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Abstract. In this paper we extend the notion of CP covers for groups to

the class of Lie algebras, and show that despite the case of groups, all CP

covers of a Lie algebra are isomorphic. Moreover we show that CP covers

of groups and Lie rings which are in Lazard correspondence, are in Lazard

correspondence too, and the Bogomolov multipliers of the group and the Lie

ring are isomorphic.

1. Introduction

In [10] the Bogomolov multiplier and the commutativity preserving cover (CP

cover) were first studied by Moravec for the class of finite groups. In the class of

groups, the Bogomolov multiplier of a group is unique up to isomorphism but the

corresponding CP cover is not necessarily unique. In our recent work [1], we defined

the Bogomolov multiplier for Lie algebras. Here, we will define CP covers of Lie

algebras, then we will show that all CP covers of a Lie algebra are isomorphic. The

Lazard correspondence that was introduced by Lazard in [15], builds an equivalence

of categories between finite p-groups of nilpotency class at most p−1 and the finite

p-Lie rings of the same order and nilpotency class. Recall that a p-Lie ring is a

Lie algebra over Z/pkZ for some positive integer k, see [21] for more information.

There is a close connection between many invariants of an arbitrary group and

a Lie ring that is its Lazard correspondent. For example, the centers, the Schur

multipliers and the epicenters of them are isomorphic as abelian groups (see for

instance [7]). By a same motivation we will prove that if G is a group and L is its

Lazard correspondent, then the Bogomolov multipliers of them are isomorphic as

abelian groups.
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2. The Bogomolov multiplier and The CP cover of Lie algebras

This section is devoted to introducing CP covers of Lie algebras and then we

will show (unlike the situation in finite groups), all CP covers for a Lie algebra are

isomorphic. We recall the following definition.

Definition 2.1. Let R be a commutative unital ring. A Lie algebra over R is an

R-module L equipped with an R-bilinear map [., .] : L × L → L which is called the

Lie bracket provided that the following conditions hold.

• [x, x] = 0,

• [x, [y, z]]+[z, [x, y]+[y, [z, x]] = 0 (Jaccobi identity), and [[x, y], z]+[[y, z], x]+

[[z, x], y] = 0,

• [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y],

• [x, y] = −[y, x],

for all x, y, z ∈ L and a, b ∈ R.

The Lie bracket ([x, y]) is called the commutator of x and y.

Throughout this section, L will represent a Lie algebra over a field. Also, it is easy

to see that the dimension of a Lie algebra is its dimension as a vector space over

the field, and the cardinality of a minimal generating set of a Lie algebra is always

less than or equal to its dimension.

The Bogomolov multiplier. The Bogomolov multiplier is a group-theoretical

invariant introduced as an obstruction to the rationality problem in algebraic ge-

ometry. Let K be a field, G be a finite group and V be a faithful representation of

G over K. Then there is natural action of G upon the field of rational functions

K(V ). The rationality problem (also known as Noether’s problem) asks whether

the field of G-invariant functions K(V )
G

is rational (purely transcendental) over K?

A question related to the above mentioned problem is whether there exist indepen-

dent variables x1, ..., xr such that K(V )
G

(x1, ..., xr) becomes a pure transcendental

extension of K? Saltman in [22] found examples of groups of order p9 with a nega-

tive answer to the Noether’s problem, even when taking K = C. His main method

was the application of the unramified cohomology group H2
nr(C(V )

G
,Q/Z) as an

obstruction. Bogomolov in [4] proved that it is canonically isomorphic to

B0(G) =
⋂

ker{resAG : H2(G,Q/Z)→ H2(A,Q/Z)},

where A is an abelian subgroup of G. The group B0(G) is a subgroup of the Schur

multiplier M(G) = H2(G,Q/Z) and Kunyavskii in [14] named it the Bogomolov

Multiplier of G. Thus vanishing the Bogomolov multiplier leads to a positive answer
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to Noether’s problem. But it’s not always easy to calculate Bogomolov multipliers of

groups. Moravec in [19] introduced an equivalent definition of the Bogomolov mul-

tiplier. In this sense, he used a notion of the nonabelian exterior square G∧G of a

group G to obtain a new description of the Bogomolov multiplier. He showed that if

G is a finite group, then B0(G) is non-canonically isomorphic to Hom(B̃0(G),Q/Z),

where the group B̃0(G) can be described as a section of the nonabelian exterior

square of a group G. Also, he proved that B̃0(G) =M(G)/M0(G), such that the

Schur multiplier M(G) or the same H2(G,Q/Z) interpreted as the kernel of the

commutator homomorphism G∧G→ [G,G] given by x∧ y → [x, y], andM0(G) is

the subgroup of M(G) defined as M0(G) = 〈x ∧ y | [x, y] = 0, x, y ∈ G〉. Thus in

the class of finite groups, B̃0(G) is non-canonically isomorphic to B0(G). With this

definition all truly nontrivial nonuniversal commutator relations is collected into

an abelian group that is called the Bogomolov multiplier. Furthermore, Moravec’s

method relates the Bogomolov multiplier to the concept of commuting probability

of a group and shows that the Bogomolov multiplier plays an important role in

commutativity preserving central extensions of groups, that are famous cases in

K-theory. So, there are some papers to compute this multiplier for some groups.

See for example [4, 6, 12, 13, 14, 16, 17, 19]. In the recent work [1], as a close

relationship between groups and Lie algebras, we developed the analogous theory

of commutativity preserving exterior product and then the Bogomolov multiplier

for the class of Lie algebras.

The Hopf-type formula for the Bogomolov multiplier

We recall the Hopf-type formula for groups and Lie algebras as follows. Let K(F )

denote {[x, y]|x, y ∈ F}.

Theorem 2.2. Let G be a group and L be a Lie algebra. Then

(i) If G ∼= F1

R1
is a presentation for G, then B̃0(G) ∼= R1∩γ2(F1)

〈K(F1)∩R1〉 ,

(ii) If L ∼= F2

R2
is a presentation for L, then B̃0(L) ∼= R2∩F 2

2

〈K(F2)∩R2〉 .

Proof. (i) See [19, Proposition 3.8]. (ii) from [8], L ∧ L ∼= F 2
2 /[R2, F2] and L2 ∼=

F 2
2 /(R2 ∩ F 2

2 ). Moreover the map κ̃ : L ∧ L → L2 given by x ∧ y → [x, y] is

an epimorphism. Thus, ker κ̃ = M(L) ∼= (R2 ∩ F 2
2 )/[R2, F2] and M0(L) can be

determined with the subalgebra of F2/[R2, F2] generated by all the commutators

in F2/[R2, F2] that belong to M(L). Thus we have the following isomorphism for

M0(L),

〈K(
F2

[R2, F2]
) ∩ R2

[R2, F2]
〉 ∼=
〈K(F2) ∩R2〉+ [R2, F2]

[R2, F2]
∼=
〈K(F2) ∩R2〉

[R2, F2]
.
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Therefore B̃0(L) =M(L)/M0(L) ∼= R2 ∩ F 2
2 /〈K(F2) ∩R2〉, as required. �

Commutativity preserving extension of groups. For groups, in parallel to

the classical theory of central extension, Jezernik and Moravec in [10] developed

a version of extension that preserve commutativity. Let G, N and Q be groups.

An exact sequence of group 1 −→ N
χ−→ G

π−→ Q −→ 1, is called a commutativity

preserving extension (CP extension) of N by Q, if commuting pairs of elements

of Q have commuting lifts in G. A special type of CP extensions with the cen-

tral kernel is named a central CP extension. Jezernik and Moravec in [10] proved

that the central exact sequence 1 −→ N
χ−→ G

π−→ Q −→ 1 is a CP extension if and

only if χ(N) ∩ K(G) = 1. Also, a central CP extension 1 −→ N
χ−→ G

π−→ Q −→ 1

is termed stem, whenever χ(N) ≤ G′, and every stem central CP extension with

|N | = |B̃0(Q)|, is called a CP cover. It is proved in [10, Theorem 4.2], every finite

group has a CP cover and every stem central CP extension is a quotient of a CP

cover, and if G is a CP cover of Q with kernel N , then N ∼= B̃0(Q). Now, we in-

vestigate an analogues statement for Lie algebras, and then we show all CP covers

for a finite dimensional Lie algebra are isomorphic.

The following definition is used in the next lemma.

Definition 2.3. Let C and B̃0 be Lie algebras. We call a pair of Lie algebras

(C, B̃0), a commutativity preserving defining pair (CP defining pair) for L, if

(i) L ∼= C/B̃0

(ii) B̃0 ⊆ Z(C) ∩ C2

(iii) B̃0 ∩K(C) = 0.

In the other words, for every stem central CP extension 0 −→ B̃0 −→ C
π−→ L −→ 0

with L ∼= C/B̃0, (C, B̃0) is termed a CP defining pair.

Lemma 2.4. Let L be a Lie algebra of finite dimension n and C be the first term

in a CP defining pair for L. Then dimC ≤ n(n+ 1)/2.

Proof. Clearly, dimC/Z(C) ≤ dimC/B̃0 = dimL = n. Now, if {x1+Z(C), ..., xn+

Z(C)} is a basis for C/Z(C), then {[xi, xj ]; 1 ≤ i < j ≤ n} is a generating set for

C2 and since [xi, xi] = 0 and [xi, xj ] = −[xj , xi], we have dimC2 ≤ (n2 − n)/2 =

n(n−1)/2. Thus dim B̃0 ≤ n(n−1)/2 and dimC = n+dim B̃0 ≤ n+n(n−1)/2 =

n(n+ 1)/2. �

A pair (C, B̃0) is called a maximal CP defining pair if the dimension of C is

maximal.
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Definition 2.5. For a maximal CP defining pair (C, B̃0), C is called a commuta-

tivity preserving cover or (CP cover) for L.

The following definition is used for finding the Hopf-type formula for B̃0, where

(C, B̃0) is a maximal CP defining pair, and it is used to prove the uniqueness of the

CP covers of a Lie algebra.

Definition 2.6. Let

c(L) = {(C, λ) | λ ∈ Hom(C,L) , λ surjective and kerλ ⊆ C2∩Z(C) , kerλ∩K(C) = 0}

(T, τ) is called a universal member in c(L) if for each (C, λ) ∈ c(L), there exists

h′ ∈ Hom(T,C) such that λoh′ = τ , in the other words the following diagram

commutes.

T
τ //

h′

��

L

C

λ

??

It can be shown that, CP defining pairs and elements of c(L) are related in the

following sense.

Let (C, σ) ∈ c(L), so kerσ ⊆ Z(C) ∩ C2, kerσ ∩ K(C) = 0 and L ∼= C/kerσ.

Therefore (C, kerσ) is a CP defining pair for L. Conversely, if (C,N) is a CP

defining pair for L, then there is a surjective homomorphism σ : C → L with

kerσ = N ⊆ Z(C) ∩ C2 and N ∩K(C) = 0. Thus (C, σ) ∈ c(L).

Now, we want to show that all CP covers of a Lie algebra are isomorphic. First,

we recall the following lemma.

Lemma 2.7. [3, Lemma 1.4] Let (N,µ) ∈ c(L) and λ ∈ Hom(C,L) where λ is

surjective. Suppose that β ∈ Hom(C,N) such that µoβ = λ, then β is surjective.

We are going to show that c(L) has a universal element and they are precisely

those elements (T, τ) where T is a CP cover of L.

Proposition 2.8. Let L be a finite dimensional Lie algebra. Then (T, τ) is a

universal element of c(L) if and only if T is a CP cover.

Proof. Let (T, τ) ∈ c(L) such that for each (C, λ) ∈ c(L), there is ρ ∈ Hom(T,C)

such that λoρ = τ . By using Lemma 2.7, ρ is surjective and dimC ≤ dimT . Thus

T is a CP cover of L. Also, since every CP cover of L is a homomorphic image of

T and has the same dimension as T , so it is isomorphic to T . Moreover by using

Lemma 2.7, any CP cover of L, gives a universal element in c(L). �
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Proposition 2.9. Let L be a finite dimensional Lie algebra, then all CP covers of

L are isomorphic.

Proof. By using Proposition 2.8, since there is a universal element in c(L), all CP

covers of L are isomorphic. �

To find the Hopf-type formula for B̃0, when (C, B̃0) is a maximal CP defining

pair of L, let L ∼= F/R be a free presentation of a finite dimensional Lie algebra

L, AL = R/〈K(F ) ∩R〉, BL = F/〈K(F ) ∩R〉 and DL = (F 2 ∩R)/〈K(F ) ∩R〉.
We will show that there is a central ideal EL of BL complement to DL in AL, also

there are λ, σ̃ and π̃, such that (BL/EL, π) is a universal element of c(L), σ ∈
Hom(BL/EL, C) and π = λoσ. Also BL/EL is a CP cover of L and (BL/EL, kerπ)

is a maximal CP defining pair for L.

Since (C, B̃0) is a maximal CP defining pair, there is a surjective map λ : C → L

such that kerλ = B̃0 ⊆ Z(C) ∩ C2, B̃0 ∩K(C) = 0 and (C, λ) ∈ c(L). By using

Lemma 2.7, σ is surjective. On the other hand, we have the following commutative

diagram.

F
π //

σ

��

L

C

λ

??

In the following lemmas, we show that σ induces σ1 ∈ Hom(BL, C).

Lemma 2.10. Let L ∼= F/R be a free presentation of L, then for every x ∈ F ,

we have x ∈ R if and only if σ(x) ∈ kerλ. Moreover 〈K(F ) ∩ R〉 ⊆ kerσ, and σ

induces a surjective homomorphism σ1 ∈ Hom(BL, C) such that λoσ1 = π1.

Proof. Let x ∈ R. Then 0 = π(x) = λoσ(x). Thus σ(x) ∈ kerλ. On the other

hand, let σ(x) ∈ kerλ, then λ(σ(x)) = 0. It implies that π(x) = 0. So, x ∈
kerπ = R. Now, since σ(r) ∈ kerλ ⊆ Z(C) ∩ C2 ⊆ Z(C) and σ(f) ∈ C, for

all r1, r2, r ∈ R and f ∈ F , we have σ([r, f ]) = [σ(r), σ(f)] = 0 and σ([r1, r2]) =

[σ(r1), σ(r2)] = 0. Thus 〈K(F ) ∩ R〉 ⊆ kerσ. Hence σ induces σ1 ∈ Hom(BL, C)

and λoσ1(f + 〈K(F ) ∩R〉) = λoσ(f) = π(f) = π1(f + 〈K(F ) ∩ R〉). Therefore

λoσ1 = π1. One can see that σ1 is surjective. So, we have the following commutative

diagram

BL
π1 //

σ1

��

L

C

λ

>>

.

�
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Lemma 2.11. Using the notations and assumptions in Lemma 2.12, we have

(i) σ1(AL) = kerλ

(ii) σ1(DL) = kerλ

(iii) AL = DL + kerσ1.

Proof. (i) Let y ∈ σ1(AL), then y = σ1(a) for some a ∈ AL. We have kerπ1 = AL.

so, λoσ1(a) = π1(a) = 0. Hence y ∈ kerλ. Now, let m ∈ kerλ, then there is b ∈ BL
such that σ1(b) = m, since σ1 is surjective and 0 = λ(m) = λoσ1(b) = π1(b),

b ∈ kerπ1 = AL. Thus, σ1(AL) = kerλ.

(ii) Clearly DL ⊆ AL, and (i) imply σ1(DL) ⊆ kerλ. Let y ∈ kerλ. Since (C, λ) ∈
c(L) and y ∈ C2 = σ(F 2) = σ1(B2

L), there is z ∈ B2
L such that y = σ1(z). Since

z ∈ AL, z ∈ B2
L ∩AL = DL. Hence, kerλ ⊆ σ1(DL).

(iii) Let a ∈ AL. By using (i) and (ii), σ1(a) ∈ kerλ = σ1(DL). Therefore there

is d ∈ DL such that σ1(a) = σ1(d). So, σ1(a − d) = 0, and a = d + e for some

e ∈ kerσ1. Thus AL ⊆ DL + kerσ1. On the other hand, we have σ1(x) = 0, for

all x ∈ kerσ1. Therefore π1(x) = λoσ1(x) = 0. So, x ∈ kerπ1 = AL. Hence

kerσ1 ⊆ AL. Since DL ⊆ AL, DL + kerσ1 ⊆ AL. So AL = DL + kerσ1. �

Note that since AL = DL + kerσ1 and kerσ1 = kerσ/〈K(F ) ∩R〉, kerσ1 has

(kerσ ∩R ∩ F 2)/〈K(F ) ∩R〉 as a finite dimensional Lie subalgebra.

Also, kerσ/(kerσ ∩R ∩ F 2) ∼= R/R ∩ F 2 is abelian, (L/L2 ∼= F/(R+ F 2) and

(F/F 2)/(F/(R+ F 2)) ∼= (R+ F 2)/F 2 ∼= R/R ∩ F 2). Put EL = R/R ∩ F 2. Clearly

it is a central ideal of AL. Therefore AL is a central extension of DL by the abelian

Lie algebra EL, and this extension splits. So AL = DL ⊕ EL.

On the other hand [R,F ] ≤ 〈K(F ) ∩ R〉 and AL and DL are central ideals of

BL. Thus, [DL + kerσ1, BL] = 0 and [kerσ1, BL] = 0. Now since EL ≤ kerσ1,

[EL, BL] = 0. So, EL is a central ideal of BL. Thus, σ1 and π1 induce σ̄ ∈
Hom(BL/EL, C) and π̄ ∈ Hom(BL/EL, L), respectively. Moreover the following

diagram is commutative.

BL
EL

π̄ //

σ̄

��

L

C

λ

??

Using the previous notations, the following lemmas show that (BL/EL, AL/EL) is

a maximal CP defining pair for L.
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Lemma 2.12. Let L be a finite dimensional Lie algebra, and L ∼= F/R for a free

Lie algebra F . Then (BL/EL, AL/EL) is a CP defining pair for L, where EL is

any complementary subspace to DL in AL.

Proof. Since AL ⊆ Z(BL) and AL/EL ⊆ Z(BL/EL), we have

BL/EL
AL/EL

∼=
BL
AL
∼=
F

R
∼= L,

and

DL =
F 2 ∩R

〈K(F ) ∩R〉
⊆ F 2

〈K(F ) ∩R〉
∼= (

F

〈K(F ) ∩R〉
)2 = B2

L.

Hence
AL
EL
∼=
DL + EL

EL
⊆ B2

L + EL
EL

= (
BL
EL

)2.

Thus, AL/EL ⊆ Z(BL/EL) ∩ (BL/EL)2 and (AL/EL) ∩K(BL/EL) = 0. �

Lemma 2.13. BL/EL is a CP cover of L and B̃0
∼= (F 2 ∩R)/〈K(F ) ∩R〉.

Proof. C is a CP cover of L, so dimC ≥ dim(BL/EL). Since σ̄ is surjective,

C is the homomorphic image of BL/EL and dimC ≤ dim(BL/EL). Therefore

dimC = dim(BL/EL) and BL/EL is a CP cover of L. Now by using Propositions

2.8 and 2.9, (BL/EL, π̃) is a universal element of c(L) and C ∼= BL/EL. Now since

C/B̃0
∼= L ∼= BL/AL and DL

∼= AL/EL, dim B̃0 = dimDL, and so B̃0
∼= DL =

(F 2 ∩R)/〈K(F ) ∩R〉. �

The following key lemma is used in the next investigation.

Lemma 2.14. [3, Lemma 1.11] Let B,D,B1, D1 be Lie algebras and B ⊕ D =

B1 ⊕D1. If B ∼= B1 and B is finite dimensional, then D ∼= D1.

Note that since dimL = n and F is generated by n elements, EL has finite

dimension.

Lemma 2.15. With the previous notations, all CP covers of L are isomorphic to

BL/EL.

Proof. Let (N, B̃0) be a maximal CP defining pair of L. So there is a surjective

map β : N → L such that (N, β) ∈ c(L). Similar to the previous statement, there is

a central ideal E′L that is complementary to DL in AL, and σ′1 ∈ Hom(BL, N) such

that E′L ≤ kerσ′1 and βoσ′1 = π1. On the other hand, DL ⊆ B2
L and B2

L ∩ EL = 0.

So we can write Z(BL) = B2
L∩Z(BL)⊕EL⊕A where A is abelian and B2

L∩A = 0.

Thus BL ∼= T ⊕ EL ⊕ A, where T is non-abelian. Therefore BL ∼= EL ⊕KL, such

that KL = T ⊕ A. Similarly, there is a Lie algebra K ′L such that BL ∼= E′L ⊕K ′L.

Also, EL and E′L are abelian Lie algebras and both are of the same finite dimension,

so EL ∼= E′L. By using Lemma 2.14, KL
∼= K ′L. Thus BL/EL ∼= BL/E

′
L. �
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Therefore we showed that for every finite dimensional Lie algebra L, there is a CP

cover which in fact is BL
EL

, and for every CP defining pair (C, B̃0), C is isomorphic

to a quotient of BL
EL

(C ∼= BL
kerσ1

∼=
BL
EL

ker σ1
EL

). Also, since AL = DL + kerσ1 and

B̃0
∼= AL

kerσ1
, B̃0 is isomorphic to a quotient of the Bogomolov multiplier of L.

3. The Bogomolov multiplier and the Lazard correspondence

This section is devoted to show the Bogomolov multiplier of a Lie ring L and

a group G is isomorphic, when L is Lazard correspondent of G. We recall the

following definition.

Definition 3.1. A Lie ring is defined as an abelian group L equipped with a Z-

bilinear map [., .] : L× L→ L called the Lie bracket satisfying the following condi-

tions

• [x, x] = 0,

• [x, [y, z]] + [z, [x, y] + [y, [z, x]] = 0 and [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

(Jaccobi identity),

• [x+ y, z] = [x, z] + [y, z] and [x, y + z] = [x, y] + [x, z],

• [x, y] = −[y, x],

for all x, y, z ∈ L.

The Lie bracket ([x, y]) is called the commutator of x and y.

Let L be a Lie ring and M and N are subrings of it, we define [M,N ] as the

Lie subring of L generated by all commutators [m,n] with m ∈ M and n ∈ N .

This allows us to define the lower central series L = L1 ≥ L2 ≥ L3 ≥ ... via

Li = [Li−1, L]. The Lie ring L is nilpotent if this series terminates at 0, and in this

case, the class cl(L) is the length of the lower central series of L.

Note that a Lie ring which is also an algebra over a field (or a commutative unital

ring) is termed a Lie algebra over that field (or commutative unital ring). Also a

Lie ring can be defined as a Z-Lie algebra (see [9]), and a p-Lie ring is a Lie algebra

over Z/pkZ for some positive integer k (see [21]). Therefore more definitions and

proofs of Lie rings can be obtained as generalizations from the Lie algebras, and

there are similar results between finite Lie rings and finite dimensional Lie algebras

over a field. So similar to recent work [1], we have the Bogomolov multiplier for Lie

rings. Also we want to introduce CP defining pairs and CP covers of Lie rings.
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In the following, for a given Lie ring L, the set {[x, y]|x, y ∈ L} of all commu-

tators of L is denoted by K(L). Also, we use the same notations as in the previous

section.

Definition 3.2. Let C and N be finite Lie rings, a pair (C,N) is called a commu-

tativity preserving defining pair (CP defining pair) for L, provided that L ∼= C/N ,

N ⊆ Z(C) ∩ C2 and N ∩K(C) = 0.

Lemma 3.3. Let L be a Lie ring of finite order n and C be the first term in a CP

defining pair for L. Then |C| ≤ n2(n− 1).

Proof. Clearly, |C/Z(C)| ≤ |C/N | = |L| = n. So |N | ≤ |C2| ≤ n(n − 1). Since

|C| = |L||N |, |C| ≤ n2(n− 1). �

Therefore if L is a finite Lie ring, the order of the first coordinate of CP defining

pairs for L is bounded, and a pair (C,N) is called a maximal CP defining pair, if

the order of C is maximal.

Definition 3.4. For a maximal CP defining pair (C,N), C is called a commuta-

tivity preserving cover (CP cover) for L.

Similar to the proofs in the previous section, it can be proven that for every

finite Lie ring L, there is a unique CP cover, and for every CP defining pair (C,N),

C and N are isomorphic to a quotient of CP cover and the Bogomolov multiplier

of L, respectively. Also for every maximal CP defining pair (C,N), we have the

following Lemma.

Lemma 3.5. Let (C,N) be a maximal CP defining pair for a finite Lie ring L.

Then N is isomorphic to the Bogomolov multiplier of L.

Proof. Similar to Lemma 2.13 and by using the previous assumptions, |DL| = |N |.
Since λoσ = π, σ(F ) ∈ N = kerλ is equivalent to F ∈ R. Also

σ̄(DL) = σ(R ∩ F 2) = σ(R) ∩ σ(F 2) = N ∩ C2 = N.

So, σ̄|DL : DL → N is a surjective, and since |DL| = |N |, N ∼= DL. �

In the following, we introduce the Lazard correspondence between finite p-Lie

rings of nilpotency class at most p − 1 and finite p-groups of the same order and

nilpotency class. Also, to avoid confusion, in a group G, we denote the multiplica-

tion by xy and the commutator is written [x, y]G = x−1y−1xy.

The Baker-Campbell-Hausdorff formula (B-C-H) and its inverse. Let

L be a p-Lie ring of order pn and nilpotency class c with p − 1 ≥ c and G be a
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finite p-group with order pn and the same nilpotency class c. The Baker-Campbell-

Hausdorff formula (B-C-H formula) is a group multiplication in terms of Lie ring

operations

xy := x+ y +
1

2
[x, y]L +

1

12
[x, x, y]L + ...,

where x, y ∈ L. The inverse g−1 of the group element g corresponds to −g. and

the identity 1 in the group corresponds to 0 in the Lie ring. So, the B-C-H formula

is used to turn Lie ring presentations into group presentations. Conversely the

inverse B-C-H formula is a Lie ring addition and Lie bracket in terms of group

multiplication that is used to turn group presentations into Lie ring presentations.

This have the general form

x+ y := xy[x, y]
−1
2

G ....

[x, y]L := [x, y]G[x, x, y]
1
2

G....

when c ≤ 14. See [5].

The Lazard correspondence. The B-C-H formula and its inverse give an isomor-

phism between the category of nilpotent p-Lie rings of order pn and the nilpotency

class c, provided p−1 ≥ c and the category of finite p-groups of the same order and

nilpotency class which is known as the Lazard correspondence. By using this cor-

respondence, in the same line of investigation, the same results on p-groups can be

checked on p-Lie rings. In the following, we mention some of these correspondences

that were proved by Eick in [7].

Proposition 3.6. [7, Proposition 3]

Let G be a finite p-group of class at most p−1, and L be its Lazard correspondent.

Let X be a subset of G and hence of L. Then

(i) There is a Lazard correspondence between the subring L0 ⊆ L generated by

X and the subgroup G0 ⊆ G generated by X.

(ii) L0 is an ideal of L if and only if G0 is a normal subgroup of G.

Proposition 3.7. [7, Proposition 4]

Let G be a finite p-group of class at most p−1, and L be its Lazard correspondent.

Then

(i) Z(G) and Z(L) coincide as sets and are isomorphic as abelian groups.

(ii) G′ and L2 coincide as sets and are in Lazard correspondence.

Proposition 3.8. [7, Proposition 5]

Let G be a finite p-group of class at most p−1, and L be its Lazard correspondent.

Let G0 be a normal subgroup in G and L0 be the corresponding ideal in L. Then
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ψ : G/G0 → L/L0 given by (xG0 7−→ x + L0), is a well-defined bijection, and it

induces a Lazard correspondence between G/G0 and L/L0.

Note that similar to the definition of CP covers for groups in [10], for every stem

central CP extension 1 −→ N −→ G
π−→ Q −→ 1 with Q ∼= G/N , (N,G) is termed a

CP defining pair of Q, and G is called a CP cover, whenever |N | = |B̃0(Q)|.

Proposition 3.9. Let G be a finite p-group of class at most p − 1, and L be its

Lazard correspondent. Then every CP defining pair of G is in the Lazard corre-

spondence with a CP defining pair of L and vice versa.

Proof. Suppose (G∗, G0) is a CP defining pair of G with G ∼= G∗/G0. Then

cl(G∗) < cl(G) + 1 ≤ p− 1 + 1 = p. So, cl(G∗) ≤ p− 1 and there is a Lie ring L∗ in

the Lazard correspondence with G∗. Since G0 ⊆ (G∗)′∩Z(G∗) and G0∩K(G∗) = 1,

by Proposition 3.6 and the Lazard correspondence, there is a central ideal L0 of L∗

such that G0 and L0 are in the Lazard correspondence, L0 ⊆ (L∗)2 ∩ Z(L∗) and

L0∩K(L∗) = 0. Now, Proposition 3.8 shows that G ∼= G∗/G0 and L∗/L0 are in the

Lazard correspondence. So, L ∼= L∗/L0. Hence, (L∗, L0) is a unique CP defining

pair of L. The proof of the converse is similar. �

We know that there are many invariants betweenG and its Lazard correspondent.

Now, we want to introduce another instance of these invariants.

Theorem 3.10. Let G be a finite p-group of class at most p − 1, and L be its

Lazard correspondent. Then

(i) The isomorphism types of CP covers of G are in the Lazard correspondence

with the isomorphism types of CP covers of L and vice versa.

(ii) The Bogomolov multipliers of G and L are isomorphic as abelian groups.

Proof. We know that CP covers and Bogomolov multipliers are the first and the

second components of the maximal CP defining pairs of groups and Lie rings,

respectively, this is a direct consequence of the Proposition 3.9 and the B-C-H

formula. �

Example 3.11. We consider a finite p-group G1p of order p5 with the nilpotency

class 3 and the following presentation

G1p = 〈g, g1, g2, g3 | [g1, g] = g2, [g2, g] = gp
2

= g3, g
p
1 = gp2 = gp3 = 1〉

Moravec in [19] showed that B̃0(G1p) = 0. For p ≥ 5 these groups are in the Lazard

correspondence with the finite p-Lie ring L1p of the same order and nilpotency

class. For fixed prime p, the method of [7] can be used to determine the Lie ring
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presentation for L1p with p as parameter. Let F1p be a free Lie ring on v, v1, v2, v3,

and denote presentations of L1p as F1p/R1p. So,

L1p = 〈v, v1, v2, v3 | [v1, v] = v2 − p2v/2 = v2 − v3/2, [v2, v] = p2v + p4v/2 = v3,

pv1 = pv2 = pv3 = 0〉.

The Moravec’s method in [20] which determines the Bogomolov multiplier for a

polycyclic group may translate to finite p-Lie rings. Now we use this method to

determine the Bogomolov multiplier of L1p. Based on the above presentation, we

have

L1p ∧ L1p = 〈v ∧ v1, v ∧ v2, v ∧ v3, v1 ∧ v2, v1 ∧ v3, v2 ∧ v3〉.

Hence for all w ∈ M(L1p) ≤ L1p ∧ L1p there exist α1, . . . , α6 ∈ Zpk , such that

w = α1(v ∧ v1) + α2(v ∧ v2) + α3(v ∧ v3) + α4(v1 ∧ v2) + α5(v1 ∧ v3) + α6(v2 ∧ v3).

Consider κ̃ : L1p ∧ L1p → L2
1p. κ̃(w) = 0, and

α1[v, v1] + α2[v, v2] + α3[v, v3] + α4[v1, v2] + α5[v1, v3] + α6[v2, v3] = 0.

So, α1v2 + (α2 − α1/2)v3 = 0. Hence α1 = α2 = 0. Therefore

w = α3(v ∧ v3) + α4(v1 ∧ v2) + α5(v1 ∧ v3) + α6(v2 ∧ v3).

On the other hand, [v, v3] = [v1, v2] = [v1, v3] = [v2, v3] = 0. Thus

(v ∧ v3), (v1 ∧ v2), (v1 ∧ v3), (v2 ∧ v3) ∈M0(L1p). So, w ∈M0(L1p) and

M(L1p) ⊆M0(L1p). Hence B̃0(L1p) = 0.

Example 3.12. We consider a finite p-group G2p of order p6 with the nilpotency

class 3 given by the following presentation

G2p = 〈g, g1, g2, g3, g4, g5 | [g1, g2] = g3, [g3, g1] = g4, [g3, g2] = g5, [g, g1] = g4,

gp1 = gp2 = gp3 = gp4 = gp5 = gp = 1〉

Chen and Ma in [6] showed that B̃0(G2p) = 0. For p ≥ 5 these groups are in

the Lazard correspondence with the finite p-Lie ring L2p of the same order and

nilpotency class. For fixed prime p, the method of [7] can be used to determine the

Lie ring presentation for L2p with p as parameter. Let F2p be a free Lie ring on

v, v1, . . . , v5, and denote presentation of L2p as F2p/R2p. So,

L2p = 〈v, v1, v2, v3, v4, v5 | [v1, v2] = v3 − v4/2− v5/2, [v3, v1] = v4, [v3, v2] = v5,

[v, v1] = v4, pv1 = pv2 = pv3 = pv4 = pv5 = 0〉.

We use a method similar to that of Moravec to determine the Bogomolov multiplier

of L2p. Based on the above presentation we have

L2p ∧ L2p = 〈v ∧ v1, v ∧ v2, v ∧ v3, v ∧ v4, v ∧ v5, v1 ∧ v2,
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v1 ∧ v3, v1 ∧ v4, v1 ∧ v5, v2 ∧ v3, v2 ∧ v4, v2 ∧ v5, v3 ∧ v4, v3 ∧ v5, v4 ∧ v5〉.

For all w ∈M(L2p) ≤ L2p ∧ L2p, there exists α1, . . . , α15 ∈ Zpk , such that

w = α1(v∧v1)+α2(v∧v2)+α3(v∧v3)+α4(v∧v4)+α5(v∧v5)+α6(v1∧v2)+α7(v1∧v3)

+α8(v1 ∧ v4) +α9(v1 ∧ v5) +α10(v2 ∧ v3) +α11(v2 ∧ v4) +α12(v2 ∧ v5) +α13(v3 ∧ v4)

+α14(v3 ∧ v5) + α15(v4 ∧ v5)

Let κ̃ : L2p ∧ L2p → L2
2p. Then we have κ̃(w) = 0 and

α1[v, v1] + α2[v, v2] + α3[v, v3] + α4[v, v4] + α5[v, v5] + α6[v1, v2] + α7[v1, v3]

+α8[v1, v4]+α9[v1, v5]+α10[v2, v3]+α11[v2, v4]+α12[v2, v5]+α13[v3, v4]+α14[v3, v5]

+α15[v4, v5] = 0,

So, (α1 − α6/2 − α7)v4 + α6v3 + (−α6/2 − α10)v5 = 0. Thus, α6 = α10 = 0 and

α1 = α7. Therefore

w = α1((v∧v1)+(v1∧v3))+α2(v∧v2)+α3(v∧v3)+α4(v∧v4)+α5(v∧v5)+α8(v1∧v4)+

α9(v1 ∧ v5) +α11(v2 ∧ v4) +α12(v2 ∧ v5) +α13(v3 ∧ v4) +α14(v3 ∧ v5) +α15(v4 ∧ v5)

On the other hand, (v ∧ v2) , (v ∧ v3), (v ∧ v4) , (v ∧ v5) , (v1 ∧ v4) , (v1 ∧ v5) ,

(v2 ∧ v4) , (v2 ∧ v5) , (v3 ∧ v4) , (v3 ∧ v5) , (v4 ∧ v5) belong to the M0(L2p). We

can see that, [v + v1, v1 + v3] = 0. So, (v + v1) ∧ (v1 + v3) ∈ M0(L2p). Hence

(v ∧ v1) + (v ∧ v3) + (v1 ∧ v1) + (v1 ∧ v3) ∈M0(L2p). Thus, ((v ∧ v1) + (v1 ∧ v3)) ∈
M0(L2p) and w ∈ M0(L2p). Therefore M(L2p) ⊆ M0(L2p) and B̃0(L2p) = 0, as

required.
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