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Abstract

Under the existence of model uncertainties and external disturbance, finite-time projective 

synchronization between two identical complex and two identical real fractional-order (FO) 

chaotic systems are achieved by employing FO sliding mode control approach. In this paper, to 

ensure the occurrence of synchronization and asymptotic stability of the proposed methods, a 

sliding surface is designed and the Lyapunov direct method is used. By using integer and FO 

derivatives of a Lyapunov function, three different FO real and complex control laws are derived.  

A hybrid controller based on a switching law is designed which has an efficient behavior than the 

each one of the designed controllers based on the minimization of an appropriate cost function. 

Numerical simulations are implemented for verifying the effectiveness of the methods.

Keywords: fractional-order derivative; chaotic system; finite-time synchronization; sliding mode 

control; Lyapunov theorem; hybrid control

1. Introduction

FO calculus attracted considerable attentions in recent years because it has been recently found 

that several physical phenomena can be more adequately described by FO differential equations 

rather than integer-order models [1-3], and FO systems can show complex dynamical behavior 

such as chaos. Memory and more degrees of freedom are the main advantages in FO systems. A 

1 Corresponding author email: n-pariz@um.ac.ir, Tel. +98 513 8805021
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less conservative asymptotic stability condition and a new definition for the exponential stability 

condition of FO systems are investigated in [4]. In [5], using the Lyapunov direct method, a state 

feedback controller is designed for the stabilization of FO nonlinear systems. The chaotic systems 

appear in many important fields of engineering such as secure communication [6, 7]; For example, 

the chaotic systems with complex variables can carry more transmitted information and increase 

additionally security of information [8]. By separating the real and imaginary parts of FO complex 

chaotic system, one can obtain the corresponding real one. Several FO complex chaotic systems 

named such as Lorenz, Chen, T and L  [9-12], have been proposed. However, there has been little u

works for synchronization of FO complex chaotic systems; some drawbacks to this problem should 

be considered. To the best of our knowledge, the control effort problem for the synchronization of 

such kinds of these systems is not considered and this is the main drawback. 

Since pioneering work by Pecora and Carroll [13], chaos synchronization has attracted a lot of 

significant interests and many published papers have been reported [14-19]. The finite-time 

synchronization occurs using some control techniques such as sliding mode [16, 18-21] whenever 

the state trajectories of the slave system should track the state trajectories of the master system in 

a finite-time. To achieve faster convergence in the real world applications, finite-time control 

technique is more valuable than infinite-time control technique. The major advantages of sliding-

mode control such as easy realization, its robustness to the plant parameters uncertainty and low 

sensitivity to unknown disturbance make it different from the other control approaches. Most of 

the literature are focused on the synchronization of FO chaotic systems via the conventional 

discontinuous-time sliding mode control approach [18, 21]; while the continuous-time sliding 

mode control is more efficient to reduce the chattering phenomenon [22, 23]. Using the FO 

calculus and an integral manifold, the chattering phenomena is eradicated in the sliding mode 

Page 2 of 27Asian Journal of Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

3

control technique in [24]. In [19], there are some mistakes belong to the calculation of the finite-

time for the projective synchronization of different integer-order chaotic systems with model 

uncertainties and external disturbances; which we will modify them and extend the main results to 

the FO counterpart. Most of the literatures have been focused on the synchronization of real 

variable chaotic systems. But in [25], the modified projective synchronization and the modified 

function projective synchronization of a class of real and complex chaotic systems are studied. If 

two non-identical real or complex chaotic systems are synchronized, the control effort is high and 

in the identical case, it degrades significantly. But as a special case in [18], in order to synchronize 

two non-identical real chaotic systems, a little control effort is required. A switched system is a 

kind of hybrid system that consists of a number of subsystems and a switching law determining at 

any time instant which subsystem operates [26]. A different switching law will cause different 

system performance. Hybrid systems arise in the application of multiple controllers which have 

been widely used in many cases such as adaptive control, multi-agent systems and so on.

According to the above discussion, the main contribution of this paper is designing a new hybrid 

FO controller for the finite-time synchronization of a general class of FO chaotic systems which 

its calculation process contains new idea. Also, two different scheme is accomplished to verify the 

stability of the closed-loop system. 

The rest of this paper is organized as follows. First, the preliminaries of FO calculus are 

introduced. Then, the system description and problem statement are given. After that, the design 

strategy of the proposed control approach is presented, and finally, some conclusions are reviewed.

1. Preliminaries of FO systems 

The FO integration of an appropriate continuous function is as [1]        

                                      (1) 𝑡0
𝐷 ―𝛼

𝑡 𝑓(𝑡) =
1

Γ(𝛼 )∫
𝑡
𝑡0

𝑓(𝜏)

(𝑡 ― 𝜏)1 ― 𝛼𝑑𝜏, 𝑓(𝑡): 𝑅 + →𝑅 
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where . The Caputo FO derivative of a continuous function, defined by [1]𝛤(𝑧) = ∫∞
𝑡0

𝑡𝑧 ― 1𝑒 ―𝑡𝑑𝑡

                                          (2)𝑡0
𝐷𝛼

𝑡 𝑓(𝑡) =
1

Γ(𝑚 ∗ ― 𝛼)∫
𝑡
0

𝑓(𝑚 ∗ )(𝜏)

(𝑡 ― 𝜏)𝛼 + 1 ― 𝑚 ∗ 𝑑𝜏    

where   is the first integer larger than .𝑚 ∗ 𝛼 ∈ 𝑅 +

Definition 1. [1]. The Mittag-Leffler function is defined as

                (3)𝐸𝛼,𝛽(𝑧) = ∑∞
𝑘 = 0

𝑧𝑘

Γ(𝑘𝛼 + 𝛽), (𝛼,𝛽) > 0

We know that [1]

.              (4)∫∞
0 𝑒 ―𝑆𝑡𝑡𝑘𝑒 ± 𝜈𝑡𝑑𝑡 =

𝑘!

(𝑆 ∓ 𝜈)𝑘 + 1  

 Using (3) and (4), one can obtain [1]

                        (5)𝐿{𝑡𝛼𝑘 + 𝛽 ― 1𝐸(𝑘)
𝛼,𝛽( ± 𝜈𝑡𝛼)} =

𝑘!𝑆𝛼 ― 𝛽

(𝑆𝛼 ∓ 𝜈)𝑘 + 1,  

where  is a variable in the frequency domain and  denotes the real part of , 𝑆 𝑅(𝑆) 𝑆 𝑅(𝑆) > |𝜈|
1

𝛼, 

.𝜈 ∈  𝑅

We will use the following equality with  [1]𝛽 > 0 

                       (6)∫𝑧
0𝐸𝛼,𝛽( ∓ 𝜈𝑡𝛼)𝑡𝛽 ― 1𝑑𝑡 = 𝑧𝛽𝐸𝛼,𝛽 + 1( ∓ 𝜈𝑧𝛼)  

In this paper, the operator  is called ‘‘ -order Caputo differential operator’’. Also, the Adams-𝑡0
𝐷𝛼

𝑡 𝛼

Bashforth-Moulton algorithm is used with a step size  for solving FO differential ℎ = 0.001

equations [27].

2. Problem formulation

The -dimensional FO complex chaotic system is considered as𝑛

                                                  (7)𝑡0
𝐷𝛼

𝑡 𝑥 = ℱ(𝑥) +∆ℱ(𝑥) + 𝑑𝑥(𝑡)
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In this case,  is the FO operator,  is the complex state vector of the 𝛼 ∈ (0,1) 𝑥 = (𝑥1,𝑥2,…,𝑥𝑛)𝑇 ∈ 𝐶𝑛

drive system,  , 𝑥 = 𝑥𝑟 +𝑗𝑥𝑖,  𝑗 = ―1 , 𝑥𝑟 = (𝑚1,𝑚3,…,𝑚2𝑛 ― 1)𝑇,  𝑥𝑖 = (𝑚2,𝑚4,…,𝑚2𝑛)𝑇 ℱ(𝑥) =

 is the complex continues nonlinear vector ℱ𝑟(𝑥) +𝑗ℱ𝑖(𝑥) = (ℱ1(𝑥),ℱ2(𝑥),…,ℱ𝑛(𝑥))𝑇 ∈ 𝐶𝑛

functions, ℱ𝑟(𝑥) = (𝑓1(𝑥),𝑓3(𝑥),…,𝑓2𝑛 ― 1(𝑥))𝑇,  ℱ𝑖(𝑥) = (𝑓2(𝑥),𝑓4(𝑥),…,𝑓2𝑛(𝑥))𝑇. ∆ℱ(𝑥) = ∆ℱ𝑟

 is the vector of system uncertainties, (𝑥) +𝑗∆ℱ𝑖(𝑥) = (∆ℱ1(𝑥),∆ℱ2(𝑥),…,∆ℱ𝑛(𝑥))𝑇 ∈ 𝐶𝑛 ∆ℱ𝑟(𝑥)

. = (∆𝑓1(𝑥),∆𝑓3(𝑥),…,∆𝑓2𝑛 ― 1(𝑥))𝑇,  ∆ℱ𝑖(𝑥) = (∆𝑓2(𝑥),∆𝑓4(𝑥),…,∆𝑓2𝑛(𝑥))𝑇 𝑑𝑥(𝑡) = 𝑑𝑥,𝑟(𝑡) +𝑗

 is the vector of external disturbances, 𝑑𝑥,𝑖(𝑡) ∈ 𝐶𝑛 𝑑𝑥,𝑟(𝑡) = (𝑑𝑥
1,𝑑𝑥

3,…,𝑑𝑥
2𝑛 ― 1)𝑇, 𝑑𝑥,𝑖(𝑡) =

.(𝑑𝑥
2,𝑑𝑥

4,…,𝑑𝑥
2𝑛)𝑇

and the controlled response system can be described as

                                                   (8)𝑡0
𝐷𝛼

𝑡 𝑦 = 𝔾(𝑦) +∆𝔾(𝑦) + 𝑑𝑦(𝑡) ―𝑢(𝑡)

where is the complex state vector of the response system,  𝑦 = (𝑦1,𝑦2,…,𝑦𝑛)𝑇 𝑦 = 𝑦𝑟 +𝑗𝑦𝑖 , 𝑦𝑟 =

,   (𝑟1,𝑟3,…,𝑟2𝑛 ― 1)𝑇,  𝑦𝑖 = (𝑟2,𝑟4,…,𝑟2𝑛)𝑇 𝔾(𝑦) = 𝔾𝑟(𝑦) +𝑗𝔾𝑖(𝑦) = (𝔾1(𝑦),𝔾2(𝑦),…,𝔾𝑛(𝑦))𝑇 ∈ 𝐶𝑛

is the complex continues nonlinear vector functions, 𝔾𝑟(𝑦) = (𝑔1(𝑦),𝑔3(𝑦),…,𝑔2𝑛 ― 1(𝑦))𝑇, 𝔾𝑖(𝑦)

  = (𝑔2(𝑦),𝑔4(𝑦),…,𝑔2𝑛(𝑦))𝑇. ∆𝔾(𝑦) = ∆𝔾𝑟(𝑦) +𝑗∆𝔾𝑖(𝑦) = (∆𝔾1(𝑦),∆𝔾2(𝑦),…,∆𝔾𝑛(𝑦))𝑇 ∈ 𝐶𝑛

is the vector of system uncertainties,  ∆𝔾𝑟(𝑦) = (∆𝑔1(𝑦),∆𝑔3(𝑦),…,∆𝑔2𝑛 ― 1(𝑦))𝑇, ∆𝔾𝑖(𝑦) =

.  is the vector of external (∆𝑔2(𝑦),∆𝑔4(𝑦),…,∆𝑔2𝑛(𝑦))𝑇 𝑑𝑦(𝑡) = 𝑑𝑦,𝑟(𝑡) +𝑗𝑑𝑦,𝑖(𝑡) ∈ 𝐶𝑛

disturbances,  .  𝑑𝑦,𝑟(𝑡) = (𝑑𝑦
1,𝑑𝑦

3,…,𝑑𝑦
2𝑛 ― 1)𝑇, 𝑑𝑦,𝑖(𝑡) = (𝑑𝑦

2,𝑑𝑦
4,…,𝑑𝑦

2𝑛)𝑇 𝑢 = (𝑢1,𝑢2,…,𝑢𝑛)𝑇 = 𝑢𝑟 +𝑗𝑢𝑖

is the complex control input vector to be designed later, 𝑢𝑟 = (𝑣1,𝑣3,…,𝑣2𝑛 ― 1)𝑇,  𝑢𝑖 =

.(𝑣2,𝑣4,…,𝑣2𝑛)𝑇

Define the error state vector as

                                                                                    (9)𝛿 = 𝛿𝑟 +𝑗𝛿𝑖 = 𝑦 ― 𝛯 𝑥
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where  is the synchronization error 𝛿 = (𝛿1,𝛿2,…,𝛿𝑛)𝑇, 𝛿𝑟 = (𝑒1,𝑒3,…,𝑒2𝑛 ― 1)𝑇,  𝛿𝑖 = (𝑒2,𝑒4,…,𝑒2𝑛)𝑇

vector,  is the ( ) diagonal complex scaling matrix, 𝛯 = 𝛯𝑟 +𝑗𝛯𝑖 = 𝑑𝑖𝑎𝑔(𝛯1,𝛯2,…,𝛯𝑛) 𝑛 × 𝑛 𝛯𝑟

. = 𝑑𝑖𝑎𝑔(𝛬1,𝛬3,…,𝛬2𝑛 ― 1),  𝛯𝑖 = 𝑑𝑖𝑎𝑔(𝛬2,𝛬4,…,𝛬2𝑛)

Remark 1. In this paper, we define  and ‖𝑠‖ = 𝑠1
2 + 𝑠2

2 + … + 𝑠𝑛
2 ‖𝑠‖1 = |𝑠1| + |𝑠2| +… + |𝑠𝑛|

; where  is a vector of continuous functions.𝑠 = (𝑠1, 𝑠2,…,𝑠𝑛)𝑇

Remark 2. For convenience, from now on,  stand for ℱ,∆ℱ,𝔾,∆𝔾, 𝑑𝑥,𝑑𝑦, ∆ ℱ(𝑥),∆ℱ(𝑥),𝔾(𝑦),∆𝔾

, respectively.(𝑦), 𝑑𝑥(𝑡),𝑑𝑦(𝑡), (𝛿 + ‖𝛿‖ ―2𝛽𝛿)

Using (7-9), the error dynamic is yielded as

                                            (10)𝑡0
𝐷𝛼

𝑡 𝛿 = 𝔾 ― 𝛯 ℱ + ∆𝔾 ― 𝛯 ∆ℱ + 𝑑𝑦 ― 𝛯 𝑑𝑥 ―𝑢

By separating the real and imaginary parts of (10)

                    (11){𝑡0
𝐷𝛼

𝑡 𝛿𝑟 = 𝔾𝑟 ― (𝛯𝑟 ℱ𝑟 ― 𝛯𝑖 ℱ𝑖)        
+ ∆𝔾𝑟 ― (𝛯𝑟 ∆ℱ𝑟 ― 𝛯𝑖 ∆ℱ𝑖)  

+ 𝑑𝑦,𝑟 ― (𝛯𝑟 𝑑𝑥,𝑟 ― 𝛯𝑖 𝑑𝑥,𝑖) ― 𝑢𝑟,
𝑡0

𝐷𝛼
𝑡 𝛿𝑖 = 𝔾𝑖 ― (𝛯𝑟 ℱ𝑖 + 𝛯𝑖 ℱ𝑟)         
+ ∆𝔾𝑖 ― (𝛯𝑟 ∆ℱ𝑖 + 𝛯𝑖 ∆ℱ𝑟)  

 + 𝑑𝑦,𝑖 ― (𝛯𝑟 𝑑𝑥,𝑖 + 𝛯𝑖 𝑑𝑥,𝑟) ― 𝑢𝑖 

Definition 2. It is said that hybrid complex projective synchronization occurs between the drive 

system (7) and the response system (8) with a diagonal complex scaling matrix ,  in a 𝛯 = 𝛯𝑟 +𝑗𝛯𝑖

finite-time, if there exist a complex controller vector  such that𝑢 = 𝑢𝑟 +𝑗𝑢𝑖

                            (12)𝑙𝑖𝑚
𝑡→𝑇

𝛿 = 𝑙𝑖𝑚
𝑡→𝑇

‖𝑦 ― 𝛯 𝑥‖ = 0,  𝑡 > 𝑇

The discussion of the hybrid complex projective synchronization between two FO complex chaotic 

systems (7) and (8) can be translated into the analysis of the asymptotical stability of the zero 

solution of the error system (10).
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Assumption 1. The uncertainties and external disturbances are assumed to be bounded. Therefore, 

there exist appropriate positive constants  such that:𝜃𝑘,𝜃′𝑘, Θ𝑘,Θ′𝑘, 𝜀𝑘, 𝜀′𝑘,ϵ𝑘,ϵ′𝑘, 𝑘 = 1,2,…,2𝑛 

     (13){|∆𝑓𝑘| < 𝜃𝑘 , |∆𝑔𝑘| < Θ𝑘,                        
|𝑑𝑥

𝑘| < 𝜀𝑘 , |𝑑𝑦
𝑘| < ϵ𝑘,                              

|𝑡0
𝐷1 ― 𝛼

𝑡 ∆𝑓𝑘| < 𝜃′𝑘 , |𝑡0
𝐷1 ― 𝛼

𝑡 ∆𝑔𝑘| < Θ′𝑘,
|𝑡0

𝐷1 ― 𝛼
𝑡 𝑑𝑥

𝑘| < 𝜀′𝑘 , |𝑡0
𝐷1 ― 𝛼

𝑡 𝑑𝑦
𝑘| < ϵ′𝑘      

Hence, one can conclude from (13)

     (14){|∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― Λ𝑘 + 1 ∆𝑓𝑘 + 1)| < 𝜏𝑘,                
|𝑑𝑦

𝑘 ― (Λ𝑘 𝑑𝑥
𝑘 ― Λ𝑘 + 1 𝑑𝑥

𝑘 + 1)| < 𝜒𝑘,                     
|𝑡0

𝐷1 ― 𝛼
𝑡 (∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― Λ𝑘 + 1 ∆𝑓𝑘 + 1))| < 𝜏′𝑘,

|𝑡0
𝐷1 ― 𝛼

𝑡 (𝑑𝑦
𝑘 ― (Λ𝑘 𝑑𝑥

𝑘 ― Λ𝑘 + 1 𝑑𝑥
𝑘 + 1))| < 𝜒′𝑘,    

𝑘 = 1,3,…,2𝑛 ― 1

       (15){ |∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― 1 + Λ𝑘 ― 1 ∆𝑓𝑘)| < 𝜏𝑘,                                
|𝑑𝑦

𝑘 ― (Λ𝑘 𝑑𝑥
𝑘 ― 1 + Λ𝑘 ― 1 𝑑𝑥

𝑘)| < 𝜒𝑘,                        
|𝑡0

𝐷1 ― 𝛼
𝑡 (∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― 1 + Λ𝑘 ― 1 ∆𝑓𝑘))| < 𝜏′𝑘,   

|𝑡0
𝐷1 ― 𝛼

𝑡 (𝑑𝑦
𝑘 ― (Λ𝑘 𝑑𝑥

𝑘 ― 1 + Λ𝑘 ― 1 𝑑𝑥
𝑘))| < 𝜒′𝑘,       

          𝑘 = 2,4,…,2𝑛

              

where  are positive constants. 𝜏𝑘, 𝜒𝑘, 𝜏′𝑘, 𝜒′𝑘,  𝑘 = 1,2,…,2𝑛

Lemma 1. For every given scalar  and positive scalar , the following inequality holds: [28]Φ Ψ

           (16)Φ 𝑡𝑎𝑛ℎ(ΨΦ) = |Φ||𝑡𝑎𝑛ℎ(ΨΦ)| ≥ 0

Lemma 2. (Barbalat’s lemma [29]). If  is a uniformly continuous function for  and if 𝜂:𝑅→𝑅 𝑡 ≥ 0

the limit of  exists and is finite, then .∫𝑡
0𝜂(𝜔)𝑑𝜔 𝑙𝑖𝑚

𝑡→∞
𝜂(𝑡) = 0

3. Controller design

In our proposed sliding mode control scheme, first we consider a sliding function based on the 

desired system dynamics as [19]

                                                         (17)         𝑠 = 𝛿 + 𝜌∫𝑡
0(𝛿 + ‖𝛿‖ ―2𝛽𝛿)𝑑𝑡
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where ,  and . 𝑠 = 𝑠𝑟 +𝑗𝑠𝑖 = (𝑠1,𝑠2,…,𝑠𝑛)𝑇 ∈ 𝐶𝑛 𝜌 > 0 𝛽 ≠ 0

Therefore one gets

              (18){𝑠𝑟 = 𝛿𝑟 + 𝜌∫𝑡
0(𝛿𝑟 + ‖𝛿‖ ―2𝛽𝛿𝑟)𝑑𝑡

𝑠𝑖 = 𝛿𝑖 + 𝜌∫𝑡
0(𝛿𝑖 + ‖𝛿‖ ―2𝛽𝛿𝑖)𝑑𝑡  

where .𝑠𝑟 = (𝜎1,𝜎3,…,𝜎2𝑛 ― 1)𝑇, 𝑠𝑖 = (𝜎2,𝜎4,…,𝜎2𝑛)𝑇

Once the system operates in the sliding motion, it satisfies  [29].                            𝑠 = 0

Hence (18) can be obtain as

                                  (19) {𝛿𝑟 = ―𝜌(𝛿𝑟 + ‖𝛿‖ ―2𝛽𝛿𝑟)
𝛿𝑖 = ―𝜌(𝛿𝑖 + ‖𝛿‖ ―2𝛽𝛿𝑖)  

Theorem 3.1. The sliding mode dynamic (19) is finite-time stable; i.e., the states of (19) will 

converge to the zero equilibrium  from ; where  is as𝑒𝑘 = 0, 𝑘 = 1,2,…,2𝑛 𝑡 ≥ 𝑇1 𝑇1

 .𝑇1 ≤ 1 2𝜌𝛽(1 + (∑2𝑛
𝑘 = 1𝑒𝑘(0)2)𝛽)

Proof. Consider a Lyapunov function as  and taken its time derivative𝑉1 = 1 2∑2𝑛
𝑘 = 1𝑒𝑘

2

         (20)  𝑉1 = ― 𝜌∑2𝑛
𝑘 = 1𝑒𝑘(𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘)

Hence one can conclude that

                          (21)𝑉1 = ―2𝜌 𝑉1 ― 21 ― 𝛽𝜌 𝑉1
―𝛽 𝑉1

Multiplying (21) by , it yields𝛽 𝑉1
𝛽 ― 1𝑒2𝜌𝛽𝑡

                  (22)(𝛽 𝑉1
𝛽 ― 1𝑉1 + 2𝜌𝛽 𝑉1

𝛽)𝑒2𝜌𝛽𝑡 = ― 21 ― 𝛽𝜌𝛽 𝑒2𝜌𝛽𝑡

where  is an exponential function. Then one obtains𝑒

      (23)
𝑑
𝑑𝑡(𝑉1

𝛽𝑒2𝜌𝛽𝑡) = ― 21 ― 𝛽𝜌𝛽 𝑒2𝜌𝛽𝑡

Integrating from both sides of (23) from zero to t

       (24)𝑉1(𝑡)𝛽 = (2 ―𝛽 + 𝑉1(0)𝛽)𝑒 ―2𝜌𝛽𝑡 ― 2 ―𝛽
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Hence, the states  will converge to zero in a finite-time 𝑒𝑘

     (25)𝑇1 = 𝑡 ≤ 1
2𝜌𝛽𝑙𝑛(1 + (∑2𝑛

𝑘 = 1𝑒𝑘(0)2)𝛽)
Thus, the proof is achieved completely.

After designing the sliding manifold, the next step is to design the reasonable control law to force 

the error trajectories to go onto the sliding surface within the finite-time. In order to assure the 

existence of the sliding motion (to satisfy the reaching condition ) and to eliminate the 𝑠𝑇𝑠 ≤ 0

chattering phenomenon caused by the sign function, a continuous control law is proposed as

          (26)     { 𝑣𝑘 = 𝑔𝑘 ― (Λ𝑘 𝑓𝑘 ― Λ𝑘 + 1 𝑓𝑘 + 1) +                                                     
𝑡0

𝐷𝛼 ― 1
𝑡 (𝜌 (𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘) + 𝜔 𝑡𝑎𝑛ℎ(𝜂 𝜎𝑘) + 𝜆 𝜎𝑘 ),                    

  𝑘 = 1,3,…,2𝑛 ― 1
𝑣𝑘 = 𝑔𝑘 ― (Λ𝑘 𝑓𝑘 ― 1 + Λ𝑘 ― 1 𝑓𝑘) +                                                      
𝑡0

𝐷𝛼 ― 1
𝑡 (𝜌 (𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘) + 𝜔 𝑡𝑎𝑛ℎ(𝜂 𝜎𝑘) + 𝜆 𝜎𝑘 ),                      

   𝑘 = 2,4,…,2𝑛       

In (26),  and  are the adaptation coefficients which tune the gain and steepness of the  𝜔 𝜂 𝑡𝑎𝑛ℎ

function, respectively. Also  is a positive gain which tunes the speed of the synchronization.𝜆

Theorem 3.2. If the FO chaotic system (11) is controlled by the control law (26), then the system 

trajectories will tend to the sliding surface .𝜎𝑘 = 0, 𝑘 = 1,2,…,2𝑛

Proof. Constructing a Lyapunov function candidate as

  (27)𝑉2 = (1 2)(∑2𝑛
𝑘 = 1𝜎𝑘

2)

Taken integer-order derivative from (27) along the trajectories of (17) one obtains

                (28)     𝑉2 = ∑2𝑛
𝑘 = 1𝜎𝑘(𝑒𝑘 + 𝜌(𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘))

Substituting (11) into (28) results
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𝑉2 = ∑2𝑛 ― 1
𝑘 = 1,3𝜎𝑘

(𝑡0
𝐷1 ― 𝛼

𝑡 (𝑔𝑘 ― (Λ𝑘 𝑓𝑘 ― Λ𝑘 + 1 𝑓𝑘 + 1) + ∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― Λ𝑘 + 1 ∆𝑓𝑘 + 1) + 𝑑𝑦
𝑘 ― (Λ𝑘 𝑑𝑥

𝑘 ― Λ𝑘 + 1 𝑑𝑥
𝑘 + 1) ― 𝑣𝑘) + 𝜌(𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘))

+ ∑2𝑛
𝑘 = 2,4𝜎𝑘

            (𝑡0
𝐷1 ― 𝛼

𝑡 (𝑔𝑘 ― (Λ𝑘 𝑓𝑘 ― 1 + Λ𝑘 ― 1 𝑓𝑘) + ∆𝑔𝑘 ― (Λ𝑘 ∆𝑓𝑘 ― 1 + Λ𝑘 ― 1 ∆𝑓𝑘) + 𝑑𝑦
𝑘 ― (Λ𝑘 𝑑𝑥

𝑘 ― 1 + Λ𝑘 ― 1 𝑑𝑥
𝑘) ― 𝑣𝑘) + 𝜌(𝑒𝑘 + ‖𝛿‖ ―2𝛽𝑒𝑘))

     (29) 

Using the Assumption 1 and inserting (26) into (29), yields

          (30)𝑉2 ≤ ∑2𝑛
𝑘 = 12(𝜏′𝑘 + 𝜒′𝑘)𝜎𝑘 ― 𝜔 𝜎𝑘 𝑡𝑎𝑛ℎ(𝜂 𝜎𝑘) ― 𝜆 𝜎𝑘

2

Using the Lemma 1, . Thus we have∑2𝑛
𝑘 = 1𝜔 𝜎𝑘 𝑡𝑎𝑛ℎ(𝜂 𝜎𝑘) = ∑2𝑛

𝑘 = 1 𝜔 |𝜎𝑘||𝑡𝑎𝑛ℎ(𝜂 𝜎𝑘)|

           (31)𝑉2 ≤ ∑2𝑛
𝑘 = 1(2(𝜏′𝑘 + 𝜒′𝑘)𝜎𝑘 ― 𝜈 |𝜎𝑘| ― 𝜆 𝜎𝑘

2)

If , where  is a positive constants, then𝜈 ≥ (2(𝜏′𝑘 + 𝜒′𝑘) + 𝜉), 𝑘 = 1,2,…,2𝑛 𝜉

      (32)𝑉2 ≤ ― 2𝜉 𝑉2
0.5 ―2𝜆 𝑉2

Therefore, the right hand side of (32) is negative semi-definite. So the stability of the system is 

guaranteed.

Multiplying both sides of (32) by , results𝑉2
―0.5

     (33)𝑉2
―0.5𝑉2 +2𝜆 𝑉2

0.5 ≤ ― 2𝜉

Multiplying (33) by  and then integrating at both sides from zero to t, one obtains(1 2)𝑒𝜆𝑡

𝑉2
0.5 ≤ ((1 2) (𝜉 𝜆) + 𝑉2(0)0.5)𝑒 ―𝜆𝑡 ― (1 2) (𝜉 𝜆)

.      (34)𝑇2 = 𝑡 ≤ (1 𝜆) 𝑙𝑛(1 + (𝜆 𝜉)|∑2𝑛
𝑘 = 1𝜎𝑘(0)|)

Therefore, from (32-34) and by directly according to definition 2, the state trajectories of the 

error system (10) will converge to  in a finite-time .𝜎𝑘 = 0, 𝑘 = 1,2,…,2𝑛 𝑇2
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According to Theorems 3.1 and 3.2, the finite-time synchronization between the drive system (7) 

and the response system (8) can be reached in a finite-time .𝑇 ≤ 𝑇1 + 𝑇2

Based on the sliding manifold (17), the different control law will design through the use of FO 

derivative of the Lyapunov function and the Lemma which proved in [30].

Therefore, in order to assure the existence of the sliding motion ( ), an appropriate 𝑠𝑇
𝑡0

𝐷𝛼
𝑡 𝑠 ≤ 0

continuous control law is designed as              

  (35)𝑢 = 𝔾 ― 𝛯 ℱ + 𝜌 𝑡0
𝐷𝛼 ― 1

𝑡 (Δ) + 𝜔 𝑡𝑎𝑛ℎ(𝜂 𝑠) + 𝜆 𝑠

Theorem 3.3. If the FO chaotic system (11) is controlled by the control law (35), then the system 

trajectories will tend to the sliding surface .𝑠 = 0

Proof. Construct a Lyapunov function candidate as .𝑉3 = 𝑠𝑇𝑠 2

Taken FO derivative from Lyapunov function along the trajectories of (17), yields

     (36)  𝑡0
𝐷𝛼

𝑡 𝑉3 ≤ 𝑠𝑇(𝔾 ― 𝛯 ℱ + ∆𝔾 ― 𝛯 ∆ℱ + 𝑑𝑦 ― 𝛯 𝑑𝑥 ― 𝑢 + 𝜌𝑡0
𝐷𝛼 ― 1

𝑡 (Δ))

According to the Assumption 1 and inserting the control input (35) into (36), one has

     𝑡0
𝐷𝛼

𝑡 𝑉3 ≤ (𝜏 + 𝜒)‖𝑠‖1 ― 𝜔 𝑠𝑇 𝑡𝑎𝑛ℎ(𝜂 𝑠) ― 𝜆 ‖𝑠‖2

We assume . Thus one can conclude that𝜔 𝑠𝑇 𝑡𝑎𝑛ℎ(𝜂 𝑠) = 𝜈 ‖𝑠‖1

          𝑡0
𝐷𝛼

𝑡 𝑉3 ≤ 𝐾‖𝑠‖1 ― 𝜆 ‖𝑠‖2 ≤ (𝐾 ― 𝜆) ‖𝑠‖2

where . If , then𝐾 = (𝜏 + 𝜒 ― 𝜔) 𝐾 ― 𝜆 ≤ ―𝐿

      (37)𝑡0
𝐷𝛼

𝑡 𝑉3 ≤ ―2𝐿 𝑉3

Therefore, the right hand side of (37) is negative semi-definite. So the stability of system is 

guaranteed. Using the Volterra integral 

 (38)𝑉3(𝑡) ― ∑⌈𝛼⌉ ― 1
𝑘 = 0 𝑉3(𝑡0)(𝑘)𝑡𝑘

𝑘! ≤ ―
2𝐿

𝛤(𝛼)∫
𝑡
0

𝑉3(𝜏)

(𝑡 ― 𝜏)1 ― 𝛼𝑑𝜏
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let , the inequality (38) can be rewritten as∑⌈𝛼⌉ ― 1
𝑘 = 0 𝑉3(𝑡0)(𝑘)𝑡𝑘

𝑘! = 𝑉3(𝑡0)

 
2𝐿

𝛤(𝛼)∫
𝑡
0

𝑉3(𝜏)

(𝑡 ― 𝜏)1 ― 𝛼𝑑𝜏 ≤ 𝑉3(𝑡0) ― 𝑉3(𝑡)

Since  and  is positive and finite, one can obtain that 𝑡0
𝐷𝛼

𝑡 𝑉3 ≤ 0 𝑉3(𝑡0) ― 𝑉3(𝑡) ≥ 0
2𝐿

𝛤(𝛼)

 exists and is finite. Thus according to Lemma 2,  . ∫𝑡
0

𝑉3(𝜏)

(𝑡 ― 𝜏)1 ― 𝛼𝑑𝜏 𝑙𝑖𝑚
𝑡→∞

𝑉3(𝑡) = 0

Therefore . Thus, the system trajectories can be driven onto the predefined sliding surface and 𝑠→0

the proof is completed.

Moreover, a different finite-time FO control law is designed as

          (39)𝑢 = 𝔾 ― 𝛯 ℱ + 𝛿 +𝜌 𝑡0
𝐷1 ― 𝛼

𝑡 (𝑡0
𝐷2𝛼 ― 2

𝑡 (Δ) + 𝑡0
𝐷𝛼 ― 2

𝑡 (Δ)) +𝑠(𝑠𝑇𝑠) ―𝑞 ―
𝜀 𝑠

‖𝑠‖2

where  is not zero and  is a positive constant.𝑞 𝜀

Theorem 3.4. If the FO chaotic system (10) is controlled by the control law (39), then the system 

trajectories will tend to the sliding surface  in a finite-time.𝑠 = 0

Proof. Constructing a quadratic Lyapunov function as . 𝑉4 =
(𝑠𝑇𝑠)

2

Taken FO derivative of the Lyapunov function along the trajectories of (17) one obtains

            (40) 𝑡0
𝐷𝛼

𝑡 𝑉4 ≤ 𝑠𝑇(𝑡0
𝐷𝛼

𝑡 𝛿 + 𝜌 𝑡0
𝐷𝛼 ― 1

𝑡 (Δ))𝑇

Substituting (10) into (40) and then using the control input (39) yields

𝑡0
𝐷𝛼

𝑡 𝑉4 ≤ 𝑠𝑇(∆𝔾 ― 𝛯 ∆ℱ + 𝑑𝑦 ― 𝛯 𝑑𝑥 ― 𝑠 ― 𝑠(𝑠𝑇𝑠) ―𝑞 +
𝜀 𝑠

‖𝑠‖2)
According to the Assumption 1, .𝑡0

𝐷𝛼
𝑡 𝑉4 ≤ ― ‖𝑠‖2 ― ‖𝑠‖2 ― 2𝑞 + ‖𝑠‖2(𝜏 + 𝜒) + 𝜀

If , where  is a positive constants, then(𝜏 + 𝜒 ― 1) ≤ ―𝜈 𝜈

          (41)𝑡0
𝐷𝛼

𝑡 𝑉4 ≤ ―2𝜈 𝑉4 ― 21 ― 𝑞𝑉4
1 ― 𝑞 + 𝜀 ≤ ―2𝜈 𝑉4 + 𝜀
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Taken the Laplace transform from (41) with respect to , we have  .𝑉4(0) = 0 𝑉4(𝑆) =
𝜀

𝑆(𝑆𝛼 + 2𝜈)

Using definition 1 and equality (5), then  obtains as,  .                                         𝑉4(𝑡) 𝑉4(𝑡) = 𝜀∫𝑡
0 𝑡𝛼 ― 1𝐸𝛼,𝛼( ―2𝜈 𝑡𝛼)𝑑𝑡

Based on the equality (6), it follows that

          (42)𝑉4(𝑡) ≤ 𝜀 𝑡𝛼𝐸𝛼,𝛼 + 1( ―2𝜈 𝑡𝛼) ≤ 𝜀 ∑∞
𝑘 = 0

( ―1)𝑘(2𝜈)𝑘𝑡𝛼𝑘

Γ((𝑘 + 1)𝛼 + 1)

Thus, by simple calculation, one can conclude that the right hand side of (42) is convergent which 

implies that the state trajectories in (17) converge to . Therefore, the proof is completed.𝑠 = 0

4. Numerical simulation and experimental results

Case 1: Finite-time synchronization of FO complex chaotic Chen systems 

According to the results in section 3, in this example, the complex projective synchronization 

between two identical FO complex chaotic Chen systems [10] with different initial conditions in 

the presence of system uncertainties and external disturbances will study. The drive system is as 

   (43)𝑡0
𝐷𝛼

𝑡 𝑥 = ( 35(𝑥2 ― 𝑥1)
―7𝑥1 + 28𝑥2 ― 𝑥1𝑥3

1
2(𝑥1𝑥2 + 𝑥1𝑥2) ― 3𝑥3

)
ℱ

+ (𝐴(sin (𝑚1) + 𝑗cos (𝑚2))
𝐴(sin (𝑚3) + 𝑗cos (𝑚4))

𝐴sin (𝑚5) )
∆ℱ

+ (𝐴(sin (𝑡) + 𝑗cos (𝑡))
𝐴(sin (𝑡) + 𝑗cos (𝑡))

𝐴sin (𝑡) )
 𝑑𝑥

and the uncontrolled response system can be as

      (44)𝑡0
𝐷𝛼

𝑡 𝑦 = ( 35(𝑦2 ― 𝑦1)
―7𝑦1 + 28𝑦2 ― 𝑦1𝑦3

1
2(𝑦1𝑦2 + 𝑦1𝑦2) ― 3𝑦3

)
ℱ

+ (𝐴(cos (𝑟1) + 𝑗sin (𝑟2))
𝐴(cos (𝑟3) + 𝑗sin (𝑟4))

𝐴cos (𝑟5) )
∆𝔾

+ (𝐴(cos (𝑡) + 𝑗sin (𝑡))
𝐴(cos (𝑡) + 𝑗sin (𝑡))

𝐴cos (𝑡) )
𝑑𝑦

where A = 0.2. The system exhibits a chaotic behavior when . The parameter of the (𝛼 = 0.96)

controller are set as , . . The 𝜌 = 5,  𝛽 = 0.1,  𝜂 = 0.1,  𝜔 = 10 𝜆 = 10 𝛯 = 𝑑𝑖𝑎𝑔(1 ― 𝑗,1 ― 𝑗,1)

initial values of the states of drive and response systems are (𝑥1(0),𝑥2(0),𝑥3(0))𝑇 =

and , (1 + 𝑗1.7, 1.3 + 𝑗0.5, 2.3)𝑇  (𝑦1(0),𝑦2(0),𝑦3(0))𝑇 = (2 + 𝑗0.7, 0.5 + 𝑗1.6, 1.1)𝑇
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respectively. The synchronized states and the synchronization errors between two systems are 

shown in Fig. 1 and 2. The time history of the control inputs (26) are depicted in Fig. 3.
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Fig. 1. The synchronized states of the two identical FO complex chaotic Chen systems.
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Fig. 2. The synchronization errors between the system (43) and the system (44).
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Fig. 3. The time history of the control inputs (26).

Remark 3. As illustrated in Figure 3, the control effort is not sub-optimal. Therefore, to have sub-

optimal control of the synchronization of such FO complex chaotic systems, the traditional control 

techniques like sliding mode control cannot be used. For each synchronization scheme such as 

hybrid complex projective synchronization with different scaling matrices, the result of the control 

input is not better than in Figure 3. So, in order to compare the simulation results numerically with 

the different designed control inputs, a sub-optimal control effort is required in the output of the 

synchronization system. Therefore, the real counterpart of these systems must be used as an 

alternative system for the synchronization which has better results and sub-optimal control effort. 

Case 2: Hybrid control of synchronization of FO real chaotic Chen systems

In order to design the hybrid control scheme, the following intermediate variables are introduced: 

     (45){𝐷1 = {𝛿 ∈ 𝑅3| ‖𝛿‖ ≥ 𝑄}
𝐷2 = 𝛿 ∈ 𝑅3| 𝛿 ∉ 𝐷1       

where . The FO controllers defined in (35) and (39) are considered as  and , 𝛿 = [𝛿1, 𝛿2,𝛿3]𝑇 𝑢1 𝑢2

respectively. The switched error system can be proposed as 

                      (46)𝑡0
𝐷𝛼

𝑡 𝛿 = 𝔾 ― 𝛯 ℱ + ∆𝔾 ― 𝛯 ∆ℱ + 𝑑𝑦 ― 𝛯 𝑑𝑥 ― 𝑢𝜎
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where , if  and , if . In this case, the complete synchronization between 𝜎 = 1 𝛿 ∈ 𝐷1 𝜎 = 2 𝛿 ∈ 𝐷2

two identical FO real chaotic Chen systems [31] with different initial conditions in the presence of 

system uncertainties and external disturbances is considered. The drive system is as 

       (47)𝑡0
𝐷𝛼

𝑡 𝑥 = ( 35(𝑥2 ― 𝑥1)
―7 𝑥1 ― 𝑥1𝑥3 + 28 𝑥2

𝑥1𝑥2 ― 3𝑥3
)

ℱ

+ ( 𝐴(cos (𝑥1) + sin (2𝑡))
𝐴(cos (𝑥2) + sin (2𝑡))
𝐴(cos (𝑥3) + sin (2𝑡)) )

∆ℱ + 𝑑𝑥

and the uncontrolled response system is as

                          (48)𝑡0
𝐷𝛼

𝑡 𝑦 = ( 35(𝑦2 ― 𝑦1)
―7𝑦1 ― 𝑦1𝑦3 + 28𝑦2

𝑦1𝑦2 ― 3𝑦3
)

ℱ

+ ( 𝐴(sin (𝑦1) + cos (2𝑡))
𝐴(sin (𝑦2) + cos (2𝑡))
𝐴(sin (𝑦3) + cos (2𝑡)) )

∆𝔾 + 𝑑𝑦

where A=0.2. The system exhibits a chaotic behavior when . The parameter of the 𝛼 = 0.9

controller are set as ,  and . 𝑄 = 0.07, 𝜌 = 5,  𝛽 = 0.1,  𝜂 = 0.1,  𝜔 = 10 𝜆 = 10 𝛯 = 𝑑𝑖𝑎𝑔(1,1,1)

Parameter Q is acquired by the trial and error procedure in order to minimize the cost function. 

The initial conditions of states are  and(𝑥1(0),𝑥2(0),𝑥3(0))𝑇 = (1.5, 0.1,1.7)𝑇  

. The synchronized states and the synchronization errors (𝑦1(0),𝑦2(0),𝑦3(0))𝑇 = (0.5, 1.4, 0.2)𝑇

between (47) and (48) are shown in Fig. 4 and Fig. 5, respectively. The hybrid control input signal 

under the switching law (45) is depicted in Fig. 6.
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Fig. 4. The synchronized sates of the system (47) and the system (48).
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Fig. 5. The synchronization errors between the system (47) and the system (48).
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Fig. 6. The time history of the hybrid control inputs.

From figures (4) and (5) it can be seen that the synchronization errors converge to zero in a 

short time without any overshoot and steady state error. In order to compare the result of the 

synchronization of FO chaotic Chen systems (47) and (48) based on the controllers (35), (39), and 

the hybrid controller designed in this section, as well as the results of the synchronization based 

on [32, 33], an appropriate cost function is considered as ; 𝐽 =  (1 𝑁)∑𝑁
𝑖 = 1(∑3

𝑗 = 1𝑒𝑗(𝑖)2 + 𝑢𝑗(𝑖)2)0.5

where  is the time of simulation divided by h. One can see from Table 1 that, the proposed hybrid 𝑁
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control technique is more efficient versus the different initial conditions and also has the better 

result against the control inputs designed in the some of the previous papers such as [32, 33].

*** Controller 
1 (35)

Controller 2 
(39)

Hybrid 
Controller

Controller 
[32]

Coupling 
method[33]

x(0)=[1.5 0.1 1.7],   y(0)=[0.5 1.4 0.2]

x(0)=[0.2 0.5 0.4],   y(0)=[0.9 1.1 0.6]    

x(0)=[2 1.6 1.4],      y(0)=[2.2 0.4 1.5]       

1.5162

0.6898

1.1814

2.4745

0.7567

      1.5962

1.4428

0.6656

1.0909

1.5445

0.7562

1.2275

11.7045

1.2730

1.8394

Table 1: The cost function values based on the different control input signals

5. Conclusion

In this paper, the stabilization and synchronization problems of identical FO chaotic systems are 

investigated. A new hybrid FO sliding mode controller is introduced that is robust against 

perturbations. Two illustrative examples show the feasibility and applicability of the proposed 

control techniques. For further studies, we ask the readers to investigate a way to obtain a sub-

optimal control law for the control and synchronization of such FO complex chaotic systems as 

well as non-identical FO real chaotic and hyper-chaotic systems. Also, one can obtain the 

parameter Q adaptively to minimize the cost function in the real time and it is an open problem.
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Fig. 1. The synchronized states of two identical FO complex chaotic Chen systems. 
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Fig. 2. The synchronization errors between the system (43) and system (44). 
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Fig. 3. The time history of control inputs (26). 
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Fig. 4. The synchronized the sates of the system (47) and system (48). 
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Fig. 5. The synchronization errors between the system (47) and system (48). 
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Fig. 6. The time history of hybrid control inputs. 
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