to reduce it, exponentially weighteéme averaging was explored. They
demonstrated how the error could be reduced withrmueasing the particle number for a uniform
shear flow.

Although there are some published works on the p{i?cach, there is still a requirement for a
detailed study focusing on the accuracy and effyeof the method. In this paper, one dimensional
Couette and two-dimensional cavity flow are con®deover a broad range of Knudsen numbers
ranging from the slip flow regime up to free moliecwne. The border of the accuracy of the FP
scheme is clearly determined and connected topbeifsc flow characteristics. In addition, a CPU-
time investigation is reported, which comparesatieantages of the FP compared to the DSMC in
a broad set of Kn and lid velocity. Moreover, arthal investigation is performed in the cavity flow
to detect heat lines direction and cold to hot treaisfer.

2. Fokker Planck approximation of the Boltzmann equation

Consider the Boltzmann equation as described below

5t

, Where F is the mass distribution function of fregticle velocity, velocitiesi{*, V') are the

OF 1 4m
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post-collision velocities of particles, the veleest (/,V;) are the pre-collision velocities of the

particle,c is the collision cross-sectiof® is the angle between the velocities before aner dlfte



collision andg is the relative velocity d =V —V;). If the Kn is not too large, the temporal

derivative ofF can be approximated by the FP equation [8], [[EH].
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, WhereA; andD represent the drift and diffusion terms. Assumiing Maxwellian molecular
model, second and third-order moments, which aestiess tensor and the thermal flux vector, are

obtained from the Boltzmann equation

P; = j v;vjSBoltzq3y (4)
R3
1 1,1, cBoltz 43 5
Pi =§ . UiijjS azv ( )

, wherev' =V — U, $°% s the left-hand side of the Boltzmann equatiod &his the cell

average velocity. Assuming the Maxwellian molecuterdel, it can be written [8], [17], [25]:

OT;; P
Pi= 5 =R ©

, herey is the dynamic viscosity coefficien®, is gas pressurer; is stress tensor, ang is
thermal flux. As a result, the ratio between thresst and thermal flux, which represents the Prandtl
number, reaches/3 , which is the correct value of the Prandtl numibersingle-atomic gases [9].

By applying the same method to tB€ operator and assuming the scalar diffusion cdefftcand
that [ (A0 + Ajv; + D?6;;)Fd®V is trace free, it can be written

R3
P, = f (Ayvjvj+24;vjv])Fd3V 9)

R3

, Whereg; is the Dirac delta



21. Fokker Planck approximation coefficients

It is crucial to find an appropriate formula foethoefficientsA andD. The simplest form of the
equation is a quadratic equation, but it can divlkeet solution [26]. For the drift coefficient, a
polynomial function of the fluctuating velocity wasesented by Gorji [14], which provides a good
match for the viscosity and the Prandtl numberthia work, the fourth-order model introduced by

Gorji and Jenny is used [14].

~ ! .1 3kT [ A | ZCIl
Ai = CUU] + Y; <17]'17]' - 7) + A(Uivkvk - 7) (10)
Here, the symmetric tenséy;, they vector and the numerical value afwill be determined

later. Assuming\ = 0,y; = 0 andc;;= (- §;) /t, @ simple Langevin linear equation is achievedgctvh
leads to the wrong Prandtl numbér & %). At first, the numerical valu& was considered as

below

1

A=——
ap?

|det(m;;)| (11)

, Where det;) is the determinant of the stress tengpanda = t(3kT)/4m is a scaling factor

with T = 2u/P the relaxation time.
To close the system of equations, a diffusion ddefit must be selected. According to the

simple Lagrange equation, the diffusion coefficisntonsidered as below

4eg
D= j; (12)

, Wheree; is the internal energy of particles. As a redilié FP equation approximation of the

Boltzmann equation for single atomic gas was ddragfollows
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The coefficient; andy; must be obtained by solving linear equations. fBilewing equations

(13)

are obtained by comparing Eqg. (6) with Eq. (8)dtess tensor and Eq. (7) with Eqg. (9) for thermal

flux.

cuPji + cipu + 2Yiq; + 2Y;q; + 2pAM;M;M;M;.) = 0 (14)

qipa 3kTq; q
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, While M' = M — U andM s the particle velocity. Although simplificatiomsave been made to
derive the FP equation, still the complexity of #@ution domain makes the direct simulation of
Equation (14) and (15) rather expensive. To coph that, these equations were transformed into

the equivalent Ito processes [5].

dM; = A;dt + G;dt + DdW; (16)
dX; = M;dt (17)

, wheredW are independent Wiener increments with zero eapiect and variancet. Equations
(16) and (17) have many numerical advantages irll @md medium Knudsen numbers. Also, in
contrast to the DSMC, the collision between pagtidls not calculated, which is a process that is
associated with a high computational cost in sialldsen numbers

Since Equations (16) and (17) form a nonlineartsstic system, one cannot find an analytic
solution such as the Langevin linear model. Fompticity, it is assumed that there is no external
force (G = 0). The solution strategy is to divide the noeér Equation (16) into a Langevin linear

partL and a nonlinear remainder phkt



dM; = —=M{dt + DAW, + CyMjdt + Y;(M}Mj — (M; M}))dt + A(M; M}.Mj, —

17ty ] (18)
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First, the linear partdM; = dL;, is considered, and for a nonlinear part, a frster forward

Euler time integration scheme is employed. At fitisé velocity is inspected with the linear model

-1 ’kT(x(t).T)
dM; = T (Ml'(t) - Ui(x(t).r))dt + Gi(x(t))dt + del (19)

For simplicity, the dependencies of the paramedezsnot considered relative to the location of

the particlex (t). To calculate the mean velocity, the followingaten is established
Ul'(tn+1) = Ul'(tn) + GlAt (20)

By introducing the fluctuating velocitidg(¢t) = M(t) — U(x.t), it can be written

1 ’ZkT
dMi’(t) = —?Ml’(t) + EdWl (21)

There is an analytical solution for the differeh@guation above

M (™) = M (EM)e T + Jk—T (1-e7)s (22)

mt

, Where¢; is the independent variable; thus, by combining digas (20) and (22), the final

relation is obtained for a linear model similaréference [27].

At At kT 24t
Ml'n+1 = Mine_7 + Unl' (1 - B_T) Gl'At + \/% (1 - e—T) & (23)

The expression of the fourth-order drift was diddmto a linear part and its remainder.

Regarding the linear solution and adding the sotutif the nonlinear part, it can be written
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By implementing simplifications in Equation (240gtfollowing equation can be obtained [9]:

1 At At kT 24t
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mt
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Using a precise solution to solve the linear pad approximations performed for solving the
nonlinear part, like the particle velocity, a plan the exact position of the particle can be deiv
[8].

2.2. FP Algorithm Outline

To start simulations, a specific number of paridig) with the weight ofw; is generated based
on the distribution functiok (V, X, t) It should be noted that the time step is deteechimccording
to the Courant number. The FP algorithm at eacle step is depicted in Figure 1. Although this
algorithm is similar to the DSMC, the molecularlsibn part in the DSMC method is replaced
with Eg. (26). Couette flow and cavity flow are dsae this paper as simple one-dimensional and
two-dimensional flows. The researchers in Roohisug already evaluated these flows over a wide
range of Knudsen numbers using DSMC [28]—[33]. Bplacing a set of FP moment calculations

with the DSMC collision part, the FP solver wasaohéd.



«Initialising the grid.

«Initialising Particles.

*Determining time step.

*Moving and indexing particles in the cells.

«Performing FP method instead of collision.
«Calculating the moments.
«Solving equatoins 15 and 16.
«Calculating new particle velocities.

-

e
« Calculating macroscopic parameters of the ce

*Going to the next time step.

Fig. 1 The FP algorithm

3. Couette Flow
As a one-dimensional flow; Couette flow is a watiekvn flow for studying gas behavior in non-
equilibrium conditions. Figure 2 (a) shows the sohBc of the Couette flow. As it is shown, the

walls are at the same temperaturg={ ;) and the same velocity magnitude but differengéctions.

4. Cavity Flow

As the second case, cavity flow is considered nwkite rarefied two-dimensional flow at non-
equilibrium conditions. A schematic of the micraioacavity is presented in Figure 2 (b). The
cavity lid moves in the positive direction of therizontal axis withU,,. By applying different Kn
and wall velocities in the domain, the cavity flexperiences different rarefaction regimes. The
temperature of the walls is considered constant eqaal toT,,. The cavity flow behavior was
investigated using the FP method at different Keadsumbers and flow velocities. The results

were compared with DSMC solutians
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Fig. 2 Schematic of the a) Couette flow and b) Cavity flow

5. Resultsand discussion
5.1. Couette flow

At first, argon gas in the Couette flow is inveatgd. Gas molecules are considered as
Maxwellian molecules with a viscosity power indexlo The walls move in the opposite direction
with a speed magnitude bf, = 50m/s(Ma=0.16), and both walls are considered diffusivéertbr
with a temperature of,=273.15K, and a reference temperatdig = 273.15K. In this case, the
value of the Kn varies between 0.005 and 0.3. Tsnce between the two plates islset 0.001
m. The molecular mass of argon gas is equal.G8 x 1072° Kg and its molecular diameter is
4.17 x 1071 m. 200 cells are chosen for the simulation.

Three various particles per cell (PPC), i.e., 50000 and 1500 were selected to study the
independence of the numerical solution from the Imemof particles. The results for velocity and
temperature are shown in Figure 3. As shown, thacitg profile (Figure 3 (a)) matches well to the
results of the DSMC at different PPCs. Howeverrahe a little difference between the DSMC and

FP in the temperature profile (Figure 3 (b)). losll also be noted that this temperature difference

10



is ignorable in comparison with the entire rangéeofiperature variations (about 0.2 degrees Kelvin

at maximum). For the rest of simulations, 100 cafld 1000 particles in each cell were selected.
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0 0.2 04 _, 08 08 1 . N _

@ (b)
Fig. 3 PPC study at {/-50 m/s a) Velocity b) Temperature profiles.

Figure 4 (a-d) shows the profile of the non-dimenal velocity, temperature, shear stress and
heat flux over a wide range of Knudsen numberis ttoteworthy that in the Couette geometry at
very low Knudsen numbers, the velocity profile ismast linear; however, as shown in Figure 4 (a),
by increasing Kn, the velocity profile adjacenthe walls becomes nonlinear due to the growth of
the Knudsen layer. Moreover, the gas velocity ieamwalls deviates from the wall velocity due to
non-equilibrium effects. The FP method presentaitalsle agreement with the DSMC in the
investigated Kn range. As Kn increases, the acgurathe FP results begins to decrease. As shown
in Figure 4 (a) for Kn = 0.3, there is a slight dén from DSMC results in the velocity profile of
the FP near the walls.

As it is observed in Figures 4 (a) & (b), FP hastoeed temperature and velocity jump and the
Knudsen layer near the wall accurately. Moreovecpeding to Figure 4 (¢) & (d), the FP method
shows suitable predictions for shear stress and fheain low Knudsen numbers compared to
DSMC. However, at high Knudsen numbers, the reshiésv more deviation from DSMC

In order to compare DSMC and FP in more detail réhative error is defined as follows:
11



larp| — lapsmcl

Error =
|aref |

, Wherea is a macroscopic feature such as velocity, tentperashear stress and heat flux. The

subscriptref indicates the reference value of parametethat could be wall velocity, wall

(28)

temperature, reference pressii®g) @nd reference heat flug, Py andqo are defined as below:

qo = 0.5pc U\f/all

kTref

Py = poo

The maximum relative error is about 4%Wf for velocity, about 0.1% of,, for temperature,

0.8% ofPy for shear stress and 9%apffor heat flux
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Fig. 4 Investigation of the Kn effects in the Couettenlaith U,=50 m/s, a) Velocity b) Temperature c)
Shear stress d) Heat flux

As the second case, Couette flow at a wall speédl,2000m/s(Ma=3.1) is considered. Both
wall temperature and the reference temperaturseadrequal td,, = T,ef = 300K. Various PPCs, i.e.
40, 50, 100, 150 and 200 are selected for study@ independence. As shown in Figure 5 (a), the
velocity profiles are in good agreement at differBRCs. Note that the velocity profile is a first-
order moment; therefore, the influence of PPC igible. However, a second-order moment like
temperature, Figure 5 (b), depicts the differenemvben 40 to 200 PPC solutions. Thus, PPC=150

was chosen for the rest of the simulations repddethe Couette flow.
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Fig. 5 PPC study at 1000 m/s a) Velocity b) Temperature
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Figures 6 (a-d) show the distribution of non-dimenal velocity, temperature, shear stress and
heat flux. It is observed that the FP method presidrecise results for a wide range of Knudsen
numbers in the supersonic flow regime. As shownFigure 6 (a), the velocity magnitudes
correspond well to DSMC. By comparing Figures 4 énd can be concluded that the accuracy of
the FP method increases by increasing the Mach eumalditionally, these Figures prove that
decreasing the Kn cause more precise results folf K maximum relative error is about 0.4% of
Uy, for speed, about 5% af, for temperature, 8% ¢, for shear stress and 0.3%qgffor heat flux.

Similar to subsonic Couette flow, there are velpaihd temperature jumps in supersonic flow.
Figure 6 (a) and (b) state that at high Kn, th@ei&f profile becomes nonlinear near the walls and
the magnitude of the temperature jump becomes derable and raised up to 50% greater than the

wall temperature.
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Fig. 6 Kn dependence investigation of the Couette flothwd,=1000 m/s
a) Velocity b) Temperature c) Shear stress d) Heat

In the following, a convergence study was carrietl for FP results in the Couette flow. The

convergence criterion is considered as follow:

. Zlan+1 _ anl
convergance_index(a) = —— (31)
QAref

, Wherea is a macroscopic independent flow paramedgt,is the reference parameter of the
flow and n is the time step counter. As a third-order momeinfpeculiar velocity, heat flux
convergences slower than the other parametersefner it is selected as the parameteand the
results are shown in Figure 7. As it is shown, ltkat flux convergence is almost independent of

Kn; while the convergence index increases slighylyncreasing Kn

15
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5.2. Computational cost

In this section, the computational cost is reporidte required time of DSMC and FP algorithm
was calculated for 3000 iterations. Besides, ascth@ribution of the collision segment in the
DSMC and particle evolution in FP was presentegéncentage (Table 1). In this case, wall
velocity is consideredJ,,=1000 m/s and Kn=0.01. A grid with 200 cells and) 1BPC was
considered for both DSMC and FP methods. Both dhgus were run on a computer with CPU of
Intel® Core i7 @ 3.40GHz and 24GB of RAM. Table 1 cleahows the advantage of the FP
method, e.g., a lower computational cost of the@ggh in comparison with DSMC

As shown in Table 1, the most time-consuming parthis algorithm is dedicated to collision
part in DSMC and particle evolution in FP, that88% and 63% of total time calculations,
respectively. Additionally, DSMC collision takes83onger times than FP particle evolution. The
reason comes back to a larger number of selectedgracollision (N¢) in the no-time-counter

(NTC) model in DSMC, that is [34]:

16



N (N -1F, (o;C At
2 V.

, WwhereN; is the maximum number of particle pairs checkedcfalision in each cell witiN

particles, F is the ratio of real gas molecules to simulated II)Blsﬂelrticles,(JTCr)max is the

maximum of collision cross-section multiplied byatéve velocity, andv; is the cell volume. On
the other hand, FP solves a system of equatiomespmnding to the total number of particles in the
domain[9].

Although FP works faster than DSMC in particle enmn (3.8 times faster), there is a
difference in the sampling procedure of the DSM@ & [10]. Sampling in FP is more time
consuming than sampling in DSMC; thus, the ove@RU-time of FP to DSMC is not as

considerable as the CPU-time of collision ratidhefse models.

Table 1 CPU-time study for DSMC and FP methods in the @eultow @Ma=3.1 & Kn=0.01

Parameter Magnitude
DSMC Collision 38
FP Particle Evolution '
DSMC Collision 87 %
DSMC CPU time
FP Particle Evolution 63 %
FP CPU time

DSMC CPU Time 57

FP CPU time '

The computational cost per each particle for theaR® DSMC method is presented at different
Knudsen numbers in Table 2. As it is shown, the G@iRi¢ per each patrticle in the DSMC increases
by decreasing Kn. Higher DSMC convergence ratdsgiter Mach numbers can be explained by
considering the fact that the uncertainty assodiatéh the moment estimators scales with the
inverse of the Mach number in DSMC [35], while hetFP method it is independent of Kn, and it

is almost constant in the investigated Kn range fi@ason could be that rarefaction does not play a

17



role in increasing the execution time in the FPhadt[10]. Additionally, it is evident that FP needs
less time per each particle at higher velocitidss Tact completes our previous discussion about
the accuracy of FP at high velocities. In otherdgoi~P algorithm works more accurately and more
efficiently at high velocities. The last column ofbla 2 shows the CPU-time ratio comparison
between DSMC and FP. It is clear that DSMC is fastelower velocities and high Knudsen
numbers; while approaching the continuum regime esaRSMC more expensive. Therefore,
considering Figure 4 and Table 2, compared to DSg the FP method for treating the Couette
flow is recommended at higher wall velocities andér Knudsen numbergOn the other hand,
DSMC is better to be used at lower velocities buhigher Kn. For high velocity cases like
U,=1000m/s, considering Figure 6 and Table 2, usiRgig-advised for all Knudsen numbers
because of accurate results and lower CPU-timealR#état Table 2 also indicates that by
increasing the wall velocity DSMC consumes moreetper each particle. However, computational

time decreases in FP. Therefore, FP works fastagher velocities.

Table 2 CPU-time comparison between DSMC and FP metho@®irette flow

UW (m/Q Kn (CPU tlme) (s/particle (CPU tlme) (s/particle DSMC CPU time
"p  /psmc "p  Jpp FP CPU time
0.3 5.64 x 10° 2.52 x 10 0.45
50 0.1 6.89 x 10° 2.67 x 10 0.52
0.0237 1.13 x 10 2.63 x 10 0.86
0.005 1.38 x 10 2.59 x 10 1.07
0.3 6.94 x 10° 5.11 x 10 2.72
1000 0.1 7.12 x 10 4.99 x 10 2.85
0.0237 1.16 x 10' 5.00 x 10 4.66
0.005 1.61x 19 5.08 x 10 6.34

5.3. Cavity flow
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In this section, the cavity flow is considered watotdifferent wall velocitiesU,=100 m/s
(Ma=0.31) anduU,=300 m/s (Ma=0.93). The Kn range changes from 0.05 to 100. Thendary
conditions are assumed to be diffusive reflectorTgt300 K. The size of the cavity is
considered 076 (m?).

5.3.1. Grid-convergence and computational costs
Grid-convergence was performed for cavity case Witl-1 andU,,=300 m/s Different grids

were selected for the grid study, i.e., 60x60, IxP0x120, 150x150, 180x180, and 200x200.
The results for the velocity and temperature profer a line passing at y=3L/4 are shown in
Figure 8. As Figure 8 (b) depicts, the temperapsddile of the FP method is in suitable agreement
with the DSMC solution almost for all the investigd grids. However, the velocity profile (Figure
8 (a)) shows a slight differenceat0.53.. By comparing FP and DSMC solutions, it is obsdrve
that solutions of 150x150, 180x180, and 200x20@<5dre close to each other. Therefore, the

150%x150 Grid seems to be adequate enough for bbtmB DSMC.
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1.08

DSMC Grid 60
— — — DSMC grid 90
————— DSMC Grid 120
----------------- DSMC Grid 150
— — — DSMC Grid 180
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a FP Grid 60
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& FP Grid 150
O

<

|

will

1.04

U/ U wall
T/T,

FP Grid 130
FPGrid 200
ooEl— by PRI R SRI R N I
0 0.2 0.4 06 0.8 1 0 02 0.4 0.6 0.8 1
XL XL

@) (b)

Fig. 8 Grid study for the cavity flow d#,=300m/s Kn=1 a) velocity b) temperature profiles.
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As a result, a grid of 150 x 150 computationalathd 200 PPC was considered for FP, similar
to Ref. [9]. Additionally, a grid of 150 x 150 celand 20 PPC was used for the DSMC similar to
Ref. [28].

Table 2 shows the CPU-time comparison between diftegrid cases for the FP and DSMC
solutions at Kn=1 and,,=300m/s The CPU-time of the FP is almost three to fouesfaster than
DSMC in all the investigated grids. In addition,  -Bme per each particle is increased by

increasing the grid for DSMC.

Table 2 CPU-time comparison between DSMC and FP metho@®irette flow

U,, (M/3 Kn Grid (CPU t1me> (s/particle (CPUtlme) (slparticle DSMC CPU. time
o /psmc o Jpp FP CPU time

60x60 7.71 x 10 2.19 x 10° 3.53

90x90 8.91 x 10 2.31 x 1¢f 3.87

B 0 120%120 9.61 x 10° 2.38 x 1¢f 4.04
150%150 1.22 x 10 3.19 x 1¢f 3.84

180%180 1.07 x 10' 2.92 x 10 3.68

200%200 1.16 x 10' 3.11 x 10 3.74

To evaluate the accuracy of the results of the Fthade the velocity, temperature, shear stress,
and heat flux were compared with the DSMC resulis=8L/4. The results were depicted in Figure
9 (a, c, e, g) for Kr0.2 and (b, d, f, h) for Kn>0.2. As it is shownkigure 9, the FP solution
becomes more consistent with the DSMC by increasimg

Figure 9 (a-b) shows that by increasing the Knvislecity decreases first due to the increase of
viscous effects in the flow. As shown in Figurecad], at high Kn, temperature deviates from the
wall temperature near the walls of the cavity,, itemperature jump effects. The increase of
temperature jump at higher Kn is because of inangabe non-equilibrium effects in the transition

and free molecular regimes, which can be explaimgdhe change in the rate of intermolecular
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collisions. Intermolecular collisions happen lessgtiently in a non-equilibrium state. Thus,
particles sense the effect of walls less than aegailibrium condition [4].

In Figure 9 (e-f), shear stresgis non-dimensionalized with respectgpthat is:

T = 05poo Uvzvall (33)

, Wherep,, is the initial density at the corresponding.Kn

From the molecular point of view, the magnitudesbiar stress can be determined by the
frequency and correlation of molecular velocitiBg.dividing the shear stress by the initial density
of the gas, the rarefaction effects on reducingstiear stress are eliminated [30]. Therefore, Figure
9 (e-f) shows the ratio of collision rate and ctatien to the existing number of particles. By
increasing the Kn, particles experience less intégnular collisions, as a result, particles conserv
their energy for the potential collisions. Thus,at&ress increases at higher Kn. Figure 9 (esf al
shows that by increasing the Kn the inter-molecuatalisions occur in the right region more than
the left region of the cavity, while in lower Krhg equilibrium conditions lead to a symmetric
distribution of shear stress in the cavity. As shaw Figure 9 (g-h), by increasing the Kn, heat
transfer variation in the right wall is more coresigble than the left wall. There are more molecular
interactions at the right side due to a higher igms the gas there; thus, it is more affectedkoy
than the left side.

The maximum relative error in different cases isuarb0.7% ofU,, in velocity profile (Figure 9

(a)) at Kn=0.05 and occursxt0.55..
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Fig. 9 Various profiles at different Kn at y=3L/4 for tlavity with U,=300 m/s:
a-b) Velocity c-d) Temperature e-f) Shear stre$ bteat flux

As the second case, the wall velocity of the cawgs increased to 10®/s The results are
displayed in Figure 10 (a-h) for velocity, temperat shear stress and heat flux in ling/a8L/4.

As it is shown in these figures, a comparison betwdifferent Kn ranging from 0.05 to 100 is
reported. Similar to the previous case, it is obseéithat the accuracy of the FP method increases by
increasing Kn. Comparing Figures 9 and 10, it incbaded that the FP method works better at
higher lid velocities in cavity case.

Figures 9 (a-b) and 10 (a-b) show that by decregasie lid velocity, velocity profile distribution
becomes more symmetric. It also shows that non-aineal velocity variation is higher at lower
lid velocities.

By comparing Figure 10 (c-d) and Figure 9 (c-d)isievident that the temperature profile, as
well as temperature jump, increase by increasingwetocity at the entire Kn range.

Figure 9 (e-f) and 10 (e-f) show that by decreasireggwall velocity, the non-dimensional shear
stress increases. It is shown that in lower vakxihon-dimensional shear stress near the right and
the left wall deviates more than higher velocitids. shown in Figure 9 (g-h) and 10 (g-h), the

variation in the distribution of non-dimensionabh@ux is more considerable at lower velocities.
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The maximum relative error between FP and DSMC fferdint cases is about 0.7% 0§, in

velocity profile (Figure 10 (a)) at Kn=0.05 occungiatx =0.59..
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Fig. 10 Various profiles at different Kn at y=3L/4 for tleavity with U,=100 m/s:
a-b) Velocity c-d) Temperature e-f) Shear stre$s bteat flux

As it shows in both cases, the maximum error hap@naroundk =0.53_ for velocity. Our
investigation shows that the existence of a veyoairtex in the center of the cavity causes thetmos
non-equilibrium effects, which lead to the maximdeviation of FP from DSMC. The parameter
which expresses deviation from the equilibrium efffis gradient length Knudsen numb&ng,,

which can be defined as [36]:

A
KnGL¢ = 5 Vol (34)
KnGL = MaX(KnGLU.KnGLT.KnGLP) (35)

, Whereg is an arbitrary flow parameter.

Figure 11 shows the ratio of gradient length Knadsamber to the Knudsen number, that is

KngyL,
Kn

Kngp,
Kn '

over the liney=3/4L of the cavity. As it is shown at=0.59_, increases suddenly. It can

be seen that by increasing the }516% decreases at =0.59.. The reason is that local non-

equilibrium effects (KaL) increase less than global non-equilibrium effésts). This means that
the gas flow becomes more uniform by increasing ke, rarefaction effects diminishes flow

gradients. Additionally, Figure 11 Proves that ighhKnudsen numbers (Kn>10), local Kn changes
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proper to the global Kn. Therefore, the variatiortl‘cé% becomes constant in different Knxat
=0.59.. A similar result is observed in figure 9 (a), @)d 10 (a), (b), where the maximum

deviation of the FP solution from the DSMC occurg a0.53_. Therefore, increasin’é::‘i—L creates

more local non-equilibrium effects which meaﬁéﬁ is as crucial as Kn to consider the accuracy of

the solver.
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Fig. 11% at y=3L/4 line for cavity flow with a) {L,=300 m/s b) {J=100 m/s (FP prediction)

K . .
;GL is the cavity central vortex.

Our investigation shows the factor which influendes =

Variation of the vortex location with the Kn is defed in Figure 12Viscous dissipation in the flow
enlarges by increasing the Kn. In other words,itkdeiced kinetic energy from the top lid dissipates
more notably at higher Kn, which shifts the coretew toward the downward left to the geometric
center of the cavity

Figure 12 shows that a sudden change in the lgtaficore vortex occurs around Kn=1, which
could be the result of Knudsen diffusion effects. the channel flows, Knudsen diffusion
phenomenon leads to a minimum mass flow rate atlK34]. For Kn>1, rarefaction hinders
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information propagation. Therefore, the variatiortted core vortex becomes slower. Additionally,
as the flow rarefies moyehe center of the vortex moves away from the drilv@ to the bottom

wall [30].
Considering Figures 11 and 12, It can be known ttiatmaximum value é?r% occurs around

the location of the vortex center. As it is showms aroundx=0.59_ for Kn=0.05 and by increasing

Kn, it moves toward the left side, the same asexotenter.

0.76

0.75
Kn= 0.05 » A Kn=0.05

,’Kn: 0.2
073 | Kn=

_ 4 Kn=1
072 | Kn=02" & Kn=10

Kn=100

0.74

0.71
0.7 Kn=1
Kn=10

0.69 B Kn= 20
ocs | Kn= 100

S
P

0.67 |
—i—U100 —A=— U300
0.66 |

0.65

0.5 0.52 0.54 0.56 0.58 0.6
x/L
Fig. 12 Variation of the vortex location center by the BnFP method

The circulation of the mean velocity fieldl,is calculated as follows:

Myisr = Vi) (Vajrr — Vi)
= jgv. ds = jrotn V.dA = Z [ Ax — Ay AxAy (36)
i

The summation is calculated over the entire domathecavity. Figure 13 shows the variation
of flow non-dimensional circulation with the Kn the cavity. Circulation is normalized with =
Uwau X L. It can be seen that by increasing the Kn thengtheof the vortex in the cavity reduces.
The reason is that there are lower collisions ah Hgudsen numbers and the effects of wall

velocity propagate less in the domain. Thereforepmaiing to Figures 9 (a), (b) and 10 (a), (b), the
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field velocity decreases and the gas flow becomesmniform. Figure 13 also shows that the
variation of circulation strength becomes almoststant at Kn>1.

Considering Figure 11, 12 and 13, it can be dedtlcativortex strength is directly related to

K . . . K
%. Increasing Kn causes weaker gas circulation badetore% becomes smaller. As a result,
K . .
% becomes more uniform and the FP solution beconugs atcurate.
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Fig. 13 Circulation of the mean velocity vector by FP nuoeth

5.3.2. Cavity cold to hot investigation

Heat transfer phenomena in the rarefied gas flginre cannot be analyzed by continuum-based
Fourier's law [37], [38]. As it is shown in Figur&4 and 15, the heat flux lines were illustrated an
show cold to hot and hot to cold heat transfer igted by the FP method.

Figure 14 shows the temperature contour with Heatlines at different Kn for the cavity flow
at U,=100 m/s The temperature is higher on the right wall due¢h® formation of a stagnation
point on the right corner of the cavity. Additiolyalby increasing Kn the particles conserve their

energy obtained from lid instead of transferrinmitollisions. Therefore, the temperature at thge to
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and right side increases by increasing Kn. The tranaf temperature distribution becomes almost
constant for Kn>1. Evidently, by increasing Kn, theat lines change directions from the left and

bottom wall to the right side. The heat conductignations for slightly rarefied gas are given as

follows [37]:
q = Kn** g, + Kn*? g, + Kn**3 g, (37)
g1 =0 (38)
5 adT*
—_2 39
az 4 V2 ox; (39)
5 JdT™ 5 L, 0T N 1 0%u” m
5= =3 Vg~ g Vsl G T3V, (40)

j
, whereKn** = Knvrr/2,T* = (T — Ty)/To, u;* = u;/+/2RTy, x; = X;/L. The coefficients used

in Equation (37) are set as = 1.9222,y; = 1.9479 andys = 0.9611 [37].

ok

> IS the dominant term at higher

Mahdavi and Roohi [38] and Balaj et al. [39] shoWbdtaaZ;:"

J

Kn regimes; Whilea%* becomes more effective at lower Kn and causeddobld heat transfer.
2., %%
Therefore, as it is shown in Figure 14, by incregdim, the effect of the ter% leads heat
]

lines from left to right. On the other ha@; leads the heat lines from the hot regions in dpecf

the cavity into the cold zones at the bottom. Theeefthe balances between these terms determine
the direction of heat lines in the cavity. SimitarRef. [40], two DSMC contours were selected to

compare temperature contours with the FP solution.
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Figure 15 shows the temperature contour with Haatline at different Kn for the cavity flow at
U,=300 m/s As previously discussed, increasing Kn causegylaeh temperature at the top and
right wall; By comparing Figure 14 and 15, it ca@ toncluded that at the case U=300m/s the
temperature near the top becomes more dominanttktieganight side. The reason comes back to

higher kinetic energy at the cavity lid. Additiolyalthis kinetic energy causes a higher temperature
gradient at the entire domain. Therefc%g has noticeable effects on the heat lines. Thush¢lae

lines tend to deviate towards the bottom. Consdtpyeine slope of heat lines is more on this

occasion.
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Figure 16 shows various heat flux patterns, clessificcording to the Mach number and Kn. As

can be seen, two separate regions could be ctbsii lower Mach and Knudsen numbers smaller

than 0.1, both cold to hot and hot to cold heaidier are observed; this region is distinguished by

black circles. Complete cold-to-hot transfer in ttevity flow occurs at low Mach and higher

Knudsen numbers, distinguished by blue squares.

As it is shown in Figures 16 and 14, by increadimg Kn at low Mach, the cold to hot heat

transfer increases and at high Kn, the whole casitpvered by cold to hot heat transfer. However,

at higher Mach, the entire cavity has both coldhdd and hot to cold heat transfers. The reason is

2.4, %%
that by increasing the lid veloci% becomes stronger; thus, kinetic energy converte&d.
J
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Fig. 16 Distinction of heat flux pattern in Kn-Mach plabg FP method.

5.4. Cavity Computational Cost

In DSMC, a reference time step is considered dsvisl[30]:

1 Agiobal
A =5 Gy

(41)

, Wheredg,,q; is the global mean free path afig, = /2kT/m is the most probable speed of

the gas molecules. In the DSMC method, particlenat permitted to move more than a cell length

in a time step. Therefore, the minimum of transitet and the mean collision time should be
selected as the appropriate time step [30].

1 Lcell
Attransic = 5

2 Conp

(42)
Atcey = Min(A teottcen- 4 ttransit)

(43)
In the FP method, the time step is calculated byakogn (44), which is a fraction of the transit
time [10].
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Atpp - mln(

m m
Table 4 shows the time step needed for each methtteicavity flow. As it is shown, the FP

works with a much larger time step, resulting isté# convergence and lower computational costs.

Table4 Time step comparison between DSMC and FP methmodayity flow (U,=300 m/s, Kn=1)

Time step Value
FP time step (s) 1.33 x 10711
DSMC time step (s) 1.0 x 10712

FP Time step
DSMC Time step

13.3

Additionally, a comparison is made between differEnudsen numbers and wall velocities,
which is reported in Table.As shown, the DSMC computational cost for thessesds higher
than FP. As it is shown, the CPU-time ratio deasdsy increasing the Kn. Also, as previously
discussed, the CPU-time for each particle in FBInsost constant through all Knudsen numbers

while it decreases by increasing the Kn.

Table5 CPU-time comparison between DSMC and FP metho@avity flow

Uy (Mm/9 Kn (M) (slparticlg (CPU time) (slparticle DSMC CPU time
DSMC n FP

Np p FP CPU time
100 10 1.05 x 10 3.11 x 1@ 3.39
10 1.06 x 1d 3.63 x 10 2.93
300 1 1.22 x 1d 3.80 x 10 3.22
0.05 1.26 x 19 3.63x 10 3.47

6. Conclusion

Here, a detailed investigation of the performanue @ccuracy of the FP method in treating shear
driven flows over a wide range of Knudsen numbe lslach numbers is reported. According to
the results obtained for the Couette flow, it im@aded that in the FP method, high-speed flows
can achieve more accurate results at faster coeneeg However, this method shows remarkable

errors in the Knudsen layer at low-speed flows witih Knudsen numbers. Maximum error occurs
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in heat flux and it is around 9% q@§. It is understood that in the FP method, the cdatmnal cost
is independent of the Knudsen number. While in Bi®&MC approach, the CPU-time depends
directly on the number of intermolecular collisioBy decreasing the Knudsen number, the number
of collisions decreases. Therefore, it causesvaesloaonvergence and more computational.cost
Different limits of the Knudsen number in the comtim, transition, and free molecular flow in
the subsonic and supersonic regimes was invedfighteghe cavity flow, our results indicate that
the Fokker Planck method predicts with errors ateloKnudsen numbers. The reason is stronger
circulating flows at lower Kn regimes, which causere non-equilibrium effects in the geometry.
By increasing Kn, the vortex becomes weaker ancefbee, there is more consistency between the
DSMC and FP solutions. Thermal behavior was alsdietuin this paper. It was shown that by
increasing the Kn, the heat lines are directech&oottom of the cavity due to increasing non-
equilibrium effects. Additionally, computationalstovas reported in this paper. The change in Kn
has not any considerable effect on the FP costpvithis a crucial factor in the DSMC. It is shown

that the accuracy of the FP and CPU-time improyesdreasing the lid velocity.

Nomenclature

A Drift coefficient

D Diffusion coefficient

e Internal energy(kJkg™1)

E Relative error

F Mass distribution function
G External force

k Boltzmann constantK~1)
Kn Knudsen number

L Flow characteristic length (m)
m Particle molecular masgg)
M Particle velocity (m3)

Ma Mach number

N Number of molecules

P Pressure (kgits?)
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PPC Particle per cell

Pr Prandtl number

q Thermal flux fym™2)

Re Reynolds number

t Time (s)

T Temperature (K)

u; Velocity in x direction (m3)

U Cell velocity (m&)

v; Velocity in y direction (m$)
X(t) Particle position (m)

Greek

) Mean molecular distance (m)
At Time step (S)

Ax Grid size (m)

A Mean molecular free path (m)
A Stability factor

M Dynamic viscosity (kgms™)

& Non-dimensional independent variables
T Stress tensor

p Density (kgnt)

T Time constant

Super script

Boltz Boltzmann

FP Fokker Planck

Subscript

coll Collision

initial Initial

ref Reference

w wall
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