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Using field redefinitions and Bianchi identities on the general form of the effective action for metric,
B-field and dilaton, we have found that the minimum number of independent couplings at order α02 is 60.
We write these couplings in two different schemes in the string frame. In the first scheme, each coupling
does not include terms with more than two derivatives and it does not include structures R, Rμν, ∇μHμαβ,
∇μ∇μΦ. In this scheme, 20 couplings which are the minimum number of couplings for metric and B-field,

include dilaton trivially as the overall factor of e−2Φ, and all other couplings include derivatives of dilaton.
In the second scheme, the dilaton appears in all 60 couplings only as the overall factor of e−2Φ. In this
scheme, 20 of the couplings are the same as those in the previous scheme.
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I. INTRODUCTION

String theory is a quantum theory of gravity with a
finite number of massless fields and a tower of infinite
number of massive fields reflecting the stringy nature of
the gravity. An efficient way to study different phenomena
in this theory is to use an effective action which includes
only massless fields and their derivatives [1,2]. The
effective action has double expansions: the genus expan-
sion which includes the classical and a tower of quantum
corrections, and the stringy expansion which is an
expansion in powers of the Regge slope parameter α0.
The latter expansion for the metric yields the Einstein
gravity and the stringy corrections which are quadratic
and higher orders in curvature. The main challenge thus is
to explore different techniques to find the effective action
that incorporates all such corrections, including non-
perturbative effects [3]. In the bosonic and in the heterotic
string theories, the higher derivative couplings begin at
order α0, whereas, in type II superstring theory, they begin
at order α03.
There are various techniques in the string theory for

finding these higher derivative couplings: S-matrix element
approach [4–9], sigma-model approach [10–14], super-
symmetry approach [15–18], double field theory approach
[19–23], and duality approach [3,24–28]. In the duality

approach, the consistency of the effective actions with
T- and S-duality transformations are imposed to find the
higher derivative couplings [3,27]. In particular, it has been
speculated in [29] that the consistency of the effective
actions at any order of α0 with the T-duality transformations
may fix both the effective actions and the corrections to the
Buscher rules [30,31]. It has been shown explicitly in [32]
that the T-duality constraint fixes the effective action and
the corrections to the Buscher rules at order α0, up to an
overall factor.
In using the above techniques for finding the effective

actions at the higher-derivative orders in the string theory,
one needs the most general gauge invariant and minimal
independent couplings at each order of α0. To find such
couplings, one needs to impose various Bianchi identities
and use field redefinitions freedom [33–35]. In the liter-
ature, the Bianchi identities are first imposed to find the
minimum number of couplings at each order of α0, up to
some total derivative terms and field redefinitions. The
parameters in the resulting action are then either unam-
biguous, which are not changed under field redefinition, or
ambiguous, which are changed under the field redefini-
tions. Some combinations of the latter parameters, however,
remain invariant under the field redefinitions [13]. This
allows one to separate the ambiguous parameters to
essential parameters which are fixed by, e.g., S-matrix
calculations [7,13], and some remaining arbitrary param-
eters. Depending on which set of parameters is chosen as
essential parameters, one has different schemes. To find the
minimum number of independent couplings, one sets all the
arbitrary parameters to zero. This method has been used to
find the 8 independent couplings for gravity, B-field, and
dilaton at order α0 in [13], the 7 independent couplings
for gravity and dilaton at order α02 in [36–39], and
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20 independent couplings for gravity and B-field at order
α02 in [40].1

One may impose the Bianchi identities, remove the
boundary terms, and use the field redefinition freedom at
the same time. That is, onemay first write all gauge invariant
couplings at each order of α0 and then impose the above
freedoms to reduce the couplings to the minimal couplings.
The parameters in the gauge invariant action are then either
unambiguous or ambiguous depending on whether or not
they are changed under these freedoms. Some combinations
of the ambiguous parameters, however, remain invariant.
This allows one to separate the ambiguous parameters to
essential parameters which may be found by S-matrix
calculations, and some arbitrary parameters. Again, depend-
ing on which set of parameters is chosen as essential
parameters, one has different schemes. The minimum
number of independent couplings is found in the schemes
where all the arbitrary parameters are set to zero.We find that
this latter method is more convenient to finding the inde-
pendent couplings systematically, using the Mathematica
packages like “xAct” [41]. In particular, to impose the
Bianchi identities we write the curvatures and the covariant
derivatives in terms of themetric and its derivatives. Thenwe
choose the local inertial frame in which the first derivative of
the metric is zero. In this frame the Bianchi identities are all
satisfied automatically. Using this method, we are going to
find the minimal independent couplings for gravity, dilaton
and B-field at order α02. We find that there are 60 parameters
in the minimal couplings. We write them in two different
schemes.Both schemes have the same20 couplings between
gravity and B-field. In one scheme the other 40 couplings
include derivatives of the dilaton, and in the other scheme the
40 couplings do not include the derivative of the dilaton. The
20 common couplings in both schemes are the minimal
couplings when the dilaton is constant.
The outline of the paper is as follows: In Sec. II, we write

themost general gauge invariant couplings involvingmetric,
dilaton, and B-field at order α0. There are 41 such terms.
Then we add to them the most general boundary terms and
field redefinitionswith arbitrary parameters.Writing them in
the local inertial frame, we then use the arbitrary parameters
in the total derivative terms and in the field redefinitions to
reduce the 41 couplings to 8 independent couplings that are
known in the literature. We write them in two different
schemes. In one scheme, there is no term inwhich fields have
more than two derivatives and there is no term involving R,
Rμν, ∇μHμαβ, ∇μ∇μΦ. More specifically, we write the
couplings into two separate parts. One part which has 4

couplings, does not include derivatives of the dilaton, and it
is the same as the set of minimal couplings when the dilaton
is constant. The other part includes derivatives of the dilaton.
In the second scheme, we again write the couplings into two
parts: one part is the same as theminimal couplingswhen the
dilaton is constant, and the other part includes some other
couplings in which the dilaton appears trivially. In Sec. III,
we extend the calculations to the order α02. We found that the
most general action at this order has 705 couplings; however,
adding the total derivative terms and field redefinitions to
them with arbitrary parameters, and writing the result in the
local frame, we find that the arbitrary parameters can be used
to reduce the couplings to the minimum number of cou-
plings, which is 60. We write them in two different schemes
as in Sec. II. Each scheme has 20 common couplings, which
are the minimal couplings when the dilaton is constant, and
40 other couplings. These couplings all include derivatives
of the dilaton in one scheme, whereas, in the other scheme
the dilaton appears trivially.

II. MINIMAL COUPLINGS AT ORDER α0

The effective action of string theory has double expan-
sions. One expansion is the genus expansion which
includes the classical sphere-level and a tower of quantum
effects. The other one is a stringy expansion which is an
expansion in terms of higher-derivative couplings. The
number of derivatives in each coupling can be accounted by
the order of α0. The sphere-level effective action has the
following power series of α0 in the string frame:

Seff ¼
X∞
n¼0

α0nSn ¼ S0 þ α0S1 þ α02S2 þ � � � ;

Sn ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦLn: ð1Þ

The effective action must be invariant under the coordinate
transformations and under the B-field gauge transforma-
tions, so the metric g, the antisymmetric B-field, and the
dilaton must appear in the Lagrangian Ln through their
field strengths and their covariant derivatives, e.g., the
Lagrangian at the leading order of α0 is:2

L0 ¼ R −
1

12
HαβγHαβγ þ 4∇αΦ∇αΦ: ð3Þ

The higher-derivative field redefinitions and Bianchi iden-
tity can not change the form of this action.

1The authors in [40] reported that there are 21 independent
couplings at order α02. We think there is a typo in writing the
number of independent H6 terms in [40]. They have written 8
independent terms with structure H6, whereas, we have found
that there are only 7 such terms. That indicates that there should
be 20 independent couplings for gravity and B-field.

2Throughout this paper, we use the conventions

Rλ
μνρ ¼ ∂νΓλ

μρ − � � � ; Rμν ¼ Rλ
μλρ

Hλμν ¼ 3∂ ½λBμν�; ∇μAλ ¼ ∂μAλ þ Γλ
μνAν;

T ½μ1…μn� ¼
1

n!
ðTμ1…μn þ � � �Þ: ð2Þ
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Using the Bianchi identities, it has been shown in [13]
that, up to some boundary terms, the Lagrangian L1 has 20
couplings, each with an arbitrary parameter. Three of these
parameters are unambiguous because they are not changed
under field redefinitions, and all others are ambiguous. The
field redefinition freedom then has been used to show that
only 5 couplings among the ambiguous couplings are
essential and all others are arbitrary. To find the minimal

independent couplings, one sets the arbitrary parameters to
zero [13]. In this section, we are going to rederive the 8
independent couplings by using a systematic method for
using total derivative terms, applying the field redefinitions
and the Bianchi identities, that can easily be extended to the
higher order couplings.
Using thepackage “xAct”, one finds themost general gauge

invariant Lagrangian at order α0 has the following couplings:

L1 ¼ B1RαβγδRαβγδ þ B2RαγβδRαβγδ þ B3RαβRαβ þ B4R2 þ B5∇β∇αRαβ þ B6∇α∇αR

þ B7Rαβ∇β∇αΦþ B8Rαβ∇αΦ∇βΦþ B9R∇α∇αΦþ B10R∇αΦ∇αΦþ B11∇αΦ∇βRα
β

þ B12∇αΦ∇αRþ B13∇β∇β∇α∇αΦþ B14∇β∇α∇β∇αΦþ B15∇α∇β∇βΦ∇αΦ

þ B16∇αΦ∇β∇β∇αΦþ B17∇β∇αΦ∇β∇αΦþ B18∇α∇αΦ∇β∇βΦ

þ B19∇αΦ∇β∇αΦ∇βΦþ B20∇αΦ∇αΦ∇β∇βΦþ B21∇αΦ∇αΦ∇βΦ∇βΦ

þ B22Hα
δϵHαβγHβδ

ζHγϵζ þ B23Hαβ
δHαβγHγ

ϵζHδϵζ þ B24HαβγHαβγHδϵζHδϵζ

þ B25Hαβγ∇δ∇δHαβγ þ B26Hαβγ∇δ∇γHαβ
δ þ B27Hαβγ∇γ∇δHαβ

δ þ B28∇δHαβγ∇δHαβγ

þ B29∇αHαβγ∇δHβγ
δ þ B30∇γHαβδ∇δHαβγ þ B31Hα

δϵHαβγRβγδϵ þ B32Hα
δϵHαβγRβδγϵ

þ B33Hα
γδHβγδRαβ þ B34HαβγHαβγRþ B35Hβγδ∇αHβγδ∇αΦþ B36Hβγδ∇αΦ∇δHαβγ

þ B37Hα
βγ∇αΦ∇δHβγ

δ þ B38HβγδHβγδ∇α∇αΦþ B39Hα
γδHβγδ∇β∇αΦ

þ B40HβγδHβγδ∇αΦ∇αΦþ B41Hα
γδHβγδ∇αΦ∇βΦ; ð4Þ

where B1;…; B41 are some parameters. The above couplings are not all independent. Some of them are related by total
derivative terms, some of them are related by field redefinitions, and some others are related by various Bianchi identities.
To remove the total derivative terms from the above couplings, we consider the most general total derivative terms at

order α0 which has the following structure:

α0
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦJ 1 ¼ α0

Z
dDx

ffiffiffiffiffiffi
−g

p ∇αðe−2ΦJα1Þ; ð5Þ

where the vector Jα is all possible covariant and gauge invariant terms at three-derivative level, i.e.,

Jα1 ¼ J1∇βRαβ þ J2∇αRþ J3Rα
β∇βΦþ J4R∇αΦþ J5∇β∇β∇αΦþ J6∇α∇β∇βΦ

þ J7∇β∇αΦ∇βΦþ J8∇αΦ∇β∇βΦþ J9∇αΦ∇βΦ∇βΦþ J10Hβγδ∇αHβγδ

þ J11Hβγδ∇δHα
βγ þ J12Hαβγ∇δHβγ

δ þ J13HβγδHβγδ∇αΦþ J14HαγδHβγδ∇βΦ; ð6Þ
where the coefficients J1;…; J14 are arbitrary parameters. Inserting this into (5), one finds

J 1 ¼ J1∇β∇αRαβ þ J2∇α∇αRþ J4R∇α∇αΦþ ð−2J2 þ J4Þ∇αΦ∇αR

þ ð−2J10 þ 2J13ÞHβγδ∇αHβγδ∇αΦ − 2J13HβγδHβγδ∇αΦ∇αΦ − 2J4R∇αΦ∇αΦ

þ ð−2J6 þ J8Þ∇α∇β∇βΦ∇αΦþ ð−2J1 þ J3Þ∇αΦ∇βRα
β þ J3Rαβ∇β∇αΦ

þ J8∇α∇αΦ∇β∇βΦþ ð−2J8 þ J9Þ∇αΦ∇αΦ∇β∇βΦþ ð−2J5 þ J7Þ∇αΦ∇β∇β∇αΦ

þ J6∇β∇β∇α∇αΦ − 2J14Hα
γδHβγδ∇αΦ∇βΦ − 2J3Rαβ∇αΦ∇βΦ − 2J9∇αΦ∇αΦ∇βΦ∇βΦ

þ ð−2J7 þ 2J9Þ∇αΦ∇β∇αΦ∇βΦþ J14Hα
γδHβγδ∇β∇αΦþ J7∇β∇αΦ∇β∇αΦ

þ J12Hαβγ∇γ∇δHαβ
δ þ ð−2J11 þ J14ÞHβγδ∇αΦ∇δHαβγ þ J12∇αHαβγ∇δHβγ

δ

þ ð−2J12 þ J14ÞHα
βγ∇αΦ∇δHβγ

δ þ J11Hαβγ∇δ∇γHαβ
δ þ J10Hαβγ∇δ∇δHαβγ

þ J11∇γHαβδ∇δHαβγ þ J10∇δHαβγ∇δHαβγ þ J13HβγδHβγδ∇α∇αΦþ J5∇β∇α∇β∇αΦ: ð7Þ
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One is free to add J 1 to L1 and choose the parameters
J1;…; J14 to reduce the couplings in (4).
The couplings in J 1 þ L1, however, are in fixed field

variables. One is free to change the field variables as

gμν → gμν þ α0δgð1Þμν

Bμν → Bμν þ α0δBð1Þ
μν

Φ → Φþ α0δΦð1Þ; ð8Þ

where the tensors δgð1Þμν , δB
ð1Þ
μν , and δΦð1Þ are all possible

covariant and gauge invariant terms at two-derivative level,
i.e.,

δgð1Þμν ¼ a1Rμν þ a2Hμ
αβHναβ þ a3∇ν∇μΦþ a4∇μΦ∇νΦ

þ gμνða5Rþ a6HαβγHαβγ

þ a7∇α∇αΦþ a8∇αΦ∇αΦÞ
δBð1Þ

μν ¼ a9∇αHμν
α þ a10Hμνα∇αΦ

δΦð1Þ ¼ a11Rþ a12HαβγHαβγ þ a13∇α∇αΦ

þ a14∇αΦ∇αΦ: ð9Þ

The coefficients a1;…; a14 are arbitrary parameters. When
the field variables in

ffiffiffiffiffiffi−gp
e−2ΦðJ 1 þ L1Þ are changed

according to the above field redefinitions, they produce
some couplings at order α02 in which we are not interested
in this section. However, when the field variables in S0 are
changed, up to some total derivative terms, the following
couplings at order α0 are produced:

δS0 ¼
δS0
δgαβ

δgð1Þαβ þ δS0
δBαβ

δBð1Þ
αβ þ δS0

δΦ
δΦð1Þ

≡
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦK1

¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2Φ

��
1

2
∇γHαβγ −Hαβ

γ∇γΦ
�
δBð1Þ

αβ

−
�
Rαβ −

1

4
HαγδHβ

γδ þ 2∇β∇αΦ
�
δgð1Þαβ

− 2

�
R −

1

12
HαβγHαβγ þ 4∇α∇αΦ − 4∇αΦ∇αΦ

�

×

�
δΦð1Þ −

1

4
δgð1Þμμ

��
: ð10Þ

Replacing (9) into (10), one finds

K1 ¼ −a1RαβRαβ þ 1

2
ða1 − 4a11 þ a5ð−2þDÞÞR2 þ 1

4
a2Hαβ

δHαβγHγ
ϵζHδϵζ

þ 1

24
ð4a12 − a2 − a6ð−6þDÞÞHαβγHαβγHδϵζHδϵζ þ 1

4
ða1 − 4a2ÞHα

γδHβγδRαβ

þ 1

24
ð−a1 þ 4a11 − 48a12 þ 12a2 þ 6a5 − 24a6 − a5Dþ 12a6DÞHαβγHαβγR

þ 1

24
ð−192a12 þ 4a13 þ 48a2 − a3 − 48a6 þ 6a7 þ 48a6D − a7DÞHβγδHβγδ∇α∇αΦ

þ 1

2
ð4a1 − 16a11 − 4a13 þ a3 − 4a5 − 2a7 þ 4a5Dþ a7DÞR∇α∇αΦ

þ 1

24
ð192a12 þ 4a14 − 48a2 − a4 þ 6a8 − 48a6D − a8DÞHβγδHβγδ∇αΦ∇αΦ

þ 1

2
ð−4a1 þ 16a11 − 4a14 þ a4 − 2a8 − 4a5Dþ a8DÞR∇αΦ∇αΦþ ð−2a1 − a3ÞRαβ∇β∇αΦ

þ 2ð−4a13 þ a3 þ a7ð−1þDÞÞ∇α∇αΦ∇β∇βΦþ 1

4
ð−4a10 þ a4ÞHα

γδHβγδ∇αΦ∇βΦ

þ 2ð4a13 − 4a14 − a3 þ a4 − a8 − a7Dþ a8DÞ∇αΦ∇αΦ∇β∇βΦ − a4Rαβ∇αΦ∇βΦ

þ ð8a14 − 2ða4 þ a8DÞÞ∇αΦ∇αΦ∇βΦ∇βΦ − 2a4∇αΦ∇β∇αΦ∇βΦ

þ 1

4
ð−8a2 þ a3ÞHα

γδHβγδ∇β∇αΦ − 2a3∇β∇αΦ∇β∇αΦ

þ 1

2
a9∇αHαβγ∇δHβγ

δ þ 1

2
ða10 − 2a9ÞHα

βγ∇αΦ∇δHβγ
δ; ð11Þ

where D is the number of spacetime dimensions.
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Not all arbitrary parameters a1;…; a14 produce nonzero
K1. For some relations between the parameters, one finds
the field redefinition (8) is the general coordinate trans-
formation, which obviously leaves K1 invariant up to some
boundary term. In fact under the coordinate transformation
xμ → xμ þ εμ ¼ xμ þ a∇μΦ, one has the following trans-
formations for fields:

δgμν ¼ ∇μεν þ∇νεμ ¼ 2a∇μ∇νΦ

δΦ ¼ εμ∇μΦ ¼ a∇μΦ∇μΦ

δBμν ¼ εγHγμν ¼ aHαμν∇αΦ: ð12Þ

Hence, if a3 ¼ 2a10 and a14 ¼ a10, the corresponding field
redefinitions in (9) are a coordinate transformation which
leaves K1 invariant, up to some boundary term. For some
other relations between the parameters, K1 may still be
invariant; however, the corresponding transformation is not
the coordinate transformation. If one removes the param-
eters that leaveK1 invariant, then the remaining parameters
all would be fixed after using the field redefinitions. On the
other hand, if one keeps all parameters a1;…; a14, then
some of the parameters remain arbitrary after using the field
redefinitions. We use this latter method and work with all
parameters a1;…; a14.
One is free to add K1 to L1 þ J 1 and choose the

parameters J1;…; J14 and a1;…; a14 to reduce the cou-
plings in (4). The Bianchi identities and the commutation
relation of the covariant derivatives, however, are not yet
used in L1 þ J 1 þK1. They are

Rα½βγδ� ¼ 0; ∇½μRαβ�γδ ¼ 0;

∇½μHαβγ� ¼ 0; ½∇;∇�O ¼ RO: ð13Þ

They can further reduce the independent couplings in (4).
The above identities may be contracted with tensors R, H,
∇Φ, and their derivativeswith arbitrary parameters, and then

add them to L1 þ J 1 þK1. By manipulating the arbitrary
parameters, one may find the independent couplings in (4).
Instead of imposing the identities (13) with arbitrary
parameters, we use the locally inertial frame in which the
above identities are almost automatically satisfied.
In the locally inertial frame, the metric gαβ takes its

canonical form and its first derivatives are all vanished, i.e.,

gαβ ¼ ηαβ; ∂μgαβ ¼ 0:

The second and higher derivatives of the metric, however,
are nonzero. In this coordinate, by rewriting the covariant
derivative in terms of partial derivatives, one finds, except
the Bianchi identity dH ¼ 0, all other identities in (13) are
satisfied. To satisfy the Bianchi identity dH ¼ 0 as well, in
the couplings which involve derivatives ofH, we rewrite H
in terms of B-field, i.e., Hμνα ¼ ∂μBνα þ ∂αBμν þ ∂νBαμ.
When writing the couplings L1 þ J 1 þK1 in this local
frame, then all resulting terms in L1 þ J 1 þK1 become
independent. Using the arbitrary parameters J1;…; J14 and
a1;…; a14, one may find the couplings in many different
schemes.
To clarify this point, one may write the final form of the

couplings as L0
1 which is the same as the couplings (4) with

different parameters B0
1;…; B0

41. Then writing

L0
1 − L1 ¼ J 1 þK1 ð14Þ

in the local frame, one finds some relations between
the arbitrary parameters J1;…; J14, a1;…; a14, and
δB1;…; δB41, where δBi ¼ B0

i − Bi. These are very lengthy
expressions that we do not write here explicitly. There are
two parameters a10, a8 in these relations which remain
unfixed.
The Eq. (14) produces the following 8 relations between

only δB1;…; δB41 as well:

δB22 ¼ 0

2δB1 þ δB2 ¼ 0

16δB4 − 8δB9 − 4δB10 þ 4δB18 þ 2δB20 þ δB21 ¼ 0

6δB25 þ 2δB26 − 6δB28 − 2δB30 − 2δB31 − δB32 ¼ 0

δB3 þ 16δB23 þ 12δB25 þ 4δB26 − 12δB28 − 4δB30 þ 4δB33 ¼ 0

2δB14 þ δB16 − δB17 þ 16δB29 − 4δB3 þ 8δB37 þ 4δB41 þ 2δB7 þ δB8 ¼ 0

10δB10 − 4δB11 − 8δB12 þ 8δB13 þ 4δB14 þ 4δB15 þ 2δB16 − 8δB18 þ δB19 − 2δB20

− 96δB34 þ 48δB38 − 80δB4 þ 24δB40 − 8δB5 − 16δB6 − 2δB8 þ 28δB9 ¼ 0

5δB11 þ 10δB12 − 4δB13 − 4δB14 − 2δB15 − 2δB16 þ 2δB17 þ 2δB18 þ 288δB24 þ 24δB25

þ 8δB26 þ 12δB3 þ 8δB33 þ 120δB34 þ 12δB35 þ 4δB36 − 24δB38 − 4δB39 þ 50δB4 þ 10δB5

þ 20δB6 − 5δB7 − 10δB9 ¼ 0: ð15Þ
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The first relation, δB22 ¼ 0, indicates that the parameter
B0
22 ¼ B22 is not changed by the field redefinition, by

adding the total derivative term or by using the Bianchi
identities. It is an unambiguous parameter. All other
relations indicate that the other parameters are ambiguous
parameters because they are changed by the field redefi-
nition, by the total derivative term or by the Bianchi
identities.
To find theminimum number of couplings inL0

1, onemay
choose 33 parameters in L0

1 to be zero. These parameters,
however, should change the 8 equations in (15) to 8
equations δBi ¼ fiðB1;…; B41Þ, where i is 8 numbers
among 1;…; 41 depending on the scheme that one uses
for the terms inL0

1 to be zero. It is obvious that one of them is
i ¼ 22 for which f22 ¼ 0. If one chooses B0

2 ¼ 0, then the
second equation above indicates that δB1 ¼ B2=2.
Alternatively, if one chooses B0

1 ¼ 0, then the second
equation becomes δB2 ¼ 2B1. Similarly for all other equa-
tions which have many different schemes. In any scheme,
the nonzero parameters inL0

1 areB
0
i ¼ Bi þ fiðB1;…; B41Þ.

We choose a set of zero parameters in L0
1 to be those that

their corresponding couplings have terms with more than
two derivatives or have R, Rμν,∇μHμαβ,∇μ∇μΦ. There are,
however, 24 such parameters. One may set to zero the other
9 parameters in L0

1 such that the remaining nonzero
parameters become the ones considered in [13],
i.e., B0

1; B
0
21; B

0
22; B

0
23; B

0
24; B

0
31; B

0
40; B

0
41.

However, we choose two other schemes. In one scheme,
we write the couplings as the following:

L0
1 ¼ L1

1 þ L2
1; ð16Þ

where L1
1 includes the minimum number of couplings

which do not include the dilaton, i.e.,

L1
1 ¼ B1RαγβδRαβγδ þ B2Hα

δϵHαβγHβδ
ζHγϵζ

þ B3Hαβ
δHαβγHγ

ϵζHδϵζ þ B4Hα
δϵHαβγRβδγϵ; ð17Þ

and L2
1 includes the other couplings which all include

nontrivially the dilaton, i.e.,

L2
1¼B5HβγδHβγδ∇αΦ∇αΦþB6Hα

γδHβγδ∇αΦ∇βΦ

þB7Hα
γδHβγδ∇β∇αΦþB8∇αΦ∇αΦ∇βΦ∇βΦ; ð18Þ

where we have also dropped the prime on the coefficients
and relabeled then from 1 to 8. The reason for the couplings
in (17) to be the minimum number of couplings which do
not include the dilaton, is that when one sets the dilaton to
be constant, there are only 4 relations between δBs.
In the other scheme, we write the couplings as the

following:

L0
1 ¼ L1

1 þ L3
1; ð19Þ

where L1
1 is the same as in (17), and L3

1 includes 4
couplings other than those that appear in L1

1 in which
the dilaton does not appear, i.e.,

L3
1 ¼ B5R2 þ B6HαβγHαβγRþ B7∇αHαβγ∇δHβγ

δ

þ B8HαβγHαβγHδϵζHδϵζ: ð20Þ

The 8 parameters in (16) or (19) have been fixed by
comparison with the three- and four-point string amplitudes
[13]. They have been also fixed, up to an overall factor, by
the T-duality constraint [32]. Only the parameters in L1

1 are
nonzero!
The parameters in the field redefinitions δgð1Þαβ , δB

ð1Þ
αβ ,

and δΦð1Þ that change the action (4) to (16) or (19), are
functions of δB1;…; δB41 and a10, a8. In the above
schemes, δBi ¼ fiðB1;…; B41Þ, where i is 8 numbers
among 1;…; 41, and all others are δBj ¼ −Bj. The
parameter a10 produces coordinate transformations in
which we are not interested, and parameter a8 produces
the transformation that leaves K1 invariant. We will discuss
more about this term in the next section.

III. MINIMAL COUPLINGS AT ORDER α02

In this section we extend the calculations in the previous
section to the order α02. We begin by writing all possible
covariant and gauge invariant couplings at six-derivative
order, i.e.,

L2 ¼ C1Rα
ϵ
γ
ζRαβγδRβζδϵ þ C2Rαβ

ϵζRαβγδRγϵδζ

þ C3Hα
γδHγ

ϵζRβϵδζ∇β∇αΦþ � � � : ð21Þ

There are 705 such couplings; however, they are not
independent. To remove the total derivative terms from
the above couplings, we consider the most general total
derivative terms at order α02 which has the following
structure:

α02
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦJ 2¼α02

Z
dDx

ffiffiffiffiffiffi
−g

p ∇αðe−2ΦJα2Þ; ð22Þ

where the vector Jα2 is all possible covariant and gauge
invariant terms at five-derivative level, i.e.,

Jα2 ¼ J1∇αΦR2 þ J2HαμνHβμν∇βΦRþ � � � : ð23Þ

There are 315 such terms with arbitrary parameters. The
corresponding J 2 has 641 terms.
Now we consider the field redefinitions at order α02.

Under the field redefinitions

MOHAMMAD R. GAROUSI and HAMID RAZAGHIAN PHYS. REV. D 100, 106007 (2019)

106007-6



gμν → gμν þ α0δgð1Þμν þ α02δgð2Þμν

Bμν → Bμν þ α0δBð1Þ
μν þ α02δBð2Þ

μν

Φ → Φþ α0δΦð1Þ þ α02δΦð2Þ; ð24Þ

where the deformations at orders α0 and α02 are arbitrary, the
actions S0 and S1 produce the following contributions at
order α02, up to some total derivative terms:

δS0þ δS1 ¼
δS0
δgαβ

δgð2Þαβ þ
δS0
δBαβ

δBð2Þ
αβ þ

δS0
δΦ

δΦð2Þ

þ δS1
δgαβ

δgð1Þαβ þ
δS1
δBαβ

δBð1Þ
αβ þ

δS1
δΦ

δΦð1Þ

þS0ðδgð1Þ;δgð1ÞÞþS0ðδgð1Þ;δBð1ÞÞ
þS0ðδgð1Þ;δΦð1ÞÞþS0ðδBð1Þ;δBð1ÞÞ
þS0ðδBð1Þ;δΦð1ÞÞþS0ðδΦð1Þ;δΦð1ÞÞ; ð25Þ

where S0ðδgð1Þ; δgð1ÞÞ, which includes δgð1Þδgð1Þ-terms, is
resulted from replacing the transformation g → gþ α0δgð1Þ,
B → Bþ α0δBð1Þ, and Φ → Φþ α0δΦð1Þ into S0. Similarly
for all other terms in the second and the third line above.
Up to some total derivative terms, one may write
S0ðδgð1Þ; δgð1ÞÞ ¼ ð� � �Þδgð1Þ. Similarly for other terms in
(25). As a result, one may rewrite the above equation as

δS0 þ δS1 ¼
δS0
δgαβ

δgð2Þαβ þ δS0
δBαβ

δBð2Þ
αβ þ δS0

δΦ
δΦð2Þ

þ
�
δS1
δgαβ

þ � � �
�
δgð1Þαβ þ

�
δS1
δBαβ

þ � � �
�
δBð1Þ

αβ

þ
�
δS1
δΦ

þ � � �
�
δΦð1Þ: ð26Þ

However, in the previous section, we have adjusted δgð1Þαβ ,

δBð1Þ
αβ , and δΦð1Þ so as to obtain the action S1 with fixed

parameters. All parameters in (9) are fixed except the two
parameters a10, a8. The parameter a10 which produces the

coordinate transformation should not be included in the
field redefinitions, and the parameter a8 which leaves K1

invariant but is not corresponding to the coordinate trans-
formation may be included in the field redefinition. We call

the corresponding field deformations δĝð1Þαβ , δB̂ð1Þ
αβ , and

δΦ̂ð1Þ. In fact the equation K1 ¼ 0 has the following
solution:

a1 ¼ a2 ¼ a4 ¼ a9 ¼ a10 ¼ 0

−4a5 ¼ 48a6 ¼ −a7 ¼ −
16

D − 2
a11 ¼

192

D − 6
a12

¼ −
4

D − 1
a13 ¼

4

D
a14 ¼ a8:

The corresponding field deformations are

δĝð1Þμν ¼−a8gμν
�
1

4
R−

1

48
HαβγHαβγ þ∇α∇αΦ−∇αΦ∇αΦ

�

δB̂ð1Þ
μν ¼ 0

δΦ̂ð1Þ ¼−
a8
4

�
D−2

4
R−

D−6

48
HαβγHαβγ þðD−1Þ∇α∇αΦ

−D∇αΦ∇αΦ
�
: ð27Þ

Since we have already fixed the field redefinitions at order
α0 to choose the schemes (16) or (19), one should consider
only the above residual deformations in (26).
Up to some total derivative terms, (27) can be written as

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2Φδĝð1Þμν ¼ 1

8
a8gμν

δS0
δΦ

δB̂ð1Þ
μν ¼ 0Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦδΦ̂ð1Þ ¼ D

8
a8

δS0
δΦ

−
1

8
a8gμν

δS0
δgμν

: ð28Þ

Replacing it into (26), one can rewrite (26) as

δS0 þ δS1 ¼
δS0
δgαβ

δg0ð2Þαβ þ δS0
δBαβ

δBð2Þ
αβ þ δS0

δΦ
δΦ0ð2Þ

≡
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦK2

¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2Φ

��
1

2
∇γHαβγ −Hαβ

γ∇γΦ
�
δBð2Þ

αβ −
�
Rαβ −

1

4
HαγδHβ

γδ þ 2∇β∇αΦ
�
δg0ð2Þαβ

− 2

�
R −

1

12
HαβγHαβγ þ 4∇α∇αΦ − 4∇αΦ∇αΦ

��
δΦ0ð2Þ −

1

4
δg0ð2Þμμ

��
; ð29Þ
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where the deformations δg0ð2Þαβ , δΦ0ð2Þ and δgð2Þαβ , δΦð2Þ have
different parameters; however, since we have not yet fixed

the parameters in δgð2Þαβ , δΦð2Þ, we consider the field
redefinitions

gμν → gμν þ α0δgð1Þμν þ α02δg0ð2Þμν

Bμν → Bμν þ α0δBð1Þ
μν þ α02δBð2Þ

μν

Φ → Φþ α0δΦð1Þ þ α02δΦ0ð2Þ; ð30Þ

in which the deformations at order α0 are all already fixed to
find the action (16) or (19), and the deformations at order
α02 are yet arbitrary.
The most general deformations at order α02 are:

δΦ0ð2Þ ¼b1Hα
δϵHαβγHβδ

ζHγϵζþb2Hαβ
δHαβγHγ

ϵζHδϵζþ���
δBð2Þ

μν ¼c1Rμνβγ∇αHαβγþc2HβγδHμν
α∇αHβγδþ���

δg0ð2Þμν ¼d1HγδϵHγδϵHμ
αβHναβþd2Hβ

δϵHγδϵHμ
αβHνα

γþ���;
ð31Þ

where b1;…; b41, c1;…; c81, and d1;…; d121 are arbitrary
parameters.
To find the independent couplings, we write the final

form of the couplings as L0
2 which is the same as the

couplings (21) with different parameters C0
1;…; C0

705. Then
writing

L0
2 − L2 ¼ J 2 þK2 ð32Þ

in the local frame, one finds some relations between the
arbitrary parameters of L2, K2, and δC1;…; δC705 in which
we are not interested, and also 60 relations between only
δC1;…; δC705 in which we are interested. Note that these
relations are independent of the form of the fixed action at
order α0, whether it is a minimal action or not (see [38] for
the case that B-field is zero).
To find the minimum number of couplings inL0

2, one may
choose 645 parameters in L0

2 to be zero. These parameters,
however, should change the 60 equations among
δC1;…; δC705 to 60 equations δCi ¼ giðC1;…; C705Þ,
where i is 60 numbers among 1;…; 705 depending on the
scheme that one uses for the terms inL0

2 to be zero. As in the
previous section we choose two schemes.
In one scheme, we choose a set of zero parameters in L0

2

to be those that their corresponding couplings have terms
with more than two derivatives or have R, Rμν, ∇μHμαβ,
∇μ∇μΦ. There are 543 such couplings. We have found that
it is consistent to set these parameters to zero, i.e., after
setting these parameters to zero, there are still 60 equations
between the reaming δCs. There are still different schemes
for choosing the remaining 102 parameters in L0

2 to be zero.
We choose the scheme in which the minimum number of
couplings in L0

2 to be:

L0
2 ¼ L1

2 þ L2
2; ð33Þ

where L1
2 has the minimum number of couplings in which

the dilaton does not appear, i.e.,

L1
2 ¼ C1Rα

ϵ
γ
ζRαβγδRβζδϵ þ C2Rαβ

ϵζRαβγδRγϵδζ þ C3Hα
δϵHαβγHβδ

ζHγ
ικHϵι

μHζκμ

þ C4Hαβ
δHαβγHγ

ϵζHδ
ικHϵζ

μHικμ þ C5Hαβ
δHαβγHγ

ϵζHδϵ
ιHζ

κμHικμ

þ C6Hα
δϵHαβγHβ

ζιHδζ
κRγϵικ þ C7Hα

δϵHαβγRβ
ζ
δ
ιRγζϵι þ C8Hαβ

δHαβγHϵζ
κHϵζιRγιδκ

þ C9HαβγHδϵζRαβδ
ιRγιϵζ þ C10Hα

δϵHαβγRβ
ζ
δ
ιRγιϵζ þ C11Hα

δϵHαβγRβ
ζ
γ
ιRδζϵι

þ C12Hαβ
δHαβγRγ

ϵζιRδζϵι þ C13Hαβ
δHαβγHγ

ϵζHϵ
ικRδιζκ þ C14Hα

δϵHαβγHβδ
ζHγ

ικRϵιζκ

þ C15Hαβ
δHαβγHγ

ϵζHδ
ικRϵιζκ þ C16Hα

δϵHαβγ∇ιHδϵζ∇ιHβγ
ζ þ C17Hα

δϵHαβγ∇ζHγϵι∇ιHβδ
ζ

þ C18Hα
δϵHαβγ∇ιHγϵζ∇ιHβδ

ζ þ C19Hαβ
δHαβγ∇ζHδϵι∇ιHγ

ϵζ þ C20Hαβ
δHαβγ∇ιHδϵζ∇ιHγ

ϵζ; ð34Þ
and L2

2 has the other couplings which all include derivatives of the dilaton, i.e.,

L2
2 ¼ C21Hβ

ϵζHβγδHγϵ
ιHδζι∇αΦ∇αΦþ C22RβγδϵRβγδϵ∇αΦ∇αΦþ C23Hβ

ϵζHβγδRγϵδζ∇αΦ∇αΦ

þ C24Hα
γδHβ

ϵζHγϵ
ιHδζι∇αΦ∇βΦþ C25Rα

γδϵRβδγϵ∇αΦ∇βΦ

þ C26Hα
γδHβ

ϵζRγϵδζ∇αΦ∇βΦþ C27HγδϵHγδϵ∇αΦ∇β∇αΦ∇βΦ

þ C28Hα
γδHβ

ϵζHγϵ
ιHδζι∇β∇αΦþ C29Hα

γδHβ
ϵζHγδ

ιHϵζι∇β∇αΦ

þ C30Hα
γδHβγ

ϵHδ
ζιHϵζι∇β∇αΦþ C31Hγδ

ζHγδϵRαϵβζ∇β∇αΦþ C32Rα
γδϵRβδγϵ∇β∇αΦ

þ C33Hα
γδHγ

ϵζRβϵδζ∇β∇αΦþ C34Hα
γδHβ

ϵζRγϵδζ∇β∇αΦþ C35Hα
δϵ∇αΦ∇βΦ∇γHβδϵ∇γΦ

þ C36∇αΦ∇αΦ∇βΦ∇βΦ∇γΦ∇γΦþ C37∇αΦ∇αΦ∇βΦ∇γ∇βΦ∇γΦ
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þ C38Hβ
δϵHγδϵ∇αΦ∇βΦ∇γ∇αΦþ C39Hβ

δϵHγδϵ∇β∇αΦ∇γ∇αΦ

þ C40∇αΦ∇βΦ∇γ∇βΦ∇γ∇αΦþ C41∇β∇αΦ∇γ∇βΦ∇γ∇αΦ

þ C42Hβ
δϵHγδϵ∇αΦ∇αΦ∇γ∇βΦþ C43Hα

δϵ∇αΦ∇γHβδϵ∇γ∇βΦ

þ C44∇αΦ∇αΦ∇γ∇βΦ∇γ∇βΦþ C45Hαγ
ϵHβδϵ∇αΦ∇βΦ∇δ∇γΦ

þ C46Rαγβδ∇αΦ∇βΦ∇δ∇γΦþ C47Hαγ
ϵHβδϵ∇β∇αΦ∇δ∇γΦþ C48Rαγβδ∇β∇αΦ∇δ∇γΦ

þ C49Hβ
δϵ∇αΦ∇γ∇βΦ∇ϵHαγδ þ C50Hγδϵ∇αΦ∇β∇αΦ∇ϵHβγδ

þ C51∇αΦ∇βΦ∇δHβγϵ∇ϵHα
γδ þ C52∇β∇αΦ∇δHβγϵ∇ϵHα

γδ

þ C53∇αΦ∇βΦ∇ϵHβγδ∇ϵHα
γδ þ C54∇β∇αΦ∇ϵHβγδ∇ϵHα

γδ

þ C55∇αΦ∇αΦ∇ϵHβγδ∇ϵHβγδ þ C56Hα
βγRγζδϵ∇αΦ∇ζHβ

δϵ

þ C57Hβγ
ϵHβγδHδ

ζι∇αΦ∇ιHαϵζ þ C58Hα
βγHδϵ

ιHδϵζ∇αΦ∇ιHβγζ

þ C59Hα
βγHβ

δϵHδ
ζι∇αΦ∇ιHγϵζ þ C60Hα

βγHβ
δϵHγ

ζι∇αΦ∇ιHδϵζ: ð35Þ

We have also dropped the prime on the parameters and
relabeled them from 1 to 60. We have found the minimum
number of couplings which have no dilaton, i.e., L1

2, by
solving the equation (32) for the constant dilaton which
produces 20 relations between δCs.
In the second scheme, we are going to write all 60

couplings such that there is no dilaton in any of them. We

have found that there are many such schemes. We choose
the following scheme:

L0
2 ¼ L1

2 þ L3
2; ð36Þ

where L1
2 is the same as (34) and L3

2 contains the following
40 couplings:

L3
2 ¼ C21HαβγHαβγHδϵ

ιHδϵζHζ
κμHικμ þ C22HαβγHαβγHδϵζHδϵζHικμHικμ

þ C23Hα
γδHβ

ϵζHγϵ
ιHδζιRαβ þ C24Hα

γδHβγδHϵζιHϵζιRαβ þ C25Rα
γRαβRβγ

þ C26Hα
δϵHαβγHβδ

ζHγϵζRþ C27Hαβ
δHαβγHγ

ϵζHδϵζRþ C28HαβγHαβγHδϵζHδϵζR

þ C29RαβRαβRþ C30HαβγHαβγR2 þ C31R3 þ C32RRαγβδRαβγδ þ C33Hα
δϵHαβγRRβδγϵ

þ C34HαβγHαβγRδζϵιRδϵζι þ C35HαβγHαβγHδ
ικHδϵζRϵιζκ þ C36HγδϵRαβ∇β∇ϵHαγδ

þ C37Hα
γδRαβ∇β∇ϵHγδ

ϵ þ C38∇αRαβ∇γRβ
γ þ C39HαβγR∇γ∇δHαβ

δ

þ C40HαβγR∇δ∇δHαβγ þ C41Hα
γδRαβ∇δ∇ϵHβγ

ϵ þ C42HαβγRβϵγζ∇δ∇ζHα
δϵ

þ C43Hαβ
δHαβγHϵζι∇δ∇ιHγϵζ þ C44Hαβ

δHαβγHγ
ϵζ∇δ∇ιHϵζ

ι þ C45Hγδϵ∇αRαβ∇ϵHβγδ

þ C46∇αRαβγδ∇ϵRβ
ϵ
γδ þ C47HγδϵRαβ∇ϵ∇βHαγδ þ C48∇αHαβγ∇ϵ∇γ∇δHβ

δϵ

þ C49Hα
γδRαβ∇ϵ∇δHβγ

ϵ þ C50∇δ∇αHαβγ∇ϵ∇δHβγ
ϵ þ C51∇αHαβγ∇ϵ∇δ∇ϵHβγ

δ

þ C52Hα
γδRαβ∇ϵ∇ϵHβγδ þ C53∇δ∇αHαβγ∇ϵ∇ϵHβγδ þ C54∇αHαβγ∇ϵ∇ϵ∇δHβγ

δ

þ C55HαβγRβδγϵ∇ζ∇ζHα
δϵ þ C56Hα

δϵHαβγHβδ
ζ∇ζ∇ιHγϵ

ι þ C57HαβγRβϵγζ∇ζ∇δHα
δϵ

þ C58Hα
δϵHαβγ∇ζHβδ

ζ∇ιHγϵ
ι þ C59Hαβ

δHαβγ∇ϵHγ
ϵζ∇ιHδζ

ι þ C60Hα
δϵHαβγ∇ζHβγδ∇ιHϵζ

ι: ð37Þ

When themetric andB-field are constant, there is no relation
between δCs; hence, the minimum number of couplings
between only the dilaton is zero. On the other hand, when the
metric and B-field are constant, there is no coupling in (36).
The parameters in the field redefinitions that change the

action (21) to (33) or (36), are functions of δC1;…; δC705

and some of unfixed parameters bis, cis, and dis in (31).

In the above schemes, δCi ¼ giðC1;…; C705Þ, where i is
60 numbers among 1;…; 705 depending on the scheme,
and all others are δCj ¼ −Cj. The unfixed parameters
bis, cis, and dis satisfy the following relation:

J 2 þK2 ¼ 0: ð38Þ
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One may ask if there are similar relations as (28) for the
residual field redefinitions at order α02. To answer this
question, wewrite the above equation in the local frame and
then solve the resulting equations to find some relations
between the unfixed parameters bis, cis, and dis and the
arbitrary parameters in the total derivative terms, i.e., Jis.
Then one can use the arbitrary parameters Ji to cancel the
field redefinitions which involve terms with more than two
derivatives. The resulting field redefinitions which we call

δΦ̂ð2Þ, δĝð2Þμν , δB̂
ð2Þ
μν can then be rewritten asZ

dDx
ffiffiffiffiffiffi
−g

p
e−2ΦδΦ̂ð2Þ ¼ δS0

δgμν
δḡð1Þμν þ δS0

δBμν
δB̄ð1Þ

μν

þδS0
δΦ

δΦ̄ð1Þ þ δS0
δgμν

gμνδΦ̄1
ð1Þ

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2Φδĝð2Þμν ¼ δS0

δgμν
δΦ̄2

ð1Þ þ δS0
δgαβ

gαβδḡ1
ð1Þ
μν

þ δS0
δgαfμ

δḡ2
ð1Þ
νgαþ

δS0
δgαβ

gαβδḡ3
ð1Þ
μν

þδS0
δΦ

δḡ4
ð1Þ
μν þ δS0

δBαfμ δB̄1
ð1Þ
νgα

þ δS0
δBαβ

δB̄2
ð1Þ
αβμν

Z
dDx

ffiffiffiffiffiffi
−g

p
e−2ΦδB̂ð2Þ

μν ¼ δS0
δBα½μ δḡ5

ð1Þ
ν�αþ

δS0
δBμν

δΦ̄3
ð1Þ

þδS0
δΦ

δB̄3
ð1Þ
μν þ δS0

δgαβ
δB̄4

ð1Þ
αβμν; ð39Þ

where the tensors δḡð1Þμν ; � � � δḡ5ð1Þμν , δB̄
ð1Þ
μν ;…; δB̄4

ð1Þ
αβμν, and

δΦ̄ð1Þ;…; δΦ̄3
ð1Þ are some specific functions of R;H;∇Φ

and their derivatives at order α0. Using similar steps as in
(25) and (26), and using the residual field redefinitions in
(28) and (39), one then can write the variations that the
actions S0, S1, S2 produce at order α03, up to some total
derivative terms, as

δS0 þ δS1 þ δS2 ¼
δS0
δgαβ

δgð3Þαβ þ δS0
δBαβ

δBð3Þ
αβ

þ δS0
δΦ

δΦð3Þ; ð40Þ

where the deformations δgð3Þμν , δB
ð3Þ
μν , δΦð3Þ are arbitrary

functions of R;H;∇Φ and their derivatives at
order α03.
It seems similar rewriting as (39) can be done for residual

field redefinitions at higher orders of α0 as well. As a result,
the variations of actions S0;…; Sn−1 may produce the
following contributions at order α0n:

δS0 þ � � � þ δSn−1 ¼
δS0
δgαβ

δgðnÞαβ þ δS0
δBαβ

δBðnÞ
αβ

þ δS0
δΦ

δΦðnÞ; ð41Þ

where the deformations δgnÞμν, δBðnÞ
μν , δΦðnÞ are arbitrary

functions of R;H;∇Φ and their derivatives at order α0n.
Therefore, as long as one considers fixed couplings at
orders α0;…; α0n−1, the contributions of the field redefini-
tions on the actions S0;…; Sn−1 at order α0n are given by
(41). Using a high performance computer, it is then
straightforward to extend the calculations in this paper
to the order α0n. The minimal couplings may be written in
the following scheme:

L0
n ¼ L1

n þ L2
n; ð42Þ

where L1
n contains the minimum number of couplings for

the metric and B-field, and L2
n contains all other couplings

for each derivative of the dilaton.
The minimal independent parameters in (42) for n ¼ 2

which are given in (34) and (35) or (37) may be calculated
by studying in details the S-matrix element of vertex
operators in string theory, or they may be found by the
T-duality constraint up to an overall factor. We leave these
calculations for future works.
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