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transmission marks the birth of Information Theory. Classically, Shannon entropy

was formalized over discrete probability distributions. This discrete idea extended

to continuous case. So, is Shannon entropy and differential entropy are connected

to each other or not is a question that will discuss here. Various entropies, Phi-

divergence, AEP and maximum entropy will discuss in two cases, and answer to the

question is continuous cases not the limit of discrete cases?
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1 Introduction

Entropy was introduced in 1863 within the field of thermodynamics to give a

mathematical expression to the second law of thermodynamics. The law was first

formulated around 15 years earlier, in 1849, by Clausius. The information theory was

developed in the context of the theory of communication to answer two fundamental
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questions : (i) What is the ultimate achievable data compression? (ii) What is

the ultimate achievable rate of transmission of information? For answering these

questions, Shannon [1948] laid the foundation of information theory through his

paper ”A mathematical theory of communication” where the continue and extension

of the ideas of Nyquist in 1924 and Hartley [1928] which described a logarithmic

measure for information content for equally likely messages to answer to the question

”What happens when messages are not equally likely?” Many papers reviewed the

art of Shannon like Chakraborty [2015] that showed generating discrete analogues of

continuous probability distributions-A survey of methods and constructions. In this

paper, answer to the question ” Is continuous entropy the limit of discrete entropy?”

and What about information measures ? are important parts of this note. We will

study AEP and maximum entropy in continuous and discrete case.

2 Various entropies in continuous cases are not

the limit of discrete cases

Shannon defined the entropy as H(X) = −
∑∞

i=1 pilogpi and its continuous version

is h(X) = −
∫
S
f(x)logf(x)dx which is called differential entropy. It is well-known

that this integral exists iff the density function of the random variables is Riemann-

integrable. Consider the continuous random variable X with a probability density

function f(x). Quantizing by dividing its range into bins of length ∆. Then, in

accordance to the Mean Value Theorem, within each bin of size [i∆; (i+ 1)∆], there

exists a value X∆ = xi that satisfies
∫ (i+1)∆

i∆
f(x)dx = f(xi)∆ where pi = f(xi)∆.

Th Shannon entropy is

H(X∆) = −
∞∑
−∞

pilogpi = −
∑

∆f(xi)logf(xi)− log∆

so,

H(X∆) + log∆
∆−→0−→ h(X),
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and differential entropy is not the limit of discrete case.

Hα(X) = 1
1−αΣip

α
i is Renyi entropy in discrete case which the continuous ver-

sion is hα(X) = 1
1−α

∫
S
f(x)αdx. If we apply the same as Shannon entropy, then

lim∆→0[Hα(X∆) + log∆] = hα(X). For other extension of the Shannon entropy

continuous cases are not the limit of discrete cases. If (X, Y ) ∼ p(x, y) then

I(X, Y ) = H(X) − H(X|Y ) is mutual information, and I(X∆, Y ∆) = I(X, Y ).

For more examples and details see Sanei Tabbas et al. [2016]. Now a comperative

tour on discrete and continuous version of entropy can be as below:

• As in the discrete case, the differential entropy depends only on the probability

function of the random variable. Note that the differential entropy is defined only

if the aforementioned integral and density function exist.

• Differential entropy retains many of the properties of its discrete counterpart, but

with some important differences. Chief among these is the fact that differen-

tial entropy may take on any value and discrete entropy is always non-negative.

Differential entropy represents not an absolute measure of uncertainty.

• The formula for the differential entropy certainly represents the natural extension

to the continuous case, but this transition from discrete to continuous random

variables must be handled carefully as we shall see.

• Differential entropy can be a function of variance. Sometimes the variance does

not exist for example, Cauchy distribution and special case of Pareto distribution.

So the differential entropy is a suitable measure instead of variance.

• The differential entropy is not always well defined. For example, the differential

entropy of f(x) = 1
2x[(lnx)]2

, 0 < x < e−1, e < x < ∞ is infinite. If E[ln(1 + |X|)]

is infinite, in particular if X has finite first and second moments, then hX is well

defined.

• The entropy power N(X) = e
2
nh(X)

2πe
, when h(X) = −∞ then N(X) = 0 and

N(aX) = a2N(X). It can be one of the advantage of the power entropy. Also,
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N(X) ≤ σ2 with equality iff X ∼ N(µ, σ2), N(Σn
i=1aiXi) ≥ Σn

i=1a
2
iN(Xi) and

h(Σn
i=1aiXi) ≥ Σn

i=1a
2
ih(Xi),Σ

n
i=1a

2
i = 1.

• If Y = g(X) is differential function of X, then h(Y ) ≤ h(X) + E[log|dg(x)
dx
|] with

equality iff g has inverse. For g(X) = aX + b then h(Y ) = h(X) + ln|a| and

h(AX) = h(X) + logdet|A|. In discrete case H(Y ) = H(X).

3 Phi-divergence in continuous case is the limit

of discrete case?

Since 1948 up to now, many important variant measures of Shannon entropy and

its extension to divergence measure have been introduced. For example, Renyi

introduced an entropy of order α in Renyi [1961] and in Harvda and Charvat [1967],

proposed the entropy of order s and studied some of its mathematical properties.

However concavity is not preserved though monotonicity and unification of entropy

measures by means of (h, φ) entropy, for different values of (h, φ) functions:

Hh
φ(f(x)) = h(

n∑
i=1

φ(f(xi))), (3.1)

where either φ : [0,∞) → R is convex(concave) and h : R → R is decreasing

(increasing). In here, the same as other entropies continuous case is the limit of

discrete case where it is general case. Some examples of the (h, φ) entropy measures

are presented in Table 1.

The Shannon entropy is concave and extensive, the Renyi entropy H(α) is extensive

but nonconcave (for all α > 0; concave only forα ∈ [0, 1]).Tsallis form is nonexte-

sive but it is concave (for α > 0). Sharma and Mittal entropy is nonextesive and

nonconcave. The later measure is determined by two parameters and contains the

other three measures as particular cases.

The principle of maximum entropy states that, subject to precisely stated prior data

(such as moments,...) the probability distribution which best represents the current
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Table 1: Some of entropy measures

entropy measure h φ

Shannon x −xlogx
Renyi 1

1−α logx xα

Harvda and Charvat x 1
1−s(x

s − x)

(fitted for binary variables)
Tsallis x 1

1−s(x
s − x)

Sharma and Mittal e(s−1)x−1

s−1 −xlogx
Arimoto xt−1

2t−1−1
x

1
t

Taneja −2r−1x xrlogx

Ferreri (1 + 1
λ)log(1 + λ)− x

λ (1 + λx)log(1 + λx)
Varmma 1

m−r logx xr−m+1

state of knowledge is the one with the largest entropy. The assertion of the MEP is

that the most unbiased probability distribution is the maximum entropy distribu-

tion satisfying the constraints. The form of distribution with maximum entropy is

usually expressed as exponential function of constraints. Let p, q be two probability

density functions, our aim is calculating the value of the relations between them.

Definition 3.1. If φ(.) is convex function, for two pdf p, q the Csiszar divergence

measure Csiszár [1963] is define:

Dφ(P ||Q) =
∑
χ

q(x)φ(
p(x)

q(x)
), (3.2)

for different forms of φ , Csiszar,s measure results the different divergence measures.

Some of them are summarized in Table 2.

Dφ(P ||Q) in continuous case is the limit of discrete case, which is applicable

for others special case via the arguments that has done for differential entropy.

Tsallis distributions can be derived from the Shannon maximum entropy setting, by

incorporating a constraint on the divergence between the distribution and another.

He also expressed that the problem of minimization of the Kullback-Leibler under

parameterizing the Shannon entropy, and maximization of the Shannon entropy

under parameterizing the Kullback-Leibler lead to the same solutions. Here we

are using the generalized measure entropy (H(φ)) and the generalized φ divergence
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Table 2: Some φ Divergences

Measure divergence φ(x)

Kullback-Leibler divergence −xlogx
Triangular divergence 2

(x+1)2

Batacharya divergence
√
x

Jeffreys divergence (x− 1)ln(x)
Harmoonic divergence 2x

x+1

Tsallis divergence xα−x
α−1

Hellinger divergence (1−
√
x)2

2
χ2-divergence (x− 1)2

α-divergence


4

1−α2(1−x
1+α

2 )
α 6= +1,−1

xlogx α = 1
−logx α = −1.

Dφ(p||q) instead of the Shannon entropy and Kullback-Leibler measures respectively.

The problem of maximization of the H(φ) under parameterizing the Dφ(p||q) and

the problem of minimization of the Dφ(p||q) under parameterizing the H(φ) have

been checked. We also show that these two problems lead to the same solutions

in general and through substituting any of the measures from the above tables, as

particular cases, we show that the above problem is satisfied.

4 AEP and centeral limit theorem related to en-

tropy in continuous and discrete cases

In information theory, the asymptotic equipartition property (AEP) is a general

property of the output samples of a stochastic source. It is fundamental to the

concept of typical set used in theories of compression (see Cover and Thomas

2006). Analogue to weak law of large numbers 1
n
log 1

p(X1,X2,....,Xn)

P−→ H(X) where

X1, X2, ..., Xn are iid random variables, so p(X1, X2, ...., Xn) ≈ exp{−nH(X)} with

high probability. The typical set A
(n)
ε is the set of sequences (x1, x2, ..., xn) ∈ χn

where 2−n(H(X)+ε) ≤ p(X1, X2, ...., Xn) ≤ 2−n(H(X)−ε).

• If (x1, x2, ..., xn) ∈ A(n)
ε , then H(X)− ε ≤ − 1

n
logp(X1, X2, ...., Xn) ≤ H(X) + ε.

• P (A
(n)
ε ) ≥ 1− ε for n sufficiently large.
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• |Anε | ≤ 2n(H(X)+ε) and |A(n)
ε | ≥ (1 − ε)2n(H(X)−ε) for n sufficiently large where |A|

denotes the number of elements in the set A.

The typical sequences have short description of length≈ nH(.).

The set A
(n)
ε of joint typical sequences of {(xn, yn)} w.r.t. the distribution p(x, y) is

given by

A(n)
ε = {(xn, yn) ∈ χn×κn/|− 1

n
logp(xn)−H(X)| < ε, |− 1

n
logp(yn)−H(Y )| < ε, |− 1

n
logp(xn, yn)−H(X,Y )| < ε},

where p(xn, yn) =
∏n

i=1 p(xi, yi). Hence

(1) P{(xn, yn) ∈ A(n)
ε } −→ 1 as n −→∞.

(2) |A(n)
ε | ≥ (1− ε)2n(H(X,Y )−ε) for n sufficiently large.

(3) If (X̃n, Ỹ n) ∼ p(xn)p(yn)) then

P{(X̃n, Ỹ n) ∈ A(n)
ε } ≤ 2−n(I(X,Y )−3ε),

and for n sufficiently large

P{(X̃n, Ỹ n) ∈ A(n)
ε } ≥ (1− ε)2−n(I(X,Y )+3ε),

The above suggests there are about 2nI(X,Y ) distinguishable signalsXn where I(X, Y )

is the mutual information. It can be obtained via a continuous view by similar ar-

guments but a little different to discrete cases as below:

Let X1, X2, ..., Xn be a sequences of iid random variables with density f(x) , then

1
n
log 1

f(X1,X2,....,Xn)

P−→ h(X). For ε > 0 and any n the typical set in continuous case

is defined as A
(n)
ε = {(x1, x2, ..., xn) ∈ Sn, | 1

n
log 1

f(X1,X2,....,Xn)
− h(X)| ≤ ε} where

f(x1, x2, ..., xn) = Πn
i=1f(xi) and the volume is defined as vol(A) =

∫
A
dx1dx2....dxn.

The following properties are valid for continuous cases:

(1) P (A
(n)
ε ) ≥ 1− ε for n sufficiently large.

(2) vol(A
(n)
ε ) ≤ 2n(h(X)+ε) and vol(A

(n)
ε ) ≥ (1− ε)2n(h(X)−ε) for n sufficiently large.
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One of the important application of AEP is in channel capacity for example ”source

channel coding theorem (Cover and Thomas 2006 page 220).

5 Maximum Entropy

One of the most important problems in statistical inference is the estimation of un-

known distribution. The maximum entropy and minimum divergence approaches for

estimating the probability density functions has been widely used in many research

areas. The problem of maximizing entropy (MEPD) subject to some constraints such

as moments has been studied by many authors (in continuous or discrete cases). For

example, see Jaynes Jaynes [1957] and Kagan et al. [1973].

• The inverse Gaussian distribution is MEPD, when the arithmetic, geometric and

harmonic means are prescribed.

• The Pearson type-V distribution is MEPD, when the geometric and harmonic

means are prescribed.

• If E(X) and E(lnX) are the constraints, one can obtain two parameter Weibull

distribution as a MEPD.

The maximizers of another entropy, the Tsallis [1988] entropy have a high inter-

est in many applied fields, namely economy, biology, and physics. The maximum

Tsallis distributions have encountered a large success because of their remarkable

agreement with experimental data. Some works have been done in the subject of

Tsallis entropy maximization with inequality measures constraints. Yaghoobi et

al. [2014], Khosravi et al. [2015], Khosravi et al. [2017], Eliazar and Sokolov

[2010a], Eliazar and Sokolov [2010b] and Nakhaei et al. [2016] obtained families of

Lorenz curves by Shannon and Tsallis entropy maximization under mean and Gini

index and generalized Gini index constraints. One of the most well-known integral

functionals that has been studied in variational calculus is the Lagrange functional.

L(y) =

∫ b

a

G(y(x), y′(x), x)dx, (5.1)
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where the given function G is continuous and has continuous first partial derivatives

in each of its arguments. The basic variational problem can be stated as follows:

Let L(y) be a functional of the form (5.1) defined on the set of functions y(x)

which have continuous first derivatives in [a, b] and satisfy the boundary conditions

y(a) = A, y(b) = B. Then, a necessary condition for L(y) to have an extremum for

a given function y(x), is that y(x) satisfy Euler’s equation:

∂G

∂y
− d

dx

∂G

∂y′
= 0. (5.2)

The generalized entropy
∫∞
−∞ φ[f(x)]dx is considered and we intend to find the max-

imum generalized entropy under the general constraints. Since −Hφ(f) is a convex

functional, the problem is

min
f

∫ ∞
−∞
−φ[f(x)]dx

s.t. ∫ ∞
−∞

Di[F (x), f(x), x]dx = θi , i = 1, 2, ...,m. (5.3)

Using the fact that target function and constraints are convex, necessary and suf-

ficient condition to distribution function F with density function f has maximum

φ-entropy under the constraints (5.3) is to satisfy the equation

∂

∂F

 m∑
i=1

λiDi − φ(f)

− d

dx

∂

∂f

 m∑
i=1

λiDi − φ(f)

 = 0

⇔
m∑
i=1

λi

(
∂Di

∂F
− d

dx

∂Di

∂f

)
+ f ′φ′′(f) = 0, (5.4)

where λ1, λ2, ..., λm are Lagrange multipliers and depend on θ1, θ2, ..., θm. From

solving equation (5.4) we obtain the maximum φ-entropy under the constraints (5.3).

Equation (5.4) give us a generel rule to obtain maximum entropy distributions under

different constraints. In the following we refer to some special cases of this problem.

• In equation (5.4), suppose φ(x) = −xlog(x) and D1(F, f, x) = f(x). In this
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case, the maximum Shannon entropy distributions can be obtained under different

constraints.

• Moment constraint: If Di(F, f, x) = gi(x)f(x), i = 2, ...,m, the results of

Kagan et al. [1973] are obtained as

f(x) = Aexp[−λ1g1(x)− λ2g2(x)− ...− λmgm(x)],

where A, λ1, λ2, ..., λm are to be obtained by using the constraints.

• Mean and Gini index constraints: If D2(F, f, x) = xf(x) and D3(F, f, x) =

[F (x)− 1]2, then the results of Eliazar and Sokolov [2010a] are obtained as

F̄ (x) =
1

σexp(ρx) + (1− σ)
, x ≥ 0,

where F̄ (x) is survival function and σ and ρ depend on the constraints.

• Mean and Pietra index constraints: If D2(F, f, x) = xf(x) and D3(F, f, x) =

max(0, x− θ2)f(x), then the results of Eliazar and Sokolov [2010b] are obtained:

f(x) =


c1exp(αx) if 0 < x < µ,

c2exp(−βx) if µ < x <∞,

where α and β are real exponents depending on the constraints.

• Mean and generalized Gini index constraints: If D2(F, f, x) = xf(x) and

D3(F, f, x) = [F (x)− 1]ν , then the maximum entropy distribution is

F̄ (x) =

(
1

c1exp(c2x) + (1− c1)

) 1
ν−1

, x ≥ 0,

where c1 and c2 depend on the constraints. Khosravi et al. [2015] showed this

distribution model the income data considered better than alternative models.
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• In equation (5.4), suppose φ(x) = 1−xα
α−1

, α > 0, α 6= 1 and D1(F, f, x) = f(x). If

D2(F, f, x) = xf(x) and D3(F, f, x) = [F (x)− 1]ν , Khosravi et al. [2017] showed

the generalized Pareto distribution have maximum Tsallis entropy.

• We can have similar results for discrete cases where the coefficients need more care

via difference equation and calculation with software like Matlab but basically

discrete case leads to complicated forms.

Divergence measures are used to evaluate distance. Kullback and Leibler [1951]

introduced the first divergence measure as a measure of information. The Kullback-

Leibler divergence, also known as the relative entropy, between two probability den-

sity functions f and g is defined as

DKL(f, g) =

∫ ∞
−∞

f(x) log

(
f(x)

g(x)

)
dx. (5.5)

By extension of Kullback-Leibler divergence, different divergence measures have

been introduced (Csiszár [1963] ) as :

Dφ(f, g) =

∫ ∞
−∞

g(x)φ

(
f(x)

g(x)

)
dx,

where φ : [0,∞) → R is a convex function such that φ(1) = 0. The minimum

divergence principle is another method of estimating distributions when we have

constraints. Using the similar arguments in MEPD we can find the solution for this

case also:

∂

∂F

 m∑
i=1

λiDi + gφ

(
f

g

)− d

dx

∂

∂f

 m∑
i=1

λiDi + gφ

(
f

g

) = 0

⇔
m∑
i=1

λi

(
∂Di

∂F
− d

dx

∂Di

∂f

)
− d

dx
φ′
(
f

g

)
= 0. (5.6)

Generally, the equation (5.6) for different functions g(x) and φ leads to a complex

equation that is difficult to solve. But in a special case, If we intend to minimize

Kullback-Leibler distance under the constraints on mean and generalized Gini index,
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that is assuming φ(x) = xlog(x), D1(F, f, x) = f(x), D2(F, f, x) = xf(x) and

D3(F, f, x) = [F (x)− 1]ν , from equation (5.6) we have

2λ3F̄ (x) +
f ′(x)

f(x)
− g′(x)

g(x)
+ λ2 = 0. (5.7)

assuming that g′(x)
g(x)

= k, where k is a constant (for example when prior distribution

is exponential), the solution of equation (5.7) is

F̄ (x) =

(
1

c1exp(c2x) + (1− c1)

) 1
ν−1

, x ≥ 0,

where c1 and c2 depend on θ1 and θ2.

MEPD in discrete case, is similar to continuous case but sometimes leads to finding

the results via numerical study.

Let X be a random variable that its values concentrated on Z with pmf

f(k) =
1

1 + 2s(p)
p|k|

m

, k ∈ Z, s(p) =
∞∑
k=1

p|k|
m

, m = 1, 2, .... (5.8)

is a symmetric discrete distribution where m = 1 (m = 2) implies discrete Laplace

(discrete normal) distribution.

H(X) = ln(1 + 2s(p))− lnp
2ps′(p)

1 + 2s(p)

is the entropy of (5.8). The maximum entropy probability distribution (MEPD)

under the constraints

pk = p−k, k ∈ Z,
∞∑
k=1

pk = 1,
∞∑
k=1

|k|mpk = 1

is (5.8) where pk = f(k).

Among various distributions described in (5.8) m = 1 (m = 2) discrete Laplace

(discrete normal) distributions which are MEPD can be also classified as generated
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to preserve the maximum entropy property of their continuous counterpart.

Under the constraints

EX = µ,EX(k) = αk, x(k) = x(x− 1)...(x− k + 1),

where k is even and X has integer support. The bilateral polynomial power series

has MEPD where k = 2, 4 implies discrete normal (Kemp 1997) and discrete quartic

(Mohtashami Borzadaran [2000]) distributions respectively.

Continuous version of these results can be obtained similarly.

6 Conclusion

The most properties of differential entropy and Shannon entropy achieved via similar

arguments but we can see some diffences in their properties.
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abstract: The length-biased sampling occurs when an appropriate sampling scheme

is absent. Then units are chosen at a rate proportional to their length. As a result,

the greater values have more chances to be selected. When observations are not

coming directly from the distribution of interest, but from a length biased version,

Cox (1969) proposed an estimator for distribution function which plays the same

role as the empirical distribution for direct data. In this paper, by using Bayesian

nonparametric approach the estimation of distribution function is derived under

length bias and its consistency is also discussed. A simulation study is presented as

well as a real data example to illustrate obtained results.
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