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Abstract
It is vital for the designers of the throttling facilities to predict natural gas temperature drop along a throttling valve exactly. 
Generally, direct prediction of the temperature drop is not possible even by employing equations of states. In this work, 
artificial neural network method, specifically multilayer perceptron, is utilized to predict the physical properties of natural 
gas. Then, the method is employed for direct calculation of the temperature drop along a throttling process. To train, validate 
and test the network, a large database of natural gas fields of Iran plus some experimental data (30,000 random datasets) are 
gathered from the literature. In addition, according to complexity of the multilayer perceptron model, a group method of data 
handling approach is used to simplify the major trained network. For the first time, an equation is developed for calculating 
natural gas temperature drop as a function of molecular weight as well as pressure drop. The results show that the multilayer 
perceptron and group method of data handling methods have the error R2 = 0.998 and R2 = 0.997, respectively. In addition, 
the results indicate that both developed machine learning methods present a high accuracy in the calculations over a wide 
range of gas mixtures and input properties ranges.

Keywords Throttling process · Artificial neural network · Multilayer perceptron · Group method of data handling · Natural 
gas temperature drop · Natural gas compositions effects

List of symbols
f  Activation function
T  Temperature (K)
P  Pressure (kPa)
J  Jacobian matrix
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X  Mole fraction
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N  Number of natural gas com-
ponents, N = 21

Pc,i  Critical pressure for compo-
nent i

Tc,i  Critical temperature for com-
ponent i

Ppc  Pseudo-critical pressure, 
Ppc =

∑N

i=1
Pc,i × Xi

Tpc  Pseudo-critical temperature, 
Tpc =

∑N

i=1
Tc,i × Xi

Ppr  Pseudo-reduced pressure, 
Ppr =

P

Ppc

Tpr  Pseudo-reduced temperature, 
Tpr =

T

Tpc

W  Weights matrix

Subscripts
c  Critical point
r  Reduced

Abbreviations
AAPD  Average absolute percent 

deviation
ANN  Artificial neural network
EOS  Equations of state
GMDH  Group method of data 

handling
HFE  Helmholtz free energy
JT  Joule–Thomson
NG  Natural gas
MLP  Multilayer perceptron

Introduction

Natural gas throttling is a common process in natural gas 
industry in which the gas stream must be suddenly expanded 
from the high pressure to lower pressure. This is mainly 
an isenthalpic process and causes a significant change in 
the physical properties of the mixture, especially its tem-
perature falls sharply [1]. In a natural gas pressure drop sta-
tion, for instance, the temperature of the natural gas after 
the expansion process is a key parameter such that it should 
not approach the hydrate forming zone [2] Therefore, it is 
essential that the process be such designed that the natural 
gas flow does not fall into the trap of hydrate formation. 
For a proper design and dimensioning of the throttling 
process, precise information about the behavior of the gas 
flow through the expansion process is required. The deter-
mination of the thermodynamic properties of natural gas, 
however, is challenging as it usually comes in the form of 
heavy mixtures. Apart from the metering instruments that 
may be used for the direct measurement of only some of the 

physical properties, such as temperature, pressure and speed 
of sound, the further properties of natural gas can only be 
calculated by the equation of states (EOSs) or other theoreti-
cal methods [3].

In fact, the EOSs define the thermodynamic properties 
of the natural gas mixtures as functions of their measur-
able properties. Of the several developed EOSs, as the only 
method of determining the physical properties of the natural 
gas mixtures so far, GERG2008 [4] and AGA8 [5] are two of 
the most commonly used and referenced ones. The main and 
common disadvantage of these equations, however, is that 
they only accept the temperature, pressure and compositions 
as the input for the direct calculation of the other thermo-
dynamic properties [6]. Although these equations may still 
be employed with different input data, an iterative solution 
would be required in this case, which is time-consuming 
and even has inaccuracies sometimes. Therefore, it is not the 
cleverest measure to use such EOSs for designing the throt-
tling processes for which the enthalpy, the pressure and the 
compositions are the primary, secondary and side effective 
parameters.

There is an extensive literature focusing on finding an 
alternative method for the calculation/estimation of one or 
some thermodynamic properties of natural gas mixtures in 
various conditions. For example, in the two studies, the cor-
relations are presented for calculating the natural gas density 
[7, 8].

In one study, the alternating conditional expectations 
algorithm is proposed to estimate the viscosity and density 
of natural gas mixtures [9]. Farzaneh-Gord and Rahbari [10] 
developed the novel correlations for calculating thermody-
namic properties of natural gas. In their study, the average 
absolute percent deviation (AAPD) for compressibility fac-
tor calculations was 0.674%, for density was 2.55% and for 
Joule–Thomson coefficient was 4.16% [11]. In recent stud-
ies, Farzaneh-Gord et al. [12] developed two novel correla-
tions for calculating the density and the molecular weight of 
natural gas mixtures as functions of three directly measur-
able properties of temperature, pressure and Joule–Thom-
son coefficient, and temperature, pressure and sound speed, 
respectively. Many more studies could be addressed here 
that have conducted research in this topic, but to the extent 
of the authors’ knowledge, there is no study that specifically 
investigates a throttling process design condition.

Artificial neural network (ANN) methods or connection-
ist systems are computing systems vaguely inspired by the 
biological neural networks that constitute brains. The neural 
network itself is not an algorithm, but rather a framework for 
many different machine learning algorithms to work together 
and process complex data inputs. Such systems “learn” to 
perform tasks by considering examples, generally without 
being programmed with any task-specific rules. An ANN 
is based on a collection of connected units or nodes called 
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artificial neurons, which loosely model the neurons in a 
biological brain. Each connection, like the synapses in a 
biological brain, can transmit a signal from one artificial 
neuron to another. An artificial neuron that receives a signal 
can process it and then signal additional artificial neurons 
connected to it. Typically, artificial neurons are aggregated 
into layers. Different layers may perform different kinds of 
transformations on their inputs. Signals travel from the first 
layer (the input layer) to the last layer (the output layer), 
possibly after traversing the layers multiple times [13]. The 
ANN has widely been used in many scientific areas due to 
the high accuracy, high solution speed and less complica-
tion of this method compared to the traditional methods. For 
example, Gill et al. [14] used artificial intelligence method 
to predict the destruction of exergy in components of a LPG 
refrigeration system. Their work shows that the proposed 
method could be predicted the destruction of exergy in the 
components of refrigeration system quickly and with high 
accuracy. Ramezanizadeh et al. [15] presented a review of 
application of intelligence methods, including ANNs to pre-
dict thermal conductivity of nanofluids. The results of their 
work show that the ANNs have higher precision than other 
intelligence methods. Ahmadpour et al. [16] developed an 
optimization method based on ANNs to optimize the natural 
gas condensate hydrodesulfurization unit. Their work shows 
that the proposed method could optimize the objective func-
tion very fast with high accuracy.

Intelligence methods such as ANN techniques are 
employed and widely used for analyzing heat and mass 
transfer. For example, Ahmadi et al. [17] employed the dif-
ferent intelligent methods to predict thermal conductivity 
and dynamic viscosity of  Fe2O3/water nanofluid. The results 
of their study show that the RBF neural network algorithm 
based on genetic algorithm (GA-RBF algorithm) has the 
highest R2 values for predicting the physical properties of 
 Fe2O3/water nanofluid. Baghban et al. [18] estimated the 
convective heat transfer coefficient of nanofluids in circular 
cross-sectional channels. In their study, seven different mod-
els were applied and compared with each other. The results 
of their work indicate that these proposed models are very 
useful for prediction of convective heat transfer coefficient 
of nanofluid. Maddah et al. [19] predicted the viscosity of 
multiwall carbon nanotube by applying the ANN and self-
organizing map methods. The results of their study show 
that the ANN method can predict the viscosity with accept-
able accuracy. Ramezanizadeh et al. [20] presented a precise 
model to predict the dynamic viscosity of  Al2O3/water nano-
fluid. In their study, four ANN models were employed to 
estimate the viscosity of  Al2O3/water nanofluid. In another 
study, Ahmadi et al. [21] employed two intelligent methods 
to predict the thermal conductivity ratio of  Al2O3/EG nano-
fluid. The results of their work show that the proposed meth-
ods could estimate the thermal conductivity of the nanofluid 

with applicable accuracy. Also, in a recent study, Bagheri 
et al. [22] used ANN method to optimize free convection 
of hybrid nanofluids in a c-shaped chamber. The results of 
their work show that the ANN using the PSO algorithm can 
optimize the Nusselt number with high accuracy.

However, ANN is not used frequently in the natural gas 
industries simulation. The pioneers of employing the ANN 
approaches for the property estimation of gases are Mogha-
dassi et al. [23]. Their study was a simple model to estimate 
the temperature, pressure and specific volume of pure gases, 
although most studies in this area were related to natural gas 
compressibility factor calculation. For example, in a study, 
the more complicated model developed to calculate natural 
gas compressibility factor [24]. Al-Anzari et al. [25] devel-
oped the ANN method for estimating the compressibility 
factor of sour natural gas mixtures and reported an average 
absolute error just below 1%. In a similar work, Sanjari and 
Lay [26] developed an ANN model to calculate the natu-
ral gas compressibility factor using large training and test-
ing database comprising a total of 5500 experimental data. 
Some researchers compared the ANN method with other 
machine learning methods such as the fuzzy inference sys-
tem (FIS) and the adaptive neuro-fuzzy inference system 
(ANFIS) in the case of predicting the compressibility factor 
of a natural gas mixture [27]. Comparing the obtained results 
with the results given by the EOSs, they found their trained 
ANN model more accurate than all the other approaches. 
Finally, as one of the latest works in this research field, Azizi 
et al. [28] estimated the natural gas compressibility factor by 
training an ANN model using Standing and Katz diagram, 
though their effort did not result in satisfactory findings.

In this work, the multilayer perceptron (MLP) method, as 
one of the machine learning methods, is employed to pre-
dict temperature drop during a throttling process. For such a 
process, the known properties are the enthalpy, the pressure 
and the compositions of the natural gas mixture. Therefore, 
the MLP model is developed based on these three physi-
cal properties as the input data. The output information of 
the model includes the temperature and the compressibil-
ity factor. It could be shown that the MLP method is very 
fast with higher accuracy compared to EOSs. A randomly 
made database consisting of properties such as natural gas 
compositions, temperatures and pressures was utilized to 
train the desired MLP model. In addition, for the first time 
an equation has been developed for calculating temperature 
drop due to pressure drop as a function of molecular weight. 
For validating and testing the trained model, a huge database 
including the physical properties of four natural gas fields 
of Iran, namely Pars, Khangiran, Sarjeh and Sarkhoon, as 
well as some experimental data gathered from the literature 
are used. Also, according to the complexity of the major 
MLP model which contains 23 inputs, data consist of 21 
mole fractions of the natural gas, pressure and temperature, 
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and a group method of data handling (GMDH) neural net-
work approach is used to tackle this issue. In the GMDH 
approach, for obtaining temperature drop through throttling 
processes just molecular weight of the natural gas, inlet and 
outlet pressure and inlet temperature are required.

Problem discussion

Throttling valves usually called Joule–Thomson (JT) valves 
are widely employed in natural gas industries for natural 
gas pressure reduction. Figure 1 shows two-sample utiliza-
tion of these valves. For separating heavier parts of natu-
ral gas stream, a sample configuration shown in Fig. 1a is 
utilized [29]. The same process is utilized for recovering 
ethane from natural gas stream in the natural gas refineries. 
Natural gas passes through a heat exchanger for pre-cooling 
before entering the JT valve. As natural gas exits the valve 
with lower pressure and temperature, it enters a flash separa-
tor that separates the liquid phase from the gas phase. The 
natural gas temperature has the most important influence on 
the separation efficiency of the system. The designers should 
know how temperature drop is related to pressure drop and 
natural gas compositions. A typical natural gas pressure drop 
station is shown in Fig. 1b as the other example [30]. In 
these stations, it is very important to know the properties 
of the gas after the JT valve and the temperature drop along 
the expansion process is the most important factor. Design-
ers should be able to design and size the required heaters in 

order to prevent the gas to fall down behind hydrate forming 
temperature.

The above examples clearly indicate the importance of 
knowing the exact amount of temperature drop due to pres-
sure drop in a JT valve. The usual approach for computing 
the temperature drop in a JT valve is to employee an EOS 
with an iterative method. As the process across a JT valve is 
an isenthalpic process, the temperature after the valve could 
be computed by varying outlet temperature until the inlet 
and outlet enthalpies get very close.

In this study, a novel approach has been employed to 
compute the temperature drop and consequently outlet tem-
perature of an expansion process by utilizing machine learn-
ing method. The MLP and the GMDH are two sub-models of 
ANN that have been used in this study as machine learning 
method. For designing the valve and the ancillary facili-
ties coming with it, a gas flow is supposed to come into the 
expansion device with P1 and T1. Using the proposed two 
ANNs, the designer could calculate the outlet temperature 
for the natural gas mixture directly.

Methodology

To develop the proposed ANN approach for calculating the 
temperature drop across an expansion process, firstly, a data-
base of pressure and temperature before and after a JT valve 
for various natural gas compositions should be created. The 
required data could come from experimental data, theoreti-
cal data or both. In this study, the GERG2008 EOS as the 
most recent and authentic EOS for calculating natural gas 
thermodynamic properties has been employed. In this sec-
tion, firstly, the GERG2008 EOS has been introduced. Then, 
the MLP method and the GMDH method as two machine 
learning methods have been discussed. These two ANNs are 
the alternative approaches for predicting the physical prop-
erties of natural gas mixture through throttling processes.

GERG2008 EOS

The GERG2008 EOS basically combines the well-devel-
oped pure gas EOSs into a single EOS for the natural gas 
mixtures. This EOS is explicit in the Helmholtz free energy 
(HFE). The HFE of a fluid mixture is a function of its den-
sity, temperature and compositions as below [4]:

where ρ, T and X̄ are the density, temperature and the molar 
content of the compositions in the mixture. The function �◦ 
represents the properties of ideal gas mixtures at the given 
values of ρ, T and X̄ , while �r takes into account the residual 

(1)𝛼
(
𝜌, T , X̄

)
= 𝛼0

(
𝜌, T , X̄

)
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)
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Fig. 1  Typical utilization of throttling valve (JT valve) in natural gas 
industries. a Recovering heavier hydrocarbon, b a pressure drop sta-
tion
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mixture behavior. These two parameters are defined as below 
[4]:

where in the former, 
∑

XiLn
�
Xi

�
 accounts for the entropy of 

ming, and �0
0i
(�, T) is the dimensionless HFE of component 

i in the ideal gas state, and in the latter, �r
or

 is the residual 
part of the reduced HFE of component i, and Δ�r is the spe-
cific departure function developed for the respective binary 
mixtures.

In Eq. 3, δ and τ are, respectively, the reduced mixture 
density and the inverse reduced mixture temperature given 
by [4]:

in which [4]:

Here δ and τ are developed based on quadratic mixing rules. 
�v,ij , �T,ij, �T,ij and �T,ij are binary mixture parameters, and 
their values along with the value of the critical parameters 
�c,i and Tc,i of the pure components could be found in ISO 
20765-2 [31].

Due to the abundance of the references on the GERG2008, 
no further discussion on this matter is presented. The only 
remaining noteworthy point is that as the actual input val-
ues in natural gas industries are pressure, temperature and 
natural gas components, an iterative method is required to 
find the pressure value first, and then any other physical 
properties. The validity of GERG2008 EOS is proved for 
the normal ranges of 90 K ≤ T ≤ 450 K and P ≤ 35,000 kPa, 
while this range can even be extended to 60 K ≤ T ≤ 700 K 
and P ≤ 70,000 kPa.

In spite of many advantages that GERG2008 offers, there 
are some drawbacks that restrict its applications in some 
situations. Some of these deficiencies are:

(2)𝛼0
(
𝜌, T , X̄

)
=

N∑
i=1

Xi

[
𝛼0
0i
(𝜌, T) + Ln

(
Xi

)]

(3)𝛼r
(
𝛿, 𝜏, X̄

)
= 𝛼r

0

(
𝛿, 𝜏, X̄

)
+ Δ𝛼r

(
𝛿, 𝜏, X̄

)
,

(4)𝛿 =
𝜌

𝜌r
(
X̄
)

(5)𝜏 =
Tr
(
X̄
)

T

(6)

1

𝜌r
�
X̄
� =

N�
i=1

N�
j=1

XiXj𝛽v,ij𝛾v,ij

Xi + Xj

𝛽2
v,ij
xi + xj

�
1

8

�⎛⎜⎜⎜⎝
1

𝜌
1∕3
c,i

+
1

𝜌
1∕3
c,j

⎞⎟⎟⎟⎠

3

(7)Tr
(
X̄
)
=

N∑
i=1

N∑
j=1

XiXj𝛽T,ij𝛾T,ij

Xi + Xj

𝛽2
T,ij
Xi + Xi

(
Tc,i ⋅ Tc,j

)0.5
.

• The inflexibility of the EOS in the input data as it only 
accepts pressure, temperature and compositions

• Difficult implementation and the high possibility mis-
takes during the coding process of the EOS

• The occasional inaccurate response of the EOS in the 
conditions that the thermodynamic behavior of the mix-
ture does not follow a regular manner.

MLP method

The ANN is one of the powerful methods for function 
approximation and simulation, whose procedure is inspired 
by behavior of biological cell nerves. The main aim of arti-
ficial neural networks is structuring a mathematical relation-
ship between an input and output dataset. The most com-
mon type of ANN is the MLP method. The MLP generally 
consists of three layers, named as input layer whose neu-
rons are the independent variables of problem, hidden layer 
whose neurons form a relationship between independent and 
dependent variables and output layer whose neurons contain 
the dependent variables. The MLP neural network has many 
parameters and components. The three main components of 
this ANN are data collected for the training and weights, the 
biases and the algorithms for training networks.

Data typically collected for training neural networks are 
divided into three categories, namely training data, valida-
tion data and test data. Training data are directly engaged in 
the training process, and validation dataset is used to show 
the deviation during training networks and is not directly 
involved in training algorithm and altering the weights and 
biases. The testing dataset is used to check performance 
of the MLP for data that did not participate in the training 
process. Weights and biases are adaptive coefficients that 
determine the effectiveness of Inputs. These coefficients are 
first determined as random and then optimized by a training 
algorithm. Figure 2 shows a simple network that consists of 
an input layer, one hidden layer (with two neurons) and an 
output layer. The method for obtaining the desired output is 
given in Eqs. (8)–(10):

(8)neuron1
1
=

⎧
⎪⎨⎪⎩

net1
1
=

n0∑
i=1

W1
1i
× X0

o1
1
= f

�
net1

1

�

(9)neuron1
2
=

⎧
⎪⎪⎨⎪⎪⎩

net1
2
=

n0∑
i=1

W1
2i
× Xi

o1
2
= f

�
net1

2

�
V ≜

�
V0, o

1
1
, o1

2
,…

�T
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In ANN, the activation function of a node defines the output 
of that node, or “neuron,” given an input or set of inputs. It 
should be noted that the activation functions used in MLP 
neural networks are tangential hyperbolic (tansig) function. 
This function has been introduced in Eq. (11). The linear 
function is usually used in hidden layers, and the activation 
function for the output layer is usually linear function. The 
linear function has been introduced in Eq. (12) [32]:

(10)neuron2
1
=

⎧
⎪⎨⎪⎩

net2
1
=

n0∑
i=0

W2
1i
× Vi

o2
1
= f

�
net2

1

� .

According to the above paragraph, the network must be 
trained by a training algorithm. There are many algorithms 
for training. One of the accurate algorithms for training neu-
ral networks is backpropagation learning algorithm. There 
are several backpropagation training methodologies, but 
the most powerful methodology is Levenberg–Marquardt. 
Equation (13) shows the Levenberg–Marquardt formula for 
obtaining optimum weights and biases in neural networks 
[32]:

(11)f (a) = tanh(a) =
exp (a) − exp(−a)

exp (a) + exp(−a)
; [−1, 1]

(12)f (a) = a; (−∞,∞).

Output layerInput layer

X0 = 1

W10

X1

X2

Xn0

bias
V0 = 1

bias

Hidden layer(s)

1

W11
1

W12
1

net AF

AF

AF

1
1

W1n0

1

W20
1

W21
1

W22
1

W2n0

1

net 2
1

W10
2

W11
2

W12
2

net 1
2

o1
2

o1
1

o2
1

···

···

··· ···

Fig. 2  Sample MLP method as an artificial neural network
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where J is the Jacobian matrix, e is the difference between 
network output and its target and I is a diagonal matrix that 
its entries are the main diagonal of JT ⋅ J.

The input information of this current model is the pres-
sure, the enthalpy and the molar fractions of the natural gas 
compositions (21 components in total), as the three key 
properties are required to analyze a gas throttling process. 
The outputs of the model include several physical properties 
of the mixture including the compressibility factor and the 
temperature.

Table 1 gives a detailed report of the number of neurons 
in each layer, the number of layers, the input data, the pro-
portion of database used for training, validating, testing, etc. 
In Table 1, R is the correlation coefficient for each input data 
given by [32]:

In Eq. (14), n is the total number of the training data, ti is the 
target value and ai is the network output value.

Figure 3 shows the algorithm for calculating outlet tem-
perature using the method presented in this section. The 
natural gas compositions, inlet pressure and temperature 
are supplied for GERG2008 EOS. The EOS calculates the 
inlet enthalpy and transfers it along with the compositions as 
input for the MLP method. Based on these inputs (h2 = h1, P2 
and Xi), the MLP method calculates the outlet temperature.

(13)W (k+1) = W (k) −
([
JT ⋅ J + �I

]−1)
⋅

(
JT ⋅ e

)
,

(14)

R =
n
�∑n

i=1
aiti

�
−
�∑n

i=1
ai
��∑n

i=1
ti
�

�
n
∑n

i=1
a2
i
−
�∑n

i=1
ai
�2�

n
∑n

i=1
t2
i
−
�∑n

i=1
ti
�2 .

GMDH method

The GMDH is applied in a great variety of areas for deep 
learning and knowledge discovery, forecasting and data 
mining, optimization and pattern recognition. Inductive 
GMDH algorithms give possibility to find automatically 
interrelations in data, to select an optimal structure of 
model or network and to increase the accuracy of existing 
algorithms. This original self-organizing approach is dif-
ferent from deductive methods used for modeling. It has an 
inductive nature. It finds the best solution by sorting-out 
of possible variants. Criterion characteristic by sorting of 
different solutions of GMDH networks aims to minimize 
the influence of the author on the results of modeling. 
Computer itself finds the structure of the optimal model 
or laws that act in a system. The GMDH is a set of several 
algorithms for different problems solution. It consists of 
parametric, cauterization, analogs complexing, binariza-
tion and probability algorithms. This inductive approach 
is based on sorting-out of gradually complicated models 
and selection of the optimal solution by minimum of exter-
nal criterion characteristic. Not only polynomials but also 
nonlinear, probabilistic functions or cauterizations are 
used as basic models [33].

Given the heaviness of the neural network due to the 
complexity of the subject under discussion, the temperature 
drop in the JT valve has been calculated using the GMDH 
method. In the MLP method, the enthalpy is the main input 
of neural network, but in the GMDH method, the inputs of 
this model are molecular weight, initial pressure, secondary 
pressure and initial temperature. To train the GMDH neural 
network, 4000 randomized data that are generated by the 
main ANN-LMA neural network have been used.

The main equation for calculating the outlet tempera-
ture of JT valve base on the GMDH method is presented 
in Eq. (15):

(15)T2 = A211 +MW × A212 +MW2 × A213 + F39 × A214.Table 1  Characteristics of the developed neural network

Parameter Value/comment

Number of input layer neurons 23
Number of hidden layers 2
Number of neurons in each hidden layer 22
Hidden layers transfer function Tansig
Output layers transfer function Purelin
Number of total data for this study in each ANN 

complex
29,871

Percentage of train data 70%
Percentage of validation data 15%
Percentage of test data 15%
R for output [T] 0.99999
R for output [Z] 0.99999
Best validation performance at Epoch 600

X i 1 1

GERG2008

MLP

T 2

P2, X i

JT Valve

h2

, P , T

= h1

Fig. 3  MLP structure to simulated JT valve
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The parameters in Eq.  (15) have been calculated with 
equations F1–F39. These equations and the coefficients of 
Eq. (15) are presented as Supplementary Data.

Figure 4 shows the algorithm for calculating the outlet 
temperature using the GMDH method. The natural gas com-
positions, inlet pressure and temperature and outlet pressure 
are supplied as input for the method. Based on these inputs, 
the method calculates the outlet temperature.

Validating methods (GMDH and MLP)

In this section, the proposed methods have been validated by 
comparing the calculated results with the experimental data. 
The temperature drop (i.e., outlet temperature) from JT valve 
has been calculated for two cases. The pure methane  (CH4) 
[34] and the combination of 89% methane and 11% ethane 
(0.89CH4 + 0.11C2H6) [35] have been selected for validation 
processes. The temperature drop has been calculated with 
the MLP method and the GMDH method for a few samples. 
According to Fig. 5, for the pure methane, the temperature 
drop that is calculated with the MLP is the more match-
ing with experimental data. For the (0.89CH4 + 0.11C2H6), 
both the MLP and the GMDH methods have calculated the 
temperature drop with the same precision compared with 
the experimental data. The validation results show that the 
proposed methods have calculated the temperature drop in 
JT valve with an acceptable accuracy.

Results and discussion

In this section, the temperature drop for various natural gases 
during an expansion process through a JT valve is presented 
and discussed. The four important natural gases from Iran’s 
fields (see Table 2) and the pure methane have been selected 
to calculate the temperature drop in the JT valve by utilizing 
the MLP and GMDH methods. The calculations have been 
carried out for six different initial temperatures including 
275, 300, 325, 350, 375 and 400 K. In addition, the inlet 

X i, P1, T 1

GMDH

T 2

P2

JT Valve

Fig. 4  GMDH structure to find the outlet temperature of a JT valve

Fig. 5  Validation of temperature 
drop from a JT valve for pure 
methane (CH4) and the combi-
nation of 89% methane and 11% 
ethane (0.89CH4 + 0.11C2H6)
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JT valve pressure has been considered between 1500 and 
10,000 kPa. Furthermore, the JT valve outlet pressure has 
been kept constant at 600 or 900 kPa.

Figures 6 and 7 show variations of temperature drop 
in terms of pressure for six constant initial temperatures 
including 275, 300, 325, 350, 375 and 400 K for Sarkhon 
natural gas. Results have been calculated for output pres-
sure of 600 kPa (Fig. 6) and 900 kPa (Fig. 7). For both 
pressure cases, the MLP method has been utilized for JT 
valve simulation. Table 3 shows the average Joule–Thom-
son coefficient for various inlet temperatures for Sarkhon 
natural gas and two outlet pressures (600 and 900 kPa). In 
addition, for each constant temperature line, a linear trend 
formula has been presented. There is a linear relationship 
between temperature drop and pressure drop, which is as 
follows:

According to Figs. 6, 7 and Table 3, the coefficient C1 
in Eq. (16) is very close to the average Joule–Thomson 
coefficient so that when the initial temperature increased, 
the value of C1 is closer to the average Joule–Thomson 
coefficient. Figures 6 and 7 show that, as expected, the 
temperature drop increases with increasing initial pressure 
at each inlet temperature and constant output pressure. 
It could be inferred from Figs. 6 and 7 that at low initial 
pressures, the temperature drop is almost the same. The 
temperature drop has been raised by increasing the initial 
temperature at each inlet and output pressure.

Figure 8 shows the temperature drop across a JT valve 
for pure methane and six inlet temperatures including 275, 
300, 325, 350, 375 and 400 K and two outlet temperatures 

(16)DT = C1 × DP + C2.

Table 2  Compositions of the 
natural gas from important 
Iran’s fields [36]

Pars (NG1) Sarjeh (NG2) Sarkhon (NG3) Khangiran (NG4)

Methane 0.87 0.868 0.8809 0.98548
Nitrogen 0.031 0.0205 0.0575 0.005
Carbon dioxide 0.0171 0.0011 0.0053 0
Ethane 0.054 0.0582 0.0342 0.00647
Propane 0.017 0.0303 0.0127 0.00069
Isobutane 0.003 0.0045 0.0029 0.00018
n-Butane 0.0045 0.0096 0.0037 0.00039
Isopentane 0.0013 0.0025 0.0012 0.00018
n-Pentane 0.0011 0.0027 0.0007 0.00021
n-Hexane 0.0007 0.0026 0.0009 0.0014
n-Heptane 0.0003 0 0 0
MW 18.65 19.05 18.16 16.35
T
cr
[K] =

∑
x
i
T
ci

202.48 206.9916 195.9994 191.83
P
cr
[kPa] =

∑
x
i
P
ci

4606.9 4560.2 4539.9 4591.4

Fig. 6  Temperature drop across 
a JT valve for Sarkhon NG 
for various inlet temperatures 
(output pressure is kept constant 
at 600 kPa)
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600 kPa and 900 kPa. According to Fig. 8, the secondary 
pressure that natural gas seeks to reach does not have much 
effect on its temperature drop. The results show that, at 
low initial pressures, the temperature drop is the same. In 

addition, the lower secondary pressure of natural gas caused 
the higher temperature drop in the JT valve.

Figures 9 and 10 show the temperature drop in terms of 
pressure slump for two fixed output pressures of 600 kPa 

Fig. 7  Temperature drop across 
a JT valve for Sarkhon NG 
for various inlet temperatures 
(output pressure is kept constant 
at 900 kPa)
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Table 3  Average Joule–
Thomson coefficient for various 
inlet temperatures for Sarkhon 
gas compositions and two outlet 
pressures (600 and 900 kPa)

Initial temperature 275 300 325 350 375 400

Output pressure = 600 kPa
 Average Joule–Thomson coefficient 0.005248 0.004376 0.003665 0.003087 0.002614 0.002224

Output pressure = 900 kPa
 Average Joule–Thomson coefficient 0.004905 0.004095 0.003436 0.002898 0.002456 0.00209

Fig. 8  Temperature drop across 
a JT valve for pure methane, 
various inlet temperatures and 
two outlet pressures
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(Fig. 9) and 900 kPa (Fig. 10) at six inlet temperatures for 
various natural gases. It could be concluded from Figs. 9 
and 10 that, unlike inlet temperature, the JT valve output 
pressure has small effect on the temperature drop. Accord-
ing to Figs. 9 and 10, the output pressure has a slight effect 
on the temperature drop. It could be understood from 
Figs. 9 and 10 that various natural gases have the same 
temperature drop at lower initial pressures. In addition, 
it could be realized that the temperature drop is directly 
related to the molecular weight which means that for the 

higher molecular weight of the natural gas, the tempera-
ture drop for the same conditions is greater.

Figure 11 shows the amount of temperature drop in JT 
valve for Sarkhon natural gas. In this case, the output pres-
sure is 900 kPa. The pressure drop has been calculated by 
utilizing the GMDH method. The GMDH method gener-
ates the error R2 = 0.997 for the temperature drop calcula-
tion. In the GMDH method, the temperature drop has been 
calculated with an acceptable accuracy. Using the GMDH 

Fig. 9  Amount of temperature 
drop in a JT valve for various 
natural gases (inlet tempera-
ture = 275 K, outlet pres-
sure = 600 kPa)
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Fig. 10  Amount of temperature 
drop in a JT valve for various 
natural gases (inlet tempera-
ture = 300 K, outlet pres-
sure = 900 kPa)
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method, the temperature drop could be calculated much 
easier and faster than the MLP method.

The last but the most important findings are presented 
in Fig. 12. By analyzing the effects of each parameter on 
the temperature drop, the pie chart (Fig. 12) has been pro-
duced. Figure 12 shows the contribution of each important 
parameter on temperature drop across of a JT valve by 

utilizing machine learning (both MLP and GMDH meth-
ods). According to the pie chart, the contribution of the 
inlet temperature is 76%, the inlet pressure is 22%, the 
outlet pressure is 1% and the molecular weight is 1%. As 
shown in Fig. 12, the temperature drop across a JT valve 
has been mostly influenced by the inlet temperature and 
secondly inlet pressure. Consequently, the throttling pro-
cess designers should mostly focus on inlet temperature 
as the most important parameter. The effects of natural 
gas compositions and outlet pressure on temperature drop 
across a JT valve could be neglected.

Conclusions

As direct prediction of temperature drop during the expan-
sion process across a JT valve is usually not possible, in 
this work, artificial neural network method, specifically 
multilayer perceptron, is utilized to predict the temperature 
drop. Firstly, the GERG2008 EOS, as the most recent and 
authentic EOS for calculating natural gas thermodynamic 
properties, has been employed to produce a large data-
base of natural gas thermodynamic properties for various 
mixtures. Then, this database along with available experi-
mental data (totally 30,000 datasets) is utilized to train, 
validate and test the developed MLP network. In addition, 

Fig. 11  Temperature drop 
across a JT valve for Sarkhon 
NG for various inlet tempera-
tures by utilizing the GMDH 
method (output pressure is 
900 kPa)
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according to complexity of the multilayer perceptron 
model, a group method of data handling approach is used 
to simplify the major trained network. To train the GMDH 
neural network, 4000 randomized data that are generated 
by the main ANN-LMA neural network are utilized. These 
methods have been developed in a way to calculate the 
temperature drop across a JT valve directly. The results 
show that the direct temperature drop calculated with the 
two developed machine learning methods (MLP method 
and GMDH method) generated the error R2 = 0.998 and 
R2 = 0.997, respectively.

The effects of the four parameters (inlet temperature, 
inlet pressure, outlet pressure and natural gas composi-
tions) on temperature drop across a JT valve have been 
studied. The results show that the inlet temperature is the 
most important parameter on temperature drop with a con-
tribution of 76%. The inlet pressure with the contribution 
of 22% is the second most important parameter. The out-
let pressure and natural gas compositions have negligible 
effects on temperature drop. The results also show that the 
temperature drop could be treated as a linear function of 
pressure drop where the slope is very close to the average 
JT coefficient.
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