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The principal purpose of this study is investigating the dynamic analysis of porous bi-directional 
functionally graded (FG) plates reinforced by eccentrically outside stiffeners and subjected to a moving 
load with a constant velocity. The materials are assumed to be graded in two directions and their 
effective properties are computed by the rule of mixtures. The FG plates are assumed to have both even 
and uneven distribution of porosities over the plate cross-section. Using appropriate kinematic relations, 
the displacements of the plate mid-plane are compatible with those of the stiffeners. The governing 
differential equations of porous bi-directional FG plates are derived through Hamilton’s principle based on 
the first order shear deformation theory (FSDT) and Von Karman relations for large deflections. Moreover, 
dynamic relaxation method with kinetic damping (K-DR) coupled with Newmark integration technique 
are used to solve the plate’s time-varying nonlinear equations. The effects of some numerical aspect 
ratios such as volume fraction, boundary conditions, porosity coefficients and distribution patterns and 
the existence of stiffeners on dynamic behaviors are investigated. The results show that the stiffness of 
the porous bi-directional FG plates is highly improved with the aid of eccentric stiffeners; hence, better 
dynamic behaviors are provided.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

In recent decades, a plethora of research have been conducted 
on manufacturing the plates which can be employed in the wide 
range of structures and engineering applications such as aerospace, 
marine structures, and automobiles [1]. Functionally graded ma-
terials (FGMs) are new type of materials introduced in 1984 [2], 
whose compositions are designed to change continuously within 
the body, particularly along the thickness direction [3–5]. In this 
case, nonlinear steady-state responses of an axially moving func-
tionally graded plate coupled with ideal liquid was reported by 
Wang and Zu [6]. Duc et al. [7] dealt with dynamic behaviors 
of supported FGM plates under thermal and damping loadings. 
Another study on dynamic responses of piezoelectric sigmoid FG 
shells with cylindrical shape on elastic foundations and under 
thermal-electro-mechanical loading was performed by N.D. Duc 
[8]. As time goes by, modern structures and components may re-
quire advanced materials in which their constituents vary contin-
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uously in different directions [9]. To do this, bi-directional func-
tionally graded materials (2D-FGMs) are introduced, which are of 
great importance in the design and development of engineering 
applications especially once more effective high-temperature resis-
tant materials are compulsory. In contrast with one-directional FG 
materials, FGMs with two-dimensional dependent material proper-
ties can resist far more severe variations of temperature [10]. Until 
now, scholars have performed a number of studies on this field. In 
the following, these studies are reviewed briefly.

Li et al. [11] developed an algorithm based on differential 
quadrature method for the thermo-elastic analysis of bi-directional 
FGM plates. In the same year, 2009, Nemat-Alla et al. [12] used a 
3D finite element model to numerically scrutinize the elastoplas-
tic behaviors of 2D-FGMs under thermal loading. Some years later, 
the free vibration of a two-dimensional functionally graded circu-
lar cylindrical shell is analyzed by Ebrahimi and Najafizadeh [13]. 
Satouri et al. [14] undertook studies on elastic buckling analysis of 
a two-dimensional functionally graded cylindrical shell reinforced 
by axial stiffeners (stringer) under combined compressive axial and 
transverse uniform distributive loads using differential quadrature 
method (DQM). In this study, the effects of some items like loads, 
geometrical and stringer parameters along with FG power index on 
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the critical buckling load for different boundary conditions were 
investigated. Furthermore, the concept of 2D-FGMs was also ap-
plied to nano-structures [15,16].

There are several procedures to fabricate FGMs; for example, 
Powder Metallurgy [17], vapor deposition, multi-step sequential 
infiltration technique, non-pressure sintering technique and self-
propagating high temperature synthesis technique [18]. Neverthe-
less, in the process of preparing FGMs, porosities and micro-voids 
may occur inside materials due to a few technical issues. For in-
stance, the constrictions between adjacent compositions of metal 
and ceramic phases in functionally graded materials can arise 
during the sintering process, which may result in a number of 
porosities scattering inside the materials [19]. Additionally, when 
multi-step sequential infiltration technique is applied, it is hard to 
penetrate the secondary material into the middle area rigorously, 
whereas infiltrating the material into the top and bottom zones is 
easier, as a result of which, porosities happen mainly in the middle 
zone of the FGMs. Also, because of the large difference in solidi-
fication temperatures between material constituents, porosities or 
micro-voids can be formed during the process of sintering [20]. 
Some studies have been performed on the static and dynamic be-
havior of porous structures using the various theories of elasticity. 
The interaction of a fluid with a moving FG plate containing micro-
voids was studied numerically by Wang and Yang [21]. Another 
study on vibration characteristics of porous FGM plates moving 
in a thermal environment was conducted by Wang and Zu [22]. 
Duc et al. [23] explored the effects of temperatures and mechan-
ical loads on transient bending deflections of porous functionally 
graded plates based on the first order deformation theory. They 
demonstrated that temperature field and applied loads can impose 
great impacts on performances of FGM plates with porosities. Duc 
[24] also analytically studied the effects of porosity on dynamic 
responses of supported FGM shallow spherical shells reinforced 
with outside stiffeners. In another study, Duc and Quan [25] car-
ried out an investigation into nonlinear mechanical responses of 
eccentrically stiffened FGM cylindrical panels containing porosi-
ties resting elastic foundations with the aid of Bubnov-Galerkin 
technique and a proper stress function. Ziane et al. [26] used an 
analytical method to predict the thermal buckling of FGM box 
beams. By means of a modified power law approach as well as 
D’Alembert’s theory, Wang [27] investigated nonlinear dynamics 
of imperfect functionally graded piezoelectric plates in translation 
state. It was revealed that electric potential, FG gradient indices 
and translational velocity have considerable influences on natural 
frequency of structures. Taking Reddy’s higher-order shear defor-
mation plate theory into consideration, Cong et al. [28] studied 
buckling and post-buckling behavior of functionally graded plates 
with porosities resting on elastic foundations and subjected to 
mechanical, thermal and thermomechanical loads. In 2018, Wang 
et al. [29] carried out research on thermal vibration of a cylin-
drical shell with geometrical imperfections distributed evenly or 
unevenly through the thickness direction. Based on the first or-
der shear deformation theory (FSDT), the elastic buckling and free 
vibration of plates with uniform and non-uniform porosity disper-
sions were analyzed by Thang et al. [30]. A detailed numerical 
study was conducted on the free vibration of porous FG plates 
supported by Winkler/Pasternak/Kerr foundations by Shahsavari et 
al. [31]. They used Galerkin method to solve the equations. The 
differential transformation method (DTM) was employed by Wat-
tanasakulpong and Chaikittiratana [32] to investigate the linear 
and nonlinear vibration responses of porous FG beams elastically 
restrained at two ends on elastic supports. Recently, Tang et al. [33]
concluded that the effect of porosity dispersed in the thickness di-
rection on the critical buckling load is more noticeable compared 
to the impact of axial porosity distribution.
Solids under action of moving loads are employed in a wide 
variety of applications, such as machine tools, transportation and 
aerospace engineering. Relevant to such applications, Lamb was 
the first one who investigated wave propagation in a plate un-
der a moving load [34]. Afterward, Wilson and Tsrik [35] ana-
lyzed the dynamic behavior of a rectangular plate and a cylindri-
cal shell with various elasticity modulus. Based upon thin plate 
theory, Agrawal et al. [36] studied the dynamic response of or-
thotropic thin plates excited by moving masses. Applying super-
position principle, Marchesiello et al. [37] improved a dynamic 
interaction model of vehicle-bridge and the bridge was displayed 
as an isotropic rectangular plate. De Faria and Oguamanam [38]
proposed a new strategy based on an adaptive mesh scheme to 
investigate the vibration of Mindlin plates under traveling con-
centrated loads. In another study, Vosoughi et al. [39] analyzed 
dynamic response of a laminated plate on an elastic foundation 
under a moving load. High-order shear deformation theory and 
numerical differential quadrature method along with the Newmark 
method were adopted to solve the problem. With the application 
of two sorts of theories of elasticity for plates (CPT and FSDT) 
Malekzadeh et al. [40,41] studied dynamic responses of function-
ally graded plates under various kinds of moving loads. Şimşek 
and Aydın [42] studied the dynamic displacement of an imperfect 
FG plate under a moving load. They examined the influences of 
some factors including material variation, porosity coefficients and 
distribution patterns, micro-size parameters and the speed of the 
moving forces on the transient behaviors. Bi-directional FG rotat-
ing heterogeneous cylinders under moving mechanical loads and 
thermal conditions were fully analyzed by Golzari and Asgari [43]. 
Recently, Yang et al. [44] scrutinized the time-dependent perfor-
mances of linearly tapered bi-directional FG beams subjected to a 
moving harmonic load.

As porosities and micro voids can decrease the strength of 
structures and due to the significance of design, control, diagnosis 
and life management of bi-directional functionally graded solids 
subjected to dynamic forces like moving loads, it is attempted 
in this study to find ways for improving the structural resis-
tance. Despite using several ways, such as implementing graphene 
nanoplatelets [45–47], to strengthen mechanical erections, the use 
of stiffeners can be one of the most effective and affordable meth-
ods. They are structural elements with practical significance in ap-
plications, namely aircrafts, ships, bridge decks, etc. In this regard, 
an analysis was performed by Turvey and Der Avanessian [48] to 
examine the effect of ring-stiffener depth on elastic and elastoplas-
tic large deflection response of steel plates. Some researchers have 
numerically analyzed different plates connected to eccentrically 
outside stiffeners with the application of viscos dynamic relax-
ation method (V-DR). The large deflection of eccentrically stiffened 
annular functionally graded (FG) sector plates under mechanical 
and thermo-mechanical loading was obtained by Golmakani and 
Kadkhodayan [49]. In 2015, Mehrabian and Golmakani [50] dealt 
with the effects of stiffener depth along with various boundary 
conditions on static response of annular laminated sector plates. 
Golmakani and Emami [51] also investigated buckling and large 
deflection behaviors of radially functionally graded ring-stiffened 
circular plates based on the DR method. In the case of stiffened 
shells, Duc and Quan [52] examined the post buckling character-
istics of a reinforced double curved shallow shell embedded on 
elastic mediums in thermal environments according to Galerkin 
technique and the classical shell theory. Later and on the basis 
of Reddy’s third-order shear deformation shell theory, Duc [53]
analyzed the effects of some parameters including the FG power 
parameters and elastic foundations on thermal dynamic behaviors 
of stiffened FGM circular cylindrical shells with porosities. A de-
tailed study on nonlinear buckling and post-buckling responses 
of stiffened functionally graded plates with different geometrical 
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Fig. 1. A schematic of a bi-directional FGM plate with a single stiffener.

properties in thermal environments was prepared by Taczała et 
al. [54]. Newly, an analytical approach to investigate buckling be-
haviors of FGM shell segments stiffened by a number of stiffeners 
in thermal environments was developed by Voung and Duc [55]. 
There are some other studies performed on stiffened shells with 
different geometrical shapes [56,57].

To analyze the nonlinear dynamic behaviors of structures, sev-
eral methods have been proposed. Allahyari et al. [58] used a 
multiple-scale method to investigate the nonlinear free vibration 
of a graphene nanoplate. Wang et al. [59] studied the effects of 
some parameters such as moving velocity and edge constrains 
on dynamic performances of a moving plate-fluid system by a 
multiple-scale perturbation technique. Wang et al. [60] also used 
this method to analyze the nonlinear vibration of FGM sandwich 
micro cylindrical shells which transport fluid. Another method 
which can be used to calculate the steady-state response of nonlin-
ear systems is harmonic balance technique. Employing this scheme 
and Galerkin’s method, Wang [61] performed a study on the non-
linear dynamic responses of a composite circular cylindrical shell. 
There are others numerical methods for obtaining dynamic perfor-
mances of structures [62–64].

The numerical results of nonlinear dynamic behaviors of ec-
centrically stiffened rectangular bi-directional functionally graded 
(2D-FG) plates with micro voids under a moving load with the 
combination of kinetic dynamic relaxation method (K-DR) and 
Newmark integration method are presented in this work. More-
over, the effects of different items such as boundary conditions, 
the material gradient properties (n and m), the porosity volume 
fraction and the stiffener heights on dynamic characteristics are 
numerically studied.

2. Theoretical equations

As shown in Fig. 1, a rectangular plate of length a, width b
and thickness h is stiffened by a single stiffener of rectangular 
cross section which is located on the middle of the plate. The 
plate is assumed to be composed of three distinct constituents 
whose volume fractions, V 1, V 2 and V 3 change functionally not 
only from bottom (z = −h/2) to top (z = +h/2), but also along the 
x direction [1], Fig. 1. The z and x are the thickness and axial coor-
dinates, respectively. In this section, firstly the effective properties 
of porous bi-directional FG plates (2D-FG plates) are obtained, and 
then the dynamic equations of the plates and stiffeners are derived 
and those of stiffened plates are achieved based on discretely stiff-
ened theory developed by Basu et al. [65].

2.1. Bi-directional FGM plates with porosities

The volume fractions of constituents of the plates can be for-
mulated as bellow [1]:
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where m and n are positive gradient indexes which control the ma-
terial variation profile in x and z directions, respectively. If m = 0, 
the conventional FG plates with two materials (2 and 3) which 
change functionally through the thicknesses are formed. Once bi-
directional FG plates with porosities equally distributed, Fig. 2(a), 
in all the aforementioned phases are selected, the modified the 
rule of mixtures can be proposed as Eq. (2),
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in which P and αp are the material properties (Young’s modulus, 
E , Poisson’s ratio, ϑ , density, ρ) and porosity fraction, respectively. 
After substituting Eq. (2) into Eq. (1), Eq. (3) can be improved as

E(x, z) = E1 + (E1 − E2)

(
z

h
+ 1

2

)n( x

a

)m

+ (E2 − E1)

(
x

a

)m

+ (E3 − E1)

(
z

h
+ 1

2

)n

− αp

2
(E1 + E2 + E3)

ϑ(x, z) = ϑ1 + (ϑ1 − ϑ2)

(
z

h
+ 1

2

)n( x

a

)m

+ (ϑ2 − ϑ1)

(
x

a

)m

+ (ϑ3 − ϑ1)

(
z

h
+ 1

2

)n

− αp

2
(ϑ1 + ϑ2 + ϑ3)

ρ(x, z) = ρ1 + (ρ1 − ρ2)

(
z

h
+ 1

2

)n( x

a

)m

+ (ρ2 − ρ1)

(
x

a

)m

+ (ρ3 − ρ1)

(
z + 1

)n

− αp
(ρ1 + ρ2 + ρ3) (3)
h 2 2
Fig. 2. Porosity configurations in the cross-section areas of porous bi-directional FG plates: (a) even distribution pattern, (b) uneven distribution pattern.
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On the other hand, when uneven porosity distribution patterns are 
considered, Fig. 2(b), the material properties can be obtained by 
using Eq. (4), Fig. 2(b):
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2.2. Governing plate equations of motion

Fig. 3 illustrates the geometry of a porous 2D-FG rectangular 
plate carrying a moving line load, q. The origin of Cartesian coor-
dinate is located on the unreformed mid-plane of the plate. Based 
on the first order shear deformation theory of elasticity, the dis-
placement field is expressed as:⎧⎨
⎩

u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

⎫⎬
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0
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where u, v and w are the displacement components of the middle 
surface in the direction of x, y and z, respectively. Moreover, ψx

and ψy are rotational displacements about the y and x directions, 
respectively. The general strains can be obtained as:
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where κ and ε are the components of the curvature and the nor-
mal strain. According to the Von-Karman large deflection theory, 
they can be expressed in the terms of displacements as follows:
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Fig. 3. Geometry and loading of the plate.

Note that the subscript (,) represents the derivative operator with 
respect to the relevant variable. According to Hook’s law, the 
stress-strain relationships for functionally graded materials can be 
written as:
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in which E(x, z), G(x, z) = E(x, z)/(2(1 + ϑ(x, z))) and ϑ(x, z) are 
elastic modulus, shear modulus and Poisson’s ratio, respectively. To 
determine the equations of plates, the Hamilton’s principle is used:

T∫
0

(δU + δW − δK )dt = 0 (10)

where K is the virtual kinetic energy of system, U the is strain 
energy of system and W the is virtual work of external loads. The 
symbolδis the variation operator. The resultants stresses are:
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in which K 2 is the transverse shear correction coefficient equal to 
0.833. The moment of inertia is:

Ik =
h
2∫

− h

ρ(x, z)zk dz, k = 0,1,2 (12)
2
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Fig. 4. Forces and moments of a stiffener element.
where ρ(x, z) is the density of the structure. On the basis of FSDT, 
the dynamic equations of the plate are obtained as [66]:

Nxx,x + Nxy,y = I0ü + I1ψ̈x

Nxy,x + N yy,y = I0 v̈ + I1ψ̈y

Q x,x + Q y,y + N(w) + q̄ = I0 ẅ

Mxx,x + Mxy,y − Q x = I1ü + I2ψ̈x

Mxy,x + M yy,y − Q y = I1 v̈ + I2ψ̈y

N(w) = Nxx w,xx + 2Nxy w,xy + N yy w,yy (13)

The upper dots denote differential with respect to time. Because of 
moving load, q̄(x, y, t) is written as:

q̄(x, y, t) = qδ̄(x − x0) (14)

in which q dignifies a moving force and the term δ̄ is the Dirac 
delta function, integral of which is equal to unity in any neighbor-
hood of [x0] and zero elsewhere [67].

2.3. Stiffener equations of motion

The field displacement for stiffeners (Eq. (15)) are used for the 
stiffeners to fully fit those of the plates along the plate-stiffener 
junction

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
v
w
ψx

ψy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s

=

⎡
⎢⎢⎢⎣

1 0 0 e 0
0 1 0 0 e
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
v
w
ψx

ψy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p

(15)

Superscripts s and p, represent the stiffener and the plate, respec-
tively, and e (= [hs + hp]/2) is the stiffener eccentricity.

The stiffener equilibrium equations are developed by consid-
ering the equilibrium between the external interaction forces and 
moments due to the plate acting on the stiffener and the internal 
forces and couples acting on a small element of the stiffener [28], 
Fig. 4. The five equations of motion according to Newton’s second 
law may be written as:

Fx = N A,x − ρs Asüs

F y = MH,xx + N A vs
,xx + N A,x vs

,x − ρs As v̈s

F z = NV ,x + N A ws
,xx + N A,x ws

,x − ρs As ẅs

T y = −NV + MV ,x + e(N A,x) + MT ,y − 1

12
ρs As(hs)2

ψ̈ s
x

Tx = MT ,x − I s
pψ̈ s

y (16)

where N A denotes the axial force of the stiffener and NV is the 
shear force perpendicular to the central axis of the stiffener cross-
section. MT , MV , MH also indicate the torque and moments about 
the x, y, z axes, respectively, through the centroid of the stiffener 
cross-section. As previously mentioned, e denotes the vertical dis-
tance of center area of stiffener from the mid-plane of the plate 
and I s

p is the polar mass moment of inertia.
The forces, bending and torsion moments of the stiffener may 

be calculated as:

N A = Esbshsεs
xx

NV = K 2Gsεs
xz

MV = Es(hs)3bs

12

(
κ s

xx

)

MT = K sGshs(bs)3(
κ s

xy

)
(17)

where bs , hs , Es and Gs are the width, depth, Young and shear 
moduli of the stiffener, respectively and K s is a numerical factor 
which depends on the ratio of bs/hs [28]. It is noted that the stiff-
ener is modeled as a beam and placed along plate nodal lines. For 
a stiffener (beam) bending moment, MH is zero [68].

As stated for the plate, the components of the curvature and 
normal strain for the stiffener can be expressed in terms of the 
displacements as:
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Fig. 5. Forces in a deformed element of a stiffened plate.

Fig. 6. Moments in a deformed element of a stiffened plate.
εs
xx = us

,x +
(

ws

2

)2

+
(

vs

2

)2

εs
xz = ψ s

x + ws
,x

κ s
xx = ψ s

x,x

κ s
xy = ψ s

x,y + ψ s
y,x (18)

2.4. Governing stiffened plate equations of motion

Applying the dynamic equations of plates and stiffeners from 
sections 2.2 and 2.3, the stiffened plate equations of motion can be 
achieved. The stiffened plate can be considered as a typical plate 
which is subjected to the reaction forces of the stiffener. The forces 
and moments acting on an element of a stiffened rectangular plate 
are shown in Figs. 5 and 6. By defining quantity 
y as the width of 
plate over which the surface forces are assumed to be distributed, 
the equations of motion based on FSDT take that following forms:

Nxx,x + Nxy,y + Fx


y
= I0ü + I1ψ̈x

Nxy,x + N yy,y + F y


y
= I0 v̈ + I1ψ̈y

Q x,x + Q y,y + N(w) + q̄ + F z


y
= I0 ẅ

Mxx,x + Mxy,y − Q x + T y


y
= I1ü + I2ψ̈x

Mxy,x + M yy,y − Q y + Tx = I1 v̈ + I2ψ̈y (19)


y
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in which

N(w) = Nxx w,xx + 2Nxy w,xy + N yy w,yy (20)

2.5. The stiffened plate boundary conditions

The boundary conditions used in present study are presented 
as follows:

a) For simply supported boundary condition (SSSS):{
x = 0, a → u = v = w = ψy = Mx = 0
y = 0, b → u = v = w = ψx = M y = 0

(21)

b) For clamped boundary condition (CCCC):{
x = 0, a → u = v = w = ψx = ψy = 0
y = 0, b → u = v = w = ψx = ψy = 0

(22)

c) For SCSC (parallel edges are in the same conditions):{
x = 0, a → u = v = w = ψy = Mx = 0
y = 0, b → u = v = w = ψx = ψy = 0

(23)

d) For SCCC:{
x = 0 → u = v = w = ψy = Mx = 0
x = b, y = 0, b → u = v = w = ψx = ψy = 0

(24)

As mentioned earlier, the displacements vectors of the stiffener are 
obtained by the plate displacements, so that the plate boundary 
conditions can satisfy the equations of the stiffener.

3. Solution methodology of the nonlinear equations

In this section, the kinetic dynamic relaxation method modified 
along with Newmark integration which can solve the nonlinear 
dynamic differential equations is proposed. In the following, the 
Newmark integration and the K-DR method are explained. Then, 
the algorithm of modified kinetic dynamic relaxation method is 
presented.

3.1. Newmark integration method

According to Newmark method, the first and the second deriva-
tives of the nodal displacements, x = u, v, w, ψx, ψ y , at t j+1 ( j =
the number of time steps) can be computed as:

ẍ j+1 =
(

1

β(
t j)
2

x j − 1

β
t j
ẋ j −

(
1

2β
− 1

)
ẍ j

)
(25)

ẋ j+1 =
(

γ

β
t j

x j −

(
γ

β
− 1

)
ẋ j −

(
γ

2β
− 1

)

t j ẍ j

)
(26)

in which β and γ are Newmark constants which control the stabil-
ity and accuracy of the response. To obtain stable and convergent 
results, for pulse distributed loads γ = 0.5 and β = 0.25 (constant 
average acceleration method) and for moving loads γ = 1.5 and 
β = 0.8 (Galerkin method) are used and 
t shows the time inter-
val.

By substituting Eq. (25) into Eq. (19), the equivalent static form 
is achieved as:

Nxx,x + Nxy,y + Fx


y
− A0(I0u j+1 + I1ψx j+1

)

= −{
I0[A0u j + A1u̇ j + A2ü j]

+ I1[A0ψ x + A1ψ̇x + A2ψ̈x ]}

j j j
Nxy,x + N yy,y + F y


y
− A0(I0 v j+1 + I1ψ y j+1

)

= −{
I0[A0 v j + A1 v̇ j + A2 v̈ j]

+ I1[A0ψ y j
+ A1ψ̇ y j

+ A2ψ̈ y j
]}

Q x,x + Q y,y + N(w) + F z


y
− A0 I0 w j+1

= −I0[A0 w j + A1 ẇ j + A2 ẅ j] − q̄(x, y, t)

Mxx,x + Mxy,y − Q x + T y


y
− A0(I1u j+1 + I2ψx j+1

)

= −{
I1[A0u j + A1u̇ j + A2ü j]

+ I2[A0ψx j
+ A1ψ̇x j

+ A2ψ̈x j
]}

Mxy,x + M yy,y − Q y + Tx


y
− A0(I1 v j+1 + I2ψ y j+1

)

= −{
I1[A0 v j + A1 v̇ j + A2 v̈ j]

+ I2[A0ψ y j
+ A1ψ̇ y j

+ A2ψ̈ y j
]} (27)

where

A0 = 1

β(
t j)
2
, A1 = 1

β
t j
, A2 = 1

2β
− 1 (28)

A briefed form of Eq. (27) can be written as below:

[K̄ j+1]x j+1 = { P̄ j+1} (29)

where [K̄ j+1] and { P̄ j+1} are the equivalent stiffness matrix (the 
left-hand side of Eq. (27)) and equivalent load vector (the right-
hand side of Eq. (27)), respectively.

3.2. Dynamic relaxation method with kinetic damping

To solve the dynamic equations Newmark’s method has to be 
combined with a numerical technique. In this study, for the sake 
of simplicity, efficiency and unique procedure for both linear and 
nonlinear systems, the dynamic relaxation method is adopted. Ac-
cording to this method and based on the viscos damping (V-DR) 
the equivalent static system has to be transferred to an artificial 
dynamic space by adding artificial mass and damping terms [39]
as:

[M]n
DR{a}n + [C ]n

DR{v}n + [K̄ j+1]nxn
j+1 = P̄

n
j+1 (30)

Here, [M]n
DR and [C ]n

DR are diagonal fictitious mass and damp-
ing matrices in nth iteration of DR, respectively [70]. Moreover, 
{v} and {a} are fictitious velocity and acceleration vectors. On 
the other hand, in the use of kinetic dynamic relaxation method, 
the determination of fictitious damping term is not required and 
Eq. (30) can be reformed as below:

[M]n
DR{a}n + [K̄ j+1]nxn

j+1 = P̄
n
j+1 (31)

Similar to the viscos DR formulation [69,70], the kinetic DR tech-
nique uses the central finite differences to integrate the fictitious 
equations of motion which provides the following fundamental re-
lationships:

{v}n+1/2 = vn−1/2 + τn

[M]DR
{R}n (32)

{x}n+1 = {x}n + τn{v}n+ 1
2 (33)

Here, symbol τn indicates the fictitious time step in nth DR iter-
ation and is usually taken equal to 1 to guarantee convergence of 
the K-DR method and {R}n is residual force vector obtained as:{

Rn} = P̄
n
j+1 − [K̄ j+1]nxn (34)
j+1
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The kinetic energy of the whole system is calculated by following 
equation:

K En+1 = 1

2

N∑
i=1

mn
ii

(
v

n+ 1
2

i

)2
(35)

in which, N represents the number of degrees of freedom. By com-
parison the current kinetic energy with the previous one, the peak 
of kinetic energy can be achieved. When the peak is detected, all 
current nodal velocities are set to zero and then a new iteration 
of K-DR restarted with the initial nodal displacement proposed by 
Topping and Ivanyi [71] as follows:

{x}n−1/2 = {x}n −
(

3

2
τn

)
{v}n+ 1

2 + (τn)2

2(mDR)
n
ii

+ {
Rn} (36)

The nodal velocity at the first-time step can be obtained as [72]:

{v}n+ 1
2 = τn

2(mDR)
n
ii

{R}n (37)

This sequential procedure is continued until the appropriate con-
vergence criterion are satisfied.

As mentioned before, K-DR method is achieved only by adding 
the artificial mass term to a static equation. To guarantee the nu-
merical convergence in K-DR method, the fictitious mass matrix 
elements are calculated in accordance with Gershgörin theorem 
[73]:

ml
ii ≥ 1

2

(
τn)2

N∑
j=1

∣∣kl
i j

∣∣, k = ∂{[K̄ ]nxn}
∂x

(38)

where superscript l represents u, v, w, ψx, ψ y . In the following 
part, the modified kinetic dynamic relaxation algorithm is pro-
vided. The steps are repeated until dynamic analysis time is com-
plete. It should be noted that there are two convergence criteria to 
stop the iterations of K-DR, namely, disequilibrium (residual) force 
and kinetic energy of the system.

1. Specify the number of time step (NT).
2. Set initial artificial velocity, initial displacement (converged dis-

placement at previous time step) and the number of maximum iter-
ation (nmax).

3. Construct artificial diagonal mass matrix using Eq. (38).
4. Calculate disequilibrium force {R}n .
5. If |rn

i | ≈ 0, go to (12), otherwise, continue.
6. Calculate {v}n+1/2 using Eq. (37).
7. If

∑N
i=1 mn

ii(vn+1/2
i )2 ≈ 0, go to (12), otherwise, continue.

8. Calculate the kinetic energy by Eq. (35).
9. If KE(n+1) < KEn , calculate the displacement and velocity vectors 

using Eqs. (36) and (37) then go to (3), otherwise, continue.
10. Calculate {x}n+1 using Eq. (33).
11. n = n + 1, if (n < nmax) go to (3), otherwise, continue.
12. Calculate {ẋ} and {ẍ} using (Eqs. (25) and (26)).
13. j = j + 1, if ( j < NT ) go to (2), otherwise, print results.

The above algorithm demonstrates that the kinetic dynamic re-
laxation method can be combined with an implicit integration 
method easily.

4. Numerical results and discussions

In this section, different case studies are investigated for 
static/dynamic analysis of rectangular plates with/without stiff-
eners subjected to different loads and boundary conditions to 
Table 1
Comparison of maximum deflections of K-DR with those of V-DR and Abaqus finite 
element for a square plate in diverse boundary conditions.

B.Cs Method Deflection (mm) Iteration

SSSS Viscos damping 6.60 634
Kinetic damping 6.60 374
Abaqus 6.65 –

CCCC Viscos damping 5.6463 625
Kinetic damping 5.6495 394
Abaqus 5.54 –

illustrate firstly the efficiency and accuracy of the present anal-
ysis and secondly the stiffener effect on the central deflection of 
2D-FG plates with two porosity distribution patterns (even and 
uneven).

4.1. Comparison study

Case study 1. In this case, kinetic DR (K-DR) results for the large 
deflection bending analysis of a rectangular plate in fully simply 
supported and clamped boundary conditions under a static uni-
form load of q̄ = 50 MPa are compared with the results obtained 
by the viscos DR (V-DR) and Abaqus finite element. Properties and 
dimensions of plate are as (Eq. (39)):

a = b = 0.12 m h = 0.004 m
E = 200 GPa ϑ = 0.3

(39)

Table 1 shows a comparison between the results obtained by K-DR 
and V-DR and finite element methods. In addition to the accuracy, 
it is seen that compared to V-DR, the K-DR has a faster conver-
gence rate with fewer iterations.

Case study 2. In the second case, to verify the present results for 
nonlinear dynamic analysis, the obtained results of a fully clamped 
square FG plate (a = b = 1) with thickness-to-length ratio (h/a) of 
0.2 under a time harmonic load are compared with those reported 
by Mojdehi et al. [74]. Also, it is assumed that material proper-
ties of the plate vary functionally from bottom (1) to top (2) and 
dimensionless central deflection and axial stress can be obtained 
as:

W = 100E1h3 w

12a4(1 − v2
1)q0

� = h2

q0a2
σxx (40)

in which q0 is a distributed load and equal to 1 MPa. The pre-
sumed properties, dimensions and load are as:

E1 = 70 GPa, ρ1 = 2702
kg

m3
, ϑ1 = 0.3

E2 = 200 GPa, ρ2 = 5700
kg

m3
, ϑ2 = 0.3

q̄(x, y, t) = q0 sin(2000t) (41)

As illustrated in Figs. 7 and 8, the obtained results are in good 
consistency with those given in [74].

Case study 3. The effects of linear and nonlinear systems on the 
frequency of structures are shown in Fig. 9. To do this, a square 
plate under the dynamic pressure forces with graded materials 
from lower (1) to upper surface (2) and following parameters are 
examined.
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Fig. 7. Time history of the non-dimensional centroidal deflection of a fully clamped 
square FG plate.

Fig. 8. Time history of the non-dimensional axial stress at the centroid of the top 
surface of a fully clamped square FG plate.

a = b = 1 m, h = 0.05 m

ZrO2: E1 = 200 GPa, ρ1 = 7850
kg

m3
, ϑ1 = 0.3

Sic: E2 = 380 GPa, ρ2 = 3960
kg

m3
, ϑ2 = 0.18 (42)

Fig. 9 provides information on the central displacements (w/h) of a 
SSSS FGM plate with n = 5 and αp = 0.2 versus time for different 
amplitudes of applied forces. According to Fig. 9, it is observed 
that the magnitudes of vertical displacement witness noticeable 
increases with the rise of load values. Moreover, in a linear system, 
frequency magnitude of 0.87 (Hz) has no change for every load 
value, while when it comes to a nonlinear theory, it increases by 
growing load amplitudes.

Case study 4. In this case, the validity of the present numerical 
method for the dynamic (transient) analysis of rectangular plates 
carrying moving dynamic loads is examined. To do this, the results 
obtained by K-DR for clamped and simply supported boundary 
conditions are compared with those obtained by Eftekhari [75]. 
The parameters used here are as follows:

ρh

D
= 1,

q

D
= 1, a = b = 1,

x0 = vt, y0 = 1
(43)
2

Fig. 9. Effects of load increments on the value of w/h: (a) linear theory, (b) nonlin-
ear theory, αp = 0.2.

Table 2
Comparison of obtained central static deflection on the basis of FSDT and CPT with 
Abaqus (SSSS).

Depth ratio (�) CPT FSDT Abaqus

0 6.60 6.61 6.65
1.5 5.64 5.64 5.70
3 3.32 3.88 3.89

in which v is the velocity of the moving load in the x-direction, 
t is the time required for the load q to traverse the plate, D is 
the flexural rigidity and y0 is the normal distance from the x axis. 
Figs. 10 and 11 demonstrate the accuracy of K-DR method for CCCC 
and SSSS boundary conditions, respectively.

Case study 5. Here, the numerical results based on classic plate 
theory (CPT) and first order shear deformation theory (FSDT), are 
compared to each other. The equations of stiffeners are also ob-
tained by using these two theories. The dimensions and mechan-
ical properties of the SSSS plate and stiffener are similar in the 
case study 1. Table 2 provides comparison of results obtained by 
FSDT and CPT with those of Abaqus. As expected, as depth ratio 
� = hs/h becomes larger, FSDT results will become more accurate 
than those obtained through CPT.

Case study 6. The central dynamic (transient) responses of a stiff-
ened rectangular plate in simply supported boundary condition 
subjected to a uniform mechanical load are compared with those 
of Abaqus finite element in Fig. 12. The taken parameters are:



10 M. Esmaeilzadeh, M. Kadkhodayan / Aerospace Science and Technology 93 (2019) 105333
Fig. 10. Comparison of numerical results for central deflection of a fully clamped 
square plate subjected to a moving load.

Fig. 11. Comparison of numerical results for central deflection of a fully simply sup-
ported square plate subjected to a moving load.

a = b = 0.3 m, h = 0.03 m

E = Es = 21 × 109 N

m2
, ϑ = ϑ s = 0.25

ρ = ρs = 800 N.
s2

m4 ,

q̄(x, y, t) = 50000
N

m2
0 ≤ t ≤ ∞ (44)

As mentioned before, superscript s denotes stiffener. Moreover, the 
ratios of stiffener depth to the thickness of the plate and stiffener 
width to its depth are � = hs/h = 1 and bs/hs = 1, respectively. 
It can be observed that the current results are in good agreement 
with those of Abaqus.

4.2. Parametric study

In what follows, the numerical results of a square-shaped 
porous FG plate of side equal to 1 m (a = b = 1 m) and the ratio 
of its thickness to length as 0.1, stiffened by one stiffener un-
der a moving line load q, with different velocities and boundary 
conditions are presented. The porous 2D-FG plate is formed of alu-
minum (Al), zirconia (ZrO2) and a ceramic (Sic) with the following 
material properties as:

AL: E1 = 70 GPa, ρ1 = 2702
kg

m3
, ϑ1 = 0.3

ZrO2: E2 = 200 GPa, ρ2 = 7850
kg

m3
, ϑ2 = 0.3

Sic: E3 = 380 GPa, ρ3 = 3960
kg

3
, ϑ3 = 0.18 (45)
m

Fig. 12. Transient central deflection of a simply supported stiffened rectangular 
plate.

Fig. 13. Nonlinear frequencies of the porous bi-directional functionally graded plates 
for different load amplitudes and boundary conditions (n = m = 4 and αp = 0.1).

Fig. 14. Nonlinear frequencies of the porous bi-directional functionally graded plates 
for different load amplitudes and FG indices (n, m). (αp = 0.1).

and the load, which moves in the axial direction of the plate with 
constant velocity, v , is taken as:

q = 400
kN

m
, x0 = vt (46)

Furthermore, the width of rectangular cross section stiffener is 
equal to plate thickness and this isotropic stiffener has the same 
mechanical properties as material 2 (ZrO2).
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Fig. 15. Effects of gradient indexes (n,m) on the value of wmax/h. (a) SSSS, (b) CCCC.
Fig. 16. Dimensionless deflections at the center of the unstiffened/stiffened 2D-FG 
plate with evenly distributed porosities under a moving load in SCSC boundary con-
dition. (a) αp = 0.1, (b) αp = 0.2.

Fig. 13 illustrates the variation of nonlinear frequencies (v/a) 
versus dynamic loads for the even distribution (αp = 0.1) for SSSS 
and SCSC conditions when (n, m) = (4, 4). For both types of edge 
conditions, there is a direct relationship between the nonlinear 
frequencies and the magnitudes of applied loads in a such way 
that the more force values are exerted, the more frequencies is ob-
Fig. 17. Dimensionless deflections at the center of the unstiffened/stiffened 2D-FG 
plate with unevenly distributed porosities under a moving load in SCSC boundary 
condition. (a) αp = 0.1, (b) αp = 0.2.

served. However, the impact of loads on the SSSS plate’s frequency 
is fairly more than that of the SCSC plate.

The comparison of the nonlinear frequency between two simply 
supported 2D-FGM plates (n = m = 2 and n = m = 4) with an even 
porosity distribution (αp = 0.1) is presented in Fig. 14. It is seen 
that the nonlinear frequencies of the 2D-FGM plates decrease with 
an increase in amount of n and m because the behavior of 2D-FGM 
plates tends to ductility.
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Fig. 18. Dimensionless deflections at the center of the unstiffened/stiffened 2D-FG plate with unevenly distributed porosities under a moving load in different boundary 
conditions (αp = 0.1, n = m = 1, v = 20 m/s): (a) SSSS, (b) SCSC, (c) SCCC, (d) CCCC.
The non-dimensional maximum central deflections (wmax/h) of 
a bi-directional FG plate without porosity and stiffener under a 
moving load with a speed of 12 m/s for SSSS and CCCC boundary 
conditions are shown in Fig. 15. For both types of edge conditions, 
it is evident in Fig. 15 that the dimensionless dynamic deflections 
of the plates increase with growth in thickness and length (see FG 
indices (n, m)). However, the influence of the index (m) is much 
greater when the plate edges are clamped or n ≥ 2.

Figs. 16 and 17, respectively, display the magnitude of w/h for 
an unstiffened/stiffened SCSC bidirectional FG plate with even and 
uneven distribution of porosities. This plate is supposed to a mov-
ing load with the velocity of 18 m/s. It is seen that with a rise in 
gradient terms n and m, the presence of the stiffener can be more 
pronounced in decreasing the values of w/h for every porosity dis-
tribution pattern. In the case of an evenly distributed porosity, for 
example, the reduction of peak deflection of the porous plate with 
αp = 0.1 and (n, m) = (4, 4) due to a stiffener with depth ratio 
(�) of 1 is approximately 35% larger than that of its counterpart 
with αp = 0.1 and (n, m) = (4, 2). Moreover, when it comes to 
such plates with porosity fraction of 0.2, this percentage become 
more, nearly 65%, Fig. 16(b). However, these percentages decrease 
significantly when the plates with uneven porosity distributions 
are used, Fig. 17.

Fig. 18 shows how much the longitudinal stiffener affects the 
transient deflections (w/h) of a porous 2D-FG plate (n = m = 1) 
subjected to a moving load of 20 m/s for different boundary con-
ditions. The main result obtained here is that simply supported 
boundary condition (SSSS) offers the greatest effect on reducing 
dimensionless dynamic displacements in all stiffener’s depth ra-
tios (�). For example, the stiffener with depth ratio (�) of 1 
reduces deflection of the fully simply supported plate with no stiff-
eners about 63%, whereas for the SCSC, SCCC and fully clamped 
(CCCC) ones it is in the vicinity of 49%, 47% and 37%, respec-
tively. Fig. 18 also illustrates that the further reduction in the plate 
can happen when � increases from 1 to 2. However, the differ-
ence between deflections of every stage in this rise (� = 0 to 
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Table 3
Dimensionless maximum deflection of the porous plate with/without stiffeners under a moving load with constant velocity.

Type of 
plates

Porosity 
fraction

Gradient 
indexes 
(n, m)

wmax/h × 1000

velocities

11 m/s 16 m/s 22 m/s 23 m/s 27 m/s 31 m/s 35 m/s 40 m/s

Unstiffened plates αp = 0 (0.5,0.5) 1.45 1.78 1.84 1.89 1.79 1.72 1.687 1.65
(2,2) 2.42 2.75 2.69 2.65 2.58 2.521 2.456 2.367

αp = 0.1 (0.5,0.5) 1.65 2.07 2.20 2.11 2.08 2.02 1.96 1.91
(even pattern) (2,2) 3.42 3.67 3.48 3.47 3.38 3.34 3.20 2.93

αp = 0.1 (0.5,0.5) 1.48 1.92 1.95 1.953 1.947 1.89 1.884 1.85
(uneven pattern) (2,2) 2.59 2.94 2.92 2.91 2.83 2.81 2.71 2.64

Stiffened plates (� = 1) αp = 0 (0.5,0.5) 0.73 0.745 0.767 0.775 0.812 0.815 0.78 0.76
(2,2) 0.87 1.024 1.038 1.04 1.052 0.978 0.975 0.934

αp = 0.1 (0.5,0.5) 0.84 0.85 0.82 0.84 0.94 1.02 0.90 0.82
(even pattern) (2,2) 1.08 1.22 1.17 1.22 1.254 1.20 1.12 1.07

αp = 0.1 (0.5,0.5) 0.78 0.768 0.782 0.798 0.861 0.881 0.812 0.762
(uneven pattern) (2,2) 0.92 1.08 1.11 1.12 1.14 1.04 1.01 0.98
� = 1 and � = 1 to � = 2) is to decline compared to the pre-
vious one.

The dimensionless maximum central deflections obtained by 
a moving load on the porous 2D-FG plate for simply supported 
boundary condition with a varying value of velocity are given in 
Table 3. It is seen that the maximum deflections at the center of 
the plate increase as long as the critical velocity is obtained, when 
the deflections reach their maximal values; after that they decline 
by speeding up the load. As depicted, for all cases, the critical ve-
locities drop by increasing gradient indexes (n, m). It is also evident 
that when the plates are reinforced by the stiffener, the magni-
tudes of critical velocity increase since the stiffener enhances the 
stiffness of the structure.

5. Conclusions

Dynamic behaviors of stiffened porous 2D-FG plates with 
porosities distributed evenly or unevenly throughout the thickness 
of the plates under moving loads for different boundary conditions 
were investigated through employing the dynamic relaxation with 
kinetic damping (K-DR) and Newmark integration solving methods 
for the first time. In accordance with FSDT and the von Karman 
theory for large deflections, the nonlinear dynamic equations were 
developed after which, the effects of some parameters including 
material gradient indexes, porosity distribution patterns, stiffener 
depth to the plate ratio and type of boundary conditions on the 
transient responses of porous 2D-FG plates were studied. Some re-
markable inferences are summarized as follows:

• Compared to the dynamic relaxation method with the viscos 
damping, K-DR procedure is more efficient and consumes less 
computational time. Hence, this improvement can be more no-
ticeable in severe nonlinear behaviors.

• Material gradient indices (n, m) have a significant effect on the 
response of the plates; the axial FG index (m) has a greater 
effect on clamped than simply supported plates.

• Fully simply supported boundary conditions lead to less mag-
nitudes of nonlinear frequency compared to that of SCSC.

• At the same porosity coefficient (fraction) and gradient index, 
the dimensionless maximum deflection for uneven distribution 
is smaller than the one for an even distribution.

• In the presence of the stiffener, the dynamic deflections de-
cline enormously, while the values of critical velocity have 
dramatic increases. It means that using of stiffener not only 
can result in enhancing the strength of structures but also in-
crease the nonlinear frequency.
• The reinforcing effect of the stiffeners is much noticeable in 
2D-FG plates with higher material grading indexes (n, m) and 
porosity coefficients (fractions).

• The effect of the stiffeners on reduction of deflection increases 
by decreasing constrains on the plate boundary conditions.
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