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Abstract In this paper, numerical solutions of multiple cracks problems in an infinite plate

are studied. Hypersingular integral equations (hieq) for the cracks are formulated
using the complex potential method. For all kernels such as regular or hypersingular

kernels, we are using the appropriate quadrature formulas to solve and evaluate

the unknown functions numerically . Furthermore, by using this equation the stress
intensity factor (SIF) was calculated for crack tips. For two serial cracks (horizontal)

and two dissimilar cracks (horizontal and inclined), our numerical results agree with

the previous works.
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1. Introduction

Most of the crack problems are modeled into integral equation of the form∫
γ

k(τ, τ0)f(τ)dτ = p(τ0), (τ0 ∈ γ).

In this equation, k(τ, τ0) is the kernel of the integral, γ is the crack with linear or curve
configuration, the function f(τ) is unknown, and p(τ0) is known. The construction of
the kernel k(τ, τ0) is determined by the choice of f(τ) and p(τ0); for example, if p(τ0)
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is the resultant force and f(τ) is the dislocation, then the kernel is weakly singular
(see [1, 8, 11, 24]).
The other case is, if p(τ0) is the traction and f(τ) is the dislocation, then k(τ, τ0) is
the Cauchy singular (see [12, 21, 22]), in the third case, if p(τ0) is the resultant force
and f(τ) is the crack opening displacement (COD), so the kernel k(τ, τ0) will be the
Cauchy singular (see [5, 20]), and the last case, if p(τ0) are the traction and f(τ) is the
crack opening displacement, then the k(τ, τ0) is a kernel of hypersingular integral (see
[14, 15, 18]). The hypersingular is evaluated by collocating the base points within
the interval (−a, a). The particular advantage of this approach is that COD can
be obtained from the solution of the equation directly. Hadamard was the pioneer
researcher that formulated the hypersingular integral equation (hieq) for solving the
crack problem (see [13]). The hypothesis in Hadamard formulation is based on the
superposition technique and the quadratic polynomial. By a same technique, Chen
(see [2, 3]) formulated multiple cracks problems by CODs function and traction on the
cracks. It is well known that the crack geometry has a direct effect on stress intensity
factors (SIFs). Chen (see [4, 6]) suggested a system of hieq for solving curved crack
problem. Nik Long and Eshkuvatov (see [19]) formulated the multiple curved cracks
problem in terms of hieq. In this work, the systems of hieq for solving multiple cracks
problems with different position of cracks are formulated and solved numerically. For
numerical purpose, several examples of multiple cracks problems are considered.

2. Analysis of solving the multiple cracks problem

In this section, we first explain the fundamental of complex variable function
method. For this purpose, we introduce

Φ = ϕ
′

and Ψ = ψ
′
,

then, the stress (δx, δy, δxy), the resultant force (X,Y ), and the displacements (u, v)
can be shown by the two complex potentials ϕ(z) and ψ(z) as follows [16]:

δx + δy = 4ReΦ(z), (2.1)

δy − δx + 2iδxy = 2[z̄Φ(z) + Ψ(z)], (2.2)

f = −Y + iX = ϕ(z) + zΦ(z) + ψ(z) + c, (2.3)

2η(u+ iv) = κϕ(z)− zΦ(z)− ψ(z), (2.4)

where η is the shear modulus for plane elasticity, κ =
3− υ
1 + υ

and κ = 3 − 4v are

used for plane strain and plane stresse, respectively, υ is placed as Poisson’s ratio, z
is a complex variable, and a bar that is placed over the function represents for the
conjugated value. The derivative in a specified and defined direction for Eq. (2.3) is
presented by

J(z, z̄,
dz̄

dz
) =

d

dz
{−Y + iX} = Φ(z) + Φ(z) +

dz̄

dz
(z ´Φ(z) + Ψ(z)) = N + iT, (2.5)

where J represents the normal tractions and tangential tractions through the part
z, z + dz. It is note that the value of J not only depends on the location of point z,
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but also on the orientation of the segment
dz̄

dz
.

The complex potential for plane elasticity will be evaluated by substituting two point
dislocations with known intensity H(−H) at the point z = s and (z = s + ds),
respectively, we have

ϕ(z) = −H ds

z − s
, ψ(z) = −H ds

s− z
−H ds̄

s− z
+H

s̄ds

(s− z)2
. (2.6)

Substituting H and −H by −ξ(s)
2π

and −ξ(s)
2π

, respectively, in Eq. (2.6) and applying

the integration on the right side of ϕ(z) and ψ(z), give

ϕ(z) =
1

2π

∫
γ

ξ(s)ds

s− z
,

ψ(z) =
1

2π

∫
γ

ξ(s)ds̄

s− z
+

1

2π

∫
γ

ξ(s)ds

s− z
− 1

2π

∫
γ

s̄ξ(s)ds

(s− z)2
, (2.7)

where γ state the crack construction. Making substitution Eq. (2.7) into Eq. (2.4)
and letting z tends s+0 (s−0 ) the upper ( lower) side of crack faces, respectively, then
using the generalized Plemelj formula and revising s0 as s, results (see [4])

2η(u(s) + iv(s))j = i(k + 1)ξ(s) (s ∈ γ) (2.8)

when

(u(s) + iv(s))j = (u(s) + iv(s))+ − (u(s) + iv(s))−

represents the crack opening displacement (COD) of the crack, which has the following
attributes

ξ(s) = O[(s− sA)1/2], ξ(s) = O[(s− sB)1/2] (2.9)

at the neighborhood of the left crack tip A and the right crack tip B (see Fig.1(a,b)).
First, we assume hieq in the case of Hamadard finite part integral as

1

π
=

∫
γ

ξ(s)ds

(s− s0)2
.

Thus, in [7] the hieq for a single inclined crack in infinite plate is formulated by putting
two points dislocation at z = s and z = s+ ds as

1

π
=

∫
γ

ξ(s)ds

(s− s0)2
+

1

π

∫
γ

M(s, s0)ξ(s)ds+
1

π

∫
γ

L(s, s0)ξ(s)ds

= N(s0) + iT (s0), (2.10)

in which M(s, s0) and L(s, s0) are stated as

M(s, s0) =
1

2

[
exp (2iα)

−1

(Q−Q0)
2 + exp (−2iα0)

1(
Q−Q0

)2
]
,
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L(s, s0) =
1

2

[
(exp (−2iα) + exp (−2iα0))

1(
Q−Q0

)2
]

−1

2

[
exp (−2i (α+ α0))

2 (Q−Q0)(
Q−Q0

)3
]
,

Q = zk0 + t exp (iα) , Q0 = zk0 + t0exp (iα0) .

in which ξ(s) is dislocation distribution through the inclined crack. The first in-
tegral, in Eq. (2.10), with equal sign on, states the hypersingular integral and it is
explained in the sense of the Hamadard finite part integral.
Now we discuss the traction influences between two cracks (similar or dissimilar)(see
Fig.1(c)). In crack-1 (crack AB)(see Fig.1(c)) if the dislocation distribution is a ξ1(s1),

Figure 1. (a) A straight crack (α = 0), (b) An inclined crack with
angles α, (c) Two dissimilar cracks with angles α1 and α2 = 0, re-
spectively.

points z = s10 and dz = ds10 are points dislocation and there is the traction influences
between the two cracks (similar or dissimilar), then the hieq of crack-1 is

1

π
=

∫
γ1

ξ1(s1)ds1
(s1 − s10)2

+
1

π

∫
γ1

M(s1, s10)ξ1(s1)ds1 +
1

π

∫
γ1

L(s1, s10)ξ1(s1)ds1

= N11(s10) + iT11(s10), (2.11)

where

M(s1, s10) =
1

2

[
exp (2iα1)

−1

(Q1 −Q10)
2 + exp (−2iα10)

1(
Q1 −Q10

)2
]
,
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L(s1, s10) =
1

2

[
(exp (−2iα1) + exp (−2iα10))

1(
Q1 −Q10

)2
]

−1

2

[
exp (−2i (α1 + α10))

2 (Q1 −Q10)(
Q1 −Q10

)3
]
.

Q1 = z10 + t1exp (iα1) , Q10 = z10 + t10exp (iα10) .

where α1 and α10 are inclined angles at points s1 and s10, respectively. The affection
from the dislocation distribution on crack-2 can be expressed as

1

π

∫
γ2

ξ2(s2)ds2
(s2 − s10)2

+
1

π

∫
γ2

M(s2, s10)ξ2(s2)ds2 +
1

π

∫
γ2

L(s2, s10)ξ2(s2)ds2

= N21(s10) + iT21(s10), (2.12)

where

M(s2, s10) =
1

2

[
exp (2iα2)

−1

(Q2 −Q10)
2 + exp (−2iα10)

1(
Q2 −Q10

)2
]
,

L(s2, s10) =
1

2

[
(exp (−2iα2) + exp (−2iα10))

1(
Q2 −Q10

)2
]

−1

2

[
exp (−2i (α2 + α10))

2 (Q2 −Q10)(
Q2 −Q10

)3
]
,

Q2 = z20 + t2exp (iα2) .

Due to the fact that s2− s10 6= 0, each integral in Eq. (2.12) is regular and ξ1(s1) and
ξ2(s2) satisfy Eq. (2.9). Using the superpositions of ξ1(s1) on crack-1 (Eq. (2.11)),
and ξ2(s2) on crack-2 (Eq. (2.12)), the hieq of crack-1 is expressible as

1

π
=

∫
γ1

ξ1(s1)dt1
(s1 − s10)2

+
1

π

∫
γ1

M(s1, s10)ξ1(s1)ds1 +
1

π

∫
γ1

L(s1, s10)ξ1(s1)ds1

+
1

π

∫
γ2

ξ2(s2)ds2
(s2 − s10)2

+
1

π

∫
γ2

M(s2, s10)ξ2(s2)ds2 +
1

π

∫
γ2

L(s2, s10)ξ2(s2)ds2

= N1(s10) + iT1(s10), (2.13)

where

N1(s10) + iT1(s10) = N11(s10) + iT11(s10) +N12(s10) + iT12(s10), s10 ∈ γ1,

is the traction utilized at point s10 of crack-1, that can be obtained from the boundary
condition. In Eq. (2.13), the first, second, and third integrals indicate the effect on
crack-1 applied by the dislocation’s distribution in the crack-1 itself, while the fourth,
fifth, and sixth integrals demonstrate the effect of dislocation distribution from crack-
2 on crack-1. The first integral in Eq. (2.13) is hypersingular, while the rests are
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regular. Similarly, for crack-2 we have

1

π
=

∫
γ2

ξ2(s2)ds2
(s2 − s20)2

+
1

π

∫
γ2

M(s2, s20)ξ2(s2)ds2 +
1

π

∫
γ2

L(s2, s20)ξ2(s2)ds2

+
1

π

∫
γ1

ξ1(s1)ds1
(s1 − s20)2

+
1

π

∫
γ1

M(s1, s20)ξ1(s1)ds1 +
1

π

∫
γ1

L(s1, s20)ξ1(s1)ds1

= N2(s20) + iT2(s20), (2.14)

where

N2(s20) + iT2(s20) = N21(s20) + iT21(s20) +N22(s20) + iT22(s20), s20 ∈ γ2,

is the traction utilized at point s20 of crack-2, and for j = 1, 2

M(sj , s20) =
1

2

[
exp (2iαj)

−1

(Qj −Q20)
2 + exp (−2iα20)

1(
Qj −Q20

)2
]
,

L(sj , s20) =
1

2

[
(exp (−2iαj) + exp (−2iα20))

1(
Qj −Q20

)2
]

−1

2

[
exp (−2i (αj + α20))

2 (Qj −Q20)(
Qj −Q20

)3
]
,

that

Qj = zj0 + tjexp (iαj) , Q20 = z20 + t20exp (iα20) , j = 1, 2.

The first three integrals in Eq. (2.14) display the influence on crack-2 affected by the
dislocation’s distribution on the crack-2 itself, whereas the fourth, fifth, and sixth
integrals denote the influence of dislocation distribution from the crack-1 on crack-2.
Eqs. (2.13) and (2.14) could be solved simultaneously for ξ1(s1) and ξ2(s2).
Obviously, if two cracks are faraway, then |s2 − s10| and |s1 − s20| come close to
infinity which caused the forth, fifth, and sixth integrals in Eqs. (2.13) and (2.14) are
disappeared. In this case the solution for Eqs. (2.13) and (2.14) is the same as the
resolvent for a single crack problem and so a closed-form resolvent is available [9].

3. Length coordinate method

Now, consider a mapping of cracks on a real axis t with the mapping function
s1(t1) and s2(t2) which are defined as

ξ1(s1)|s1=s1(t1) =
√

(a21 − t21)H1(t1), where H1(t1) = H11(t1) + iH12(t1), (3.1)

ξ2(s2)|s2=s2(t2) =
√

(a22 − t22)H2(t2), where H2(t2) = H21(t2) + iH22(t2). (3.2)
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Using the transformations, Eqs. (3.1) and (3.2), Eqs. (2.13) and (2.14) , respectively,
can be expressed as

I1(t10) + I2(t10) + I3(t10) + I4(t10) + I5(t10) + I6(t10)

= N1(t10) + iT1(t10), (3.3)

R1(t20) +R2(t20) +R3(t20) +R4(t20) +R5(t20) +R6(t20)

= N2(t20) + iT2(t20), (3.4)

where

I1(t10) =
1

π
=

∫ a

−a

√
(a21 − t21)

(t1 − t10)2
H1(t1)A1(t1, t10)dt1,

I2(t10) =
1

π

∫ a

−a

√
(a21 − t21)H1(t1)B1(t1, t10)dt1,

I3(t10) =
1

π

∫ a

−a

√
(a21 − t21)H1(t1)C1(t1, t10)dt1,

I4(t10) =
1

π

∫ a

−a

√
(a22 − t22)H2(t2)D1(t2, t10)dt2,

I5(t10) =
1

π

∫ a

−a

√
(a22 − t22)H2(t2)E1(t2, t10)dt2,

I6(t10) =
1

π

∫ a

−a

√
(a22 − t22)H2(t2)F1(t2, t10)dt2,

and

R1(t20) =
1

π
=

∫ a

−a

√
(a22 − t22)

(t2 − t20)2
H2(t2)A2(t2, t20)dt2,

R2(t20) =
1

π

∫ a

−a

√
(a22 − t22)H2(t2)B2(t2, t20)dt2,

R3(t20) =
1

π

∫ a

−a

√
(a22 − t22)H2(t2)C2(t2, t20)dt2,

R4(t20) =
1

π

∫ a

−a

√
(a21 − t21)H1(t1)D2(t1, t20)dt1,

R5(t20) =
1

π

∫ a

−a

√
(a21 − t21)H1(t1)E2(t1, t20)dt1,

R6(t20) =
1

π

∫ a

−a

√
(a21 − t21)H1(t1)F2(t1, t20)dt1,
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and Ai, Bi, Ci, Di, Ei, Fi for i = 1, 2 are respectively, given by

A1(t1, t10) =
(t1 − t10)2

(s1 − s10)2
ds1
dt1

, B1(t1, t10) = M(s1, s10)
ds1
dt1

,

C1(t1, t10) = L(s1, s10)
ds1
dt1

, D1(t1, t10) =
1

(s2 − s10)2
ds2
dt2

,

E1(t1, t10) = M(s2, s10)
ds2
dt2

, F1(t1, t10) = L(s2, s10)
ds2
dt2

,

and

A2(t2, t20) =
(t2 − t20)2

(s2 − s20)2
ds2
dt2

, B2(t2, t20) = M(s2, s20)
ds2
dt2

,

C2(t2, t20) = L(s2, s20)
ds2
dt2

, D2(t1, t20) =
1

(s1 − s20)2
ds1
dt1

,

E2(t1, t20) = M(s1, s20)
ds1
dt1

, F2(t1, t20) = L(s1, s20)
ds1
dt1

.

4. Solution strategy

The following integration schemes and Gaussian quadrature rule for hypersingular
and regular integrals, are used in solving Eqs. (3.3) and (3.4)(see [17, 23]):

1

π
=

∫ a

−a

√
a2 − t2η(t)

(t− t0)2
dt =

M+1∑
j=1

Wj(t0)η(tj) (|t0| < a) (4.1)

and

1

π

∫ a

−a

√
a2 − t2η(t)dt =

1

M + 2

M+1∑
j=1

(a2 − t2j )η(tj),

where η(t) is a given function, M ∈ Z, and

Wj(t0) = − 2

M + 2

M∑
n=0

(n+ 1)V nj Un

(
t0
a

)
,

in which

V nj = sin

(
jπ

M + 2

)
sin

(
(n+ 1)jπ

M + 2

)
, Un(s) =

sin((n+ 1)θ)

sin θ
, s = cosθ,

t0 = t0k = a cos

(
kπ

M + 2

)
, tj = a cos

(
jπ

M + 2

)
, j, k = 1, 2, ...,M + 1,
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H1(t1) and H2(t2) are defined as follows

H1(t1) =

M∑
n=0

c1nUn

(
t1
a1

)
, |t1| < a1,

H2(t2) =

M∑
n=0

c2nUn

(
t2
a2

)
, |t2| < a2, (4.2)

where

c1n =
2

M + 2

M+1∑
j=1

V nj H1(t1j), c2n =
2

M + 2

M+1∑
j=1

V nj H2(t2j),

in which H1(t1j) and H2(t2j) can be measured from Eq. (3.3) and Eq. (3.4), re-
spectively. The SIF at the left point Ak and right point Bk can be assessed by

(K1 − iK2)Ak
= (2π)1/2 lim

s→sAk

√
|s− sAk

| ´ξk(s),

(K1 − iZ2)Bk
= (2π)1/2 lim

s→sBk

√
|s− sBk

| ´ξk(s), k = 1, 2.

where ´ξ1(s) and ´ξ2(s) are obtained from Eqs. (3.1) and (3.2), respectively [10].

5. Numerical results

In order to make the suggested method is comparable, numerical examples are pre-
sented. As mentioned earlier once, the two cracks being far apart the formulation
in Eqs. (2.13) and (2.14) reduce to the equation for a single crack (Eq. (2.10)). For
the straight crack with length 2a, we obtain K1 = 1.0 and K2 = 0.0. Consider, two
straight cracks in series, handled by the remote stress δ∞y = λ (Fig.2(a) with α = 0).
The evaluated stress intensity factors at the cracks tips A,B,C,D are presented by

K1A = F1A

(a
b

)
λ(πa)

1
2 , K2A = F2A

(a
b

)
λ(πa)

1
2 ,

K1B = F1B

(a
b

)
λ(πa)

1
2 , K2B = F2B

(a
b

)
λ(πa)

1
2 ,

K1C = F1C

(a
b

)
λ(πa)

1
2 , K2C = F2C

(a
b

)
λ(πa)

1
2 ,

K1D = F1D

(a
b

)
λ(πa)

1
2 , K2D = F2D

(a
b

)
λ(πa)

1
2 . (5.1)

The calculated results are listed in Table 1, which display that our results are com-
parable with the previous works.

The SIFs at the crack points of A,B,C, and D in terms of angle, α, are written as

K1A = F1A (α)λ
√
πa , K2A = F2A (α)λ

√
πa,

K1B = F1B (α)λ
√
πa , K2B = F2B (α)λ

√
πa,

K1C = F1C (α)λ
√
πa , K2C = F2C (α)λ

√
πa,

K1D = F1D (α)λ
√
πa , K2D = F2D (α)λ

√
πa. (5.2)
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Figure 2. (a) Two series inclined cracks, (b) Two parallel inclined
cracks, (c) A horizontal and an inclined cracks, (d) A prependicular
and an inclined cracks, (e) Two straight cracks with different size,
(f) Two inclined cracks in line. In cases a, b, c, d, we have a1 = a2 =
a.

For another comparison example, the crack problem shown by Fig.5 is solved with
two conditions a/b = 0.9 and M = 15. The computed results which are listed in
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Table 1. The nondimensional SIF for two cracks in series.

a/b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1A
m=15 1.00120 1.00462 1.01017 1.01787 1.02796 1.04094 1.05786 1.08017 1.11741
*m=15 1.00120 1.00462 1.01017 1.01787 1.02796 1.04094 1.05786 1.08017 1.11741
m=17 1.00120 1.00462 1.01017 1.01787 1.02796 1.04094 1.05786 1.08017 1.11741
*m=17 1.00120 1.00462 1.01017 1.01787 1.02796 1.04094 1.05786 1.08017 1.11741
F1B
m=15 1.00132 1.00566 1.01383 1.02717 1.04796 1.08040 1.13326 1.22894 1.45383
*m=15 1.00132 1.00566 1.01383 1.02717 1.04796 1.08040 1.13326 1.22894 1.45383
m=17 1.00132 1.00566 1.01383 1.02717 1.04796 1.08040 1.13326 1.22894 1.45387
*m=17 1.00132 1.00566 1.01383 1.02717 1.04796 1.08040 1.13326 1.22894 1.45387

*Chen[2]

Figure 3. Two dissimilar cracks which the first crack is in horizontal
position (α = 0) with center on origin and the second in an inclined
position with angle α.

Table 2 coincide with results were obtained by Chen(see [2]). Fig.4 shows that the
nondimensional SIF for two inclined crack (Fig.2(a),(b)) is plotted against the angle α
with a/b = 0.9. It is found that F1’s, for all crack tips, decrease with the increment of
α (Fig.4(a)). The same behavior is found for parallel cracks (Fig.4(b)). For the serial
cracks, the SIFs at B and C are slightly higher than SIFs at A and D (Fig.4(a)). F2’s
at the crack points A,B,C, and D in two serial and parallel cracks (Fig.2(a,b)) are
approximately the same because the cracks tend to either major or minor load axis.
Fig.5 shows the influence of the distance that is located between two parallel cracks
(Fig.2(b)). When the two cracks are closed together (b/a < 0.1), there is a fluctuate
value of SIF (Fig.5(a)), and as b/a increases the SIF is almost constant (Fig.5(b)).
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Table 2. The nondimensional SIF for two cracks which one crack
in horizontal position and another crack in an inclined position.

α 0 10 20 30 40 50 60 70 80 90

F1A 1.1174 1.1197 1.1120 1.093 1.0719 1.0501 10301 1.0164 1.0071 1.0040
*F1A 1.1174 1.0939 1.0300 1.0040
F1B 1.4513 1.4859 1.4041 1.2938 1.2018 1.1299 1.0757 1.0375 1.0147 1.0071
*F1B 1.4539 1.2931 1.0753 1.0071
F1C 1.4513 1.4896 1.3007 1.0238 0.7556 0.5143 0.3105 0.1559 0.0604 0.0303
*F1C 1.4539 1.0260 0.3133 0.0305
F1D 1.1171 1.0925 1.0032 0.8567 0.6768 0.4867 0.3087 0.1630 0.0664 0.0303
*F1D 1.1174 0.8568 0.3064 0.0305

F2A 0 -0.0337 -0.0458 -0.0472 -0.0439 -0.0379 -0.0300 -0.0208 -0.0106 0
*F2A 0 -0.0544 -0.0116 0
F2B 0 -0.1369 -0.0939 -0.0663 -0.0548 -0.0475 -0.0394 -0.0285 -0.0150 0
*F2B 0 -0.0522 -0.0035 0
F2C 0 0.1074 0.3918 0.5589 0.6201 0.6006 0.5150 0.3771 0.2034 0.0132
*F2C 0 0.5501 0.5118 0.0133
F2D 0 0.1649 0.3254 0.4481 0.5136 0.5147 0.4523 0.3338 0.1727 -0.0132
*F2D 0 0.4508 0.4526 -0.0133

*Chen[2]
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Figure 4. The nondimensional stress intensity factor for (a) Two
serial inclined cracks (Figure 2(a)), (b) Two parallel inclined cracks
(Figure 2(b)).

Fig.6(a) represents the interaction between two dissimilar, horizontal and inclined
cracks (Fig.2(c)). As α increases, F1A slightly decreases whereas F1B increases sig-
nificantly; then both of them tend to constant value. For the inclined crack, the SIF
decreases until it reaches its constant value. Fig.6(b) shows the interaction between a
perpendicular and an inclined cracks (Fig.2(d)). The SIFs decrease as α increases for
an inclined crack whereas for a perpendicular crack, the SIF is almost vanished. In
Fig.7, the effect of distance between a perpendicular and inclined crack is presented
(Fig.2(d)). If the two cracks are closed together (b/a < 0.1), then the magnitude
of SIFs at the tips of perpendicular crack decreases from 2 to almost 0 (Fig.7(a)),
whereas for b/a > 0.1 the SIFs are almost vanished (Fig.7(b)). Consider Fig.2(e).
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Figure 5. The nondimensional SIF for two parallel cracks with (a)
b/a < 0.1 and (b) b/a > 0.1.

0 20 40 60 80
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a)

F1C

F2A

F2B F2C

F2D

F1B

F1A

N
an

di
m

es
io

na
l s

tre
ss

 in
te

ns
ity

 fa
ct

or

Angle,

F1D

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

F2C=F2D

F1C=F1D

F2BF2A

N
an

di
m

en
si

on
al

 s
tre

ss
 in

te
ns

ity
 fa

ct
or

Angle, 

F1A=F1B

(b)

Figure 6. The nondimensional SIFs for (a) Horizontal and inclined
cracks, (b) Perpendicular and inclined cracks.

The SIF at the crack tips is represented by
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The computed values are plotted in Fig.8(a). Fig.8(b) shows the interaction between
two inclined crack for Fig.2(f).
The last example is allocated to two inclined crack that are located as series but they
have different size (Fig.9 ). The calculated SIFs at the crack tips are stated by
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Figure 7. The nondimensional SIFs for perpendicular and inclined
cracks with (a) b/a < 0.1 and (b) b/a > 0.1.
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Figure 8. The nondimensional SIFs (a) Two parallel cracks with
different size (Figure 2(e)), (b) Two inclined cracks (Figure 2(f)).

K1A = F1A

(
b

a1

)
λ
√
πa , K2A = F2A

(
b

a1

)
λ
√
πa,

K1B = F1B

(
b

a1

)
λ
√
πa , K2B = F2B

(
b

a1

)
λ
√
πa,

K1C = F1C

(
b

a1

)
λ
√
πa , K2C = F2C

(
b

a1

)
λ
√
πa,

K1D = F1D

(
b

a1

)
λ
√
πa , K2D = F2D

(
b

a1

)
λ
√
πa. (5.4)

Fig.10(a) represents that the nondimentional SIFs for two inclined crack with different
size decrease when the angle increases and F2 at all crack tips are approximately the
same because the cracks tend to load axis (major or minor). The effect of the distance
between two cracks with different size is shown in Fig .10(b). As we can see that,
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Figure 9. Two inclined crack that are located as series with different size.

Figure 10. The nondimensional SIFs (a) Two inclined crack with
different size when the angle is variable, (b) Two inclined crack with
different size when the distance between them is variable.

when two cracks are closed together, the SIFs are high; whereas when they are getting
farther apart, the SIFs reach to constant value, meanwhile F2 in all crack tips is almost
vanished.

6. Conclusion

The multiple cracks problems in an infinite plate is formulated into hieq based on
complex potential method. With the aid of the appropriate quadrature formulas, the
obtained hieq is solved numerically for function that is unknown. The stress intensity
factor at the crack tips is evaluated. It is found that once the cracks are closed
together the SIF is increased and as those are getting far the SIF is almost constant
at crack tips. Our results for the serial cracks is agree with the previous work of Chen
(see [2]).
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