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1. Introduction and Motivation

An H-group is a homotopy associative H-space with a given homotopy
inverse. There are two main classes of motivating examples of H-groups.
The first is the class of topological groups and the second is the class
of loop spaces. Topological groups have been studied from a variety of
viewpoint. Specially, there is an enriched developed basic theory for
topological groups similar to abstract group theory. However, it seems
that there is no such a basic theory for H-groups. One can find only
the concept of sub-H-group of an H-group in [10] and some elementary
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properties in [6, 11, 12]. One of the main objects in this paper is to
develop a basic theory for H-groups similar to abstract group theory.

After giving main definitions and notations in Section 2, we introduce
in Section 3 cosets of a sub-H-group, a normal sub-H-group and a quo-
tient of an H-group in order to provide preliminaries to begin a basic
theory for H-groups similar to elementary group theory. We develop the
theory in Section 4 by introducing the kernel of an H-homomorphisms
in order to give H-isomorphism theorems.

In Section 5, we give a topology to a quotient of an H-group which
makes it a quasitopological group in the sense of [1], that is, a group
with a topology such that inversion and all translations are continuous.
We also study the path component space of an H-group and give some
conditions for significance of semilocally 0-connectedness.

Loop spaces have the main role in homotopy groups especially in
topological homotopy groups [7]. Finally, we give some examples in
topological homotopy groups. The topological n-th homotopy group of
a pointed space (X,x) is the familiar n-th homotopy group πn(X,x) by
endowing a topology on it as a quotient of the n-loop space Ωn(X,x)

equipped with the compact-open topology, denoted by πtopn (X,x) [7].
More precisely, among reproving some of the known results, we give
some new results for discreteness and indiscreteness of πtopn (X,x), for
n ≥ 1. Also, we find out a family of spaces by using n-Hawaiian like
spaces introduced in [8] such that their topological fundamental groups
are indiscrete topological groups.

2. Notations and preliminaries

We recall from [6, 11] that an H-space (P, µ, c) consists of a pointed
topological space (P, p0) together with a continuous pointed map µ :
(P ×P, (p0, p0)) −→ (P, p0) and the constant map c : (P, p0) −→ (P, p0)
for which µ ◦ (1P , c) ' µ ◦ (c, 1P ) ' 1P rel{p0}, where (1P , c) : P −→
P × P defined by (1P , c)(p) = (p, p0) and (c, 1P ) : P −→ P × P defined
by (c, 1P )(p) = (p0, p). The continuous multiplication µ is said to be
homotopy associative if µ◦(µ×1P ) ' µ◦(1P ×µ) rel{(p0, p0, p0)}, where
(µ×1P ) : P ×P ×P −→ P ×P defined by (µ×1P )(x, y, z) = (µ(x, y), z)
and (1P × µ) : P × P × P −→ P × P defined by (1P × µ)(x, y, z) =
(x, µ(y, z)).

An H-group (P, µ, η, c) consists of an H-space (P, µ, c) together with a
continuous pointed map η : (P, p0) −→ (P, p0) for which µ◦(η, 1P ) ' µ◦
(1P , η) ' c rel{p0}, where (1P , η) : P −→ P ×P defined by (1P , η)(p) =
(p, η(p)) and (η, 1P ) : P −→ P × P defined by (η, 1P )(p) = (η(p), p).
The maps µ, η and c are called multiplication, homotopy inverse and
homotopy identity, respectively. As two important examples, one can
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show that any topological group with group multiplication, group inverse
and group identity and also every loop space with path concatenation,
path inverse and path identity are H-groups. Moreover, P is called an
Abelian H-group if µ ◦ T ' µ, where T : P × P −→ P × P defined by
T (x, y) = (y, x).

The following notions and results are needed in the sequel.

Definition 2.1. ([6, XIX, 3 and 6]). Let (P, µ, c) and (P ′, µ′, c′) be two
H-spaces. A continuous map ϕ : P −→ P ′ is called an H-homomorphism
whenever ϕ ◦ µ ' µ′ ◦ (ϕ×ϕ). Moreover, if (P, µ, η, c) and (P ′, µ′, η′, c′)
be two H-groups, then a continuous map ϕ : P −→ P ′ is called an
H-homomorphism whenever ϕ ◦ µ ' µ′ ◦ (ϕ × ϕ) and ϕ ◦ η ' η′ ◦ ϕ.
Also, ϕ is called an H-isomorphism if there exists an H-homomorphism
ψ : P ′ −→ P such that ϕ ◦ ψ ' 1P ′ and ψ ◦ ϕ ' 1P ; in this event, the
H-structures are called H-isomorphic.

Remark 2.2. It is straightforward to check that H-morphisms of H-
groups preserve homotopy associativity, that means

ϕ ◦ µ ◦ (µ× 1P ) ' µ′ ◦ (µ′ × 1P ) ◦ (ϕ× ϕ,ϕ).
Example 2.3. ([6, XIX, 3]). Let x, y ∈ X, and let α be any path
in X from x to y. The map α+ : Ω(X,x) −→ Ω(X, y) by setting
α+(β) = α−1 ∗ (β ∗ α) is an H-isomorphism by (α−1)+ : Ω(X, y) −→
Ω(X,x) as inverse, where ∗ means the concatenation of paths. Also, for
each continuous map f : (X,x) −→ (Y, y), Ωf : Ω(X,x) −→ Ω(Y, y)
by (Ωf)(α) = f ◦ α is an H-homomorphism and if f is a homotopy
equivalence, Ωf is an H-isomorphism.

Proposition 2.4. ([6, XIX, Theorem 7.2]). If (P, µ, η, c) is an H-group
with the based point p0, then π0(P ), the set of all path components of P ,
is a group with the multiplication [g1][g2] = [µ(g1, g2)], for all [g1], [g2] ∈
π0(P ), and with the equivalence class of p0 as the identity. Also, for any
H-homomorphism ϕ : P −→ P ′, π0(ϕ) : π0(P ) −→ π0(P

′) is a group
homomorphism.

Definition 2.5. ([10, Definition 3.1]). A pointed subspace P ′ of an H-
group (P, µ, η, c) with the same based point p0 is called a sub-H-group
of P if P ′ is itself an H-group such that the inclusion map i : P ′ ↪→ P
is an homomorphism in the sense of Spanier [11] i.e. i : P ′ ↪→ P is an
H-homomorphism of H-spaces in the sense of Dugundji [6].

Example 2.6. Given a pointed space (Y, y0) with (Y ′, y0) as a pointed
subspace. Then the loop space Ω(Y ′, y0) is a sub-H-group of the loop
space Ω(Y, y0).

Theorem 2.7. ([10, Proposition 3.8]). If P ′ is a sub-H-group of an
H-group (P, µ, η, c), then
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(i) There exists a continuous multiplication µ′ : P ′×P ′ −→ P ′ such that
i ◦ µ′ ' µ ◦ (i× i), where i : P ′ ↪→ P is the inclusion map;
(ii) For the constant map c′ : P ′ −→ P ′ we have i ◦ c′ = c ◦ i;
(iii) There exists a continuous map η′ : P ′ −→ P ′ such that i◦η′ ' η ◦ i.

Remark 2.8. Note that at the proof of the above theorem [10, Proposi-
tion 3.8] it is proved that the continuous multiplication µ′, the homotopy
identity c′ and the homotopy inverse for µ′, η′, of P ′ as a sub-H-group
of P satisfy (i), (ii) and (iii), respectively. Hence we can assume in
the definition of sub-H-group (Definition 2.4) that the inclusion map
i : P ′ ↪→ P is an H-homomorphism of H-groups.

Let hTop∗ be the category of pointed topological spaces with homo-
topy class of pointed maps as morphism. A morphism f : (X,x0) −→
(Y, y0) is called monic if and only if it is a left-cancellative morphism,
that is, for any morphisms g1, g2 : (Z, z0) −→ (X,x0) the homotopy
f ◦ g1 ' f ◦ g2 implies that g1 ' g2. Also a morphism f ′ : (X,x0) −→
(Y, y0) is called epic if and only if it is a right-cancellative morphism,
that is, for any morphisms h1, h2 : (Y, y0) −→ (Z ′, z′0) if h1 ◦f ′ ' h2 ◦f ′,
then h1 ' h2.

Theorem 2.9. ([10, Proposition 3.9]). Let P ′ be a pointed subspace of
an H-group (P, µ, η, c). Suppose that the statements (i), (ii) and (iii)
given in Theorem 2.6 are satisfied and the inclusion map i : P ′ −→ P is
monic. Then P ′ is a sub-H-group of P .

We introduce the following notations which are used throughout the
paper to simplify most of the proofs.
(i) Let X be a topological space, Y be any subset of X, and x be any
element of X. Then we say that x pathly belongs to Y , denoted by x∈̃Y
if and only if there exists a path α : I −→ X such that α(0) = x and
α(1) ∈ Y .
(ii) For any two points a and b of a topological space X, we say that a
and b are pathly equal, denoted by a=̃b if and only if there exists a path
α : I −→ X such that α(0) = a and α(1) = b. Clearly =̃ is an equivalent
relation on X and if a=̃b and b∈̃Y , then a∈̃Y .
(iii) Let (P, µ, η, c) be an H-group, then we use the notation g1g2 instead
of the µ-multiplication µ(g1, g2) and the notation g−1 instead of the η-
inversion η(g). Note that if (P ′, µ′, η′, c′) is a sub-H-group of (P, µ, η, c),
then in order to avoid ambiguity we use only the notations g1g2 and g−1

instead of the µ-multiplication and the η-inversion, respectively, but not
instead of the µ′-multiplication and the η′-inversion.
(iv) If α is a path in an H-group (P, µ, η, c) and g ∈ P , then by gα we
mean the path gα : I −→ P given by gα(t) = µ(g, α(t)) = gα(t).

The following lemmas will be used frequently throughout the paper.
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Lemma 2.10. Let (P, µ, η, c) be an H-group with the pase point p0.
Then the following statements hold.
(i) For any g ∈ P , gp0=̃g=̃p0g.
(ii) For any g ∈ P , g−1g=̃p0=̃gg

−1.
(iii) For any g1, g2, g3 ∈ P , g1(g2g3)=̃(g1g2)g3.
(iv) For any g1, g

′
1, g2, g

′
2 ∈ P , if g1=̃g′1 and g2=̃g

′
2, then g1g2=̃g

′
1g

′
2.

(v) For any g1, g2, g3 ∈ P , if g1g3=̃g2g3, then g1=̃g2. Also if g1g2=̃g1g3,
then g2=̃g3.
(vi) For any g ∈ P , (g−1)−1=̃g.
(vii) For any g1, g2 ∈ P , (g1g2)−1=̃g−1

2 g−1
1 .

(viii) p−1
0 =̃p0.

(ix) For any g1, g2 ∈ P , if g1=̃g2, then g−1
1 =̃g−1

2 .

Proof. (i) Since µ ◦ (1P , c) ' 1P rel{p0}, there exists a continuous map
F : P × I −→ P such that F (g, 0) = µ ◦ (1P , c)(g) = µ(g, p0) = gp0
and F (g, 1) = 1P (g) = g, for all g ∈ P . Define λg : I −→ P by
λg(t) = F (g, t). Then λg is a path in P from gp0 to g and hence by
Notation 2.9 gp0=̃g. Also, since 1P ' µ ◦ (c, 1P ) rel{p0}, by a similar
method we have g=̃p0g.
(ii) Similar to (i) by using homotopies µ◦(η, 1P ) ' c ' µ◦(1P , η) rel{p0}.
(iii) Similar to (i) by using homotopies µ◦(µ×1P ) ' µ◦(1P×µ) rel{p0}.
(iv) Since g1=̃g

′
1 and g2=̃g

′
2, there are two paths λ1 : I −→ P , λ2 −→ P

such that λ1(0) = g1, λ1(1) = g′1, λ2(0) = g2, λ2(1) = g′2. Put
γ = µ ◦ (λ1 × λ2) : I −→ P defined by γ(t) = µ(λ1(t), λ2(t)). Clearly γ
is a path in P from µ(g1, g

′
1) to µ(g2, g

′
2) and hence g1g

′
1=̃g2g

′
2.

(v) By (iv) since g1g3=̃g2g3 and g
−1
3 =̃g−1

3 , we have (g1g3)g
−1
3 =̃(g2g3)g

−1
3 .

Using (iii), (ii), (i) we have g1=̃g2.
(vi) Using (ii) we have (g−1)−1g−1=̃p0=̃gg

−1. Now (v) implies g1g
′
1=̃g2g

′
2.

(vii) By (ii) (g1g2)
−1(g1g2)=̃p0. Using (iv) we have (g1g2)

−1(g1g2)g
−1
2 =̃p0g

−1
2

and so by (iii), (ii), (i) we have (g1g2)
−1g1=̃g

−1
2 . By a similar method

we have (g1g2)
−1 =̃g−1

2 g−1
1 .

(viii) By (i) p−1
0 p0=̃p0=̃p0p0. Hence by (v) p−1

0 =̃p0.

(ix) By (ii) g−1
1 g1=̃p0=̃g

−1
2 g2. Since g1=̃g2, then by (v) g−1

1 =̃g−1
2 . �

Lemma 2.11. Let (P ′, µ′, η′, c′) be a sub-H-group of (P, µ, η, c), then
the following statements hold.
(i) For any g1, g2 ∈ P ′, g1g2 = µ(g1, g2)=̃µ

′(g1, g2).
(ii) For any g ∈ P ′, g−1 = η(g)=̃η′(g).
(iii) If g1, g2∈̃P ′, then g1g2∈̃P ′ and g−1

1 ∈̃P ′.

Proof. Since (P ′, µ′, η′, c′) is a sub-H-group of (P, µ, η, c), by Remark
2.7 the inclusion i : P ′ ↪→ P is an H-homomorphism of H-groups i.e
i ◦ µ′ ' µ ◦ (i × i) and η ◦ i ' i ◦ η′. Then there are continuous maps
H : P ′ × P ′ × I −→ P and L : P ′ × I −→ P such that H(g1, g2, 0) =
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i ◦µ(g1, g2) = µ(g1, g2), H(g1, g2, 1) = µ′ ◦ (i× i)(g1, g2) = µ′(g1, g2) and
L(g, 0) = η ◦ i(g) = η(g), L(g, 1) = i ◦ η′(g) = η′(g), for all g1, g2, g ∈ P ′.
Define αg1,g2 : I −→ P by αg1,g2(t) = H(g1, g2, t) and βg : I −→ P by
βg(t) = L(g, t). Then αg1,g2 is a path in P from µ(g1, g2) to µ′(g1, g2)
and βg is a path in P from η(g) to η′(g) and hence by Notation 2.9 we
have µ(g1, g2)=̃µ

′(g1, g2) and η(g)=̃η
′(g). Hence (i) and (ii) hold.

(iii) Suppose g1, g2∈̃P ′, then there are two paths α, β in P such that
α(0) = g1, α(1) = g′1, β(0) = g2 and β(1) = g′2, for some g′1, g

′
2 ∈

P ′. Then g1=̃g
′
1 and g2=̃g

′
2, and hence by Lemma 2.10 (iv) we have

g1g2=̃g
′
1g

′
2. Now by (i) we have g′1g

′
2 = µ(g′1, g

′
2)=̃µ

′(g1, g2) ∈ P ′ which

implies that g1g2∈̃P ′. Also, since g1=̃g
′
1, by Lemma 2.10 (ix) g−1

1 =̃g′1
−1

and by (ii) g′1
−1=̃η′(g1) ∈ P ′ which implies g−1

1 ∈̃P ′. �

3. Quotient H-groups

In this section, we assume that (P, µ, η, c) is an H-group and (P ′, µ′, η′, c′)
is a sub-H-group of P and use Notation 2.9 extensively.

Definition 3.1. (i) Let P ′ be a sub-H-group of P and g ∈ P . Then we
define the right coset of P ′ with representative g as follows:

P ′g = {g′ ∈ P |g′g−1∈̃P ′}.

Similarly, the left coset of P ′ with representative g is defined as follows:

gP ′ = {g′ ∈ P |g−1g′∈̃P ′}.

Note that by Lemma 2.10 it is easy to see that

P ′g = {g′|g′=̃p′g for some p′ ∈ P ′} ⊇ {p′g |x ∈ P ′}

and

gP ′ = {g′|g′=̃gp′ for some p′ ∈ P ′} ⊇ {gp′|x ∈ P ′}.
(ii) Motivating by the above equalities, we define gA, Ag and AB for
any g ∈ P and any non-empty subsets A,B of P as follows:
gA = {g′ | g′=̃ga for some a ∈ A}, Ag = {g′ | g′=̃ag for some a ∈ A}
and AB = {g′ | g′=̃ab for some a ∈ A, b ∈ B}.

Remark 3.2. By Lemma 2.10, one can easily show that gA = {g}A,
Ag = A{g} and A(BC) = (AB)C for any g ∈ P and any non-empty
subsets A,B,C of P .

Lemma 3.3. For every sub-H-group (P ′, µ′, η′, c′) of an H-group (P, µ, η, c)
the following statements hold.
(i) For each g ∈ P , g ∈ gP ′.
(ii) For each g1, g2 ∈ P , g−1

2 g1∈̃P ′ if and only if g1P
′ = g2P

′.
(iii) For each g1, g2 ∈ P if g1=̃g2, then g1P

′ = g2P
′.



Category of H-groups 7

Figure 1.

Proof. (i) By Lemma 2.10 (i) g=̃gp0. Since p0 ∈ P ′, by definition we
have g ∈ gP ′.
(ii) If g1P

′ = g2P
′, then by (i) g1 ∈ g2P ′. Thus by Lemma 2.11 (iii)

g−1
2 g1∈̃P ′. Conversely, let g′ ∈ g1P ′, then g′=̃g1p

′ for some p∈̃P ′. By
Lemma 2.10

g−1
1 g′=̃g−1

1 (g1p
′)=̃(g−1

1 g1)p
′=̃p0p

′=̃p′

and so g−1
2 g′∈̃P ′ which implies by the definition that g′ ∈ g2P ′. Hence

g1P
′ ⊆ g2P ′. Similarly g2P

′ ⊆ g1P ′.
(iii) If g1=̃g2, then by Lemma 2.10 g−1

1 g1=̃g
−1
1 g2 and so g−1

1 g2=̃p0 ∈ P ′

which implies by (ii) that g1P
′ = g2P

′. �

Example 3.4. Consider loops α1, α2, α3, α4 in R2 as in Figure (1). If

X =
⋃4

i=1 Im(αi) and Y = Im(α1)
⋃
Im(α3), then ΩY is a sub-H-group

of ΩX and α1, α3 ∈ ΩY . Hence α1ΩY = α3ΩY , but α1 is not homotopic
to α3. This shows that the converse of Lemma 3.3 (iii) does not hold.

The following proposition is a consequence of Lemma 2.10.

Proposition 3.5. For any sub-H-group P ′ of P , the relation
P ′
∼ on P

defined by

g1
P ′
∼ g2 ⇔ g−1

1 g2∈̃P ′

is an equivalent relation in which gP ′ is the equivalence class of g, for all

g ∈ P . Moreover, we have (g1g2)g3
P ′
∼ g1(g2g3) for any g1, g2, g3 ∈ P .

Note that by the above results the set of all left cosets of P ′ is a

partition for P . Also by Lemma 3.3 (ii) g1
P ′
∼ g2 if and only if g1P

′ =

g2P
′. Moreover, we can define the relation

P ′
v on P by

g1
P ′
v g2 ⇔ g1g

−1
2 ∈̃P

′

which is an equivalent relation in which P ′g is the equivalence class of
g, for all g ∈ P .

Definition 3.6. For a topological space X, we call a subset A of X path
saturated if for each x ∈ A the path component of X which contains x
is a subset of A. If Y ⊆ X, then we define the path saturation of Y in

X as Ỹ = {x ∈ X | x∈̃Y }.
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Note that the notion of path saturated guarantees that homotopies
remain in the subsets and also, if A and B are subset of P and g ∈ A,
then using Lemma 2.10, it is easy to see that gA, Ag and AB are path
saturated.

Lemma 3.7. If A is a path saturated subset of P , then for any g ∈ P
we have

|π0(A)| = |π0(gA)| = |π0(Ag)|.

Proof. We claim that if g1, g2 ∈ A lie in different path components of
P ′, then gg1 and gg2 also lie in different path components of gA, for
all g ∈ P . By contrary, if gg1 and gg2 lie in the same path component
of gA, then gg1=̃gg2. By Lemma 2.10 (v) we have g1=̃g2 which is a
contradiction. Thus |π0(A)| ≤ |π0(gA)|. Similarly, if g1, g2 ∈ gA do not
lie in the same path component, then g−1g1, g

−1g2∈̃A do not lie in the
same path component of A. Hence |π0(gA)| ≤ |π0(A)|. �
Lemma 3.8. For a sub-H-group P ′ of H-group P , there are as many
right cosets as left cosets.

Proof. Define θ : {gP ′|g ∈ P} −→ {P ′g|g ∈ P} by gP ′ 7→ P ′g−1.
We show that θ is a one-to-one correspondence. Let g1P

′ = g2P
′,

then g−1
2 g1∈̃P ′ and by Lemma 2.11 (g−1

2 g1)
−1∈̃P ′. By Lemma 2.10 we

have (g−1
2 g1)

−1=̃g1(g
−1
2 )−1. Thus g1(g

−1
2 )−1∈̃P ′ and so P ′g−1

1 = P ′g−1
2 .

Hence θ is well-defined. Similarly θ is one to one. Since g=̃(g−1)−1, θ is
onto. �
Definition 3.9. Let P ′ be a sub-H-group of P , then by the above lemma
we can define the index of P ′ in P , denoted by [P : P ′], to be the cardinal
of the set of all left (or right) cosets of P ′ in P .

We have the following basic result which is analogues to Lagrange
theorem in group theory.

Theorem 3.10. If P ′ is a path saturated sub-H-group of P and |π0(P )|
is finite, then

|π0(P )| = |π0(P ′)|[P : P ′].

Proof. There are [P : P ′] left cosets of P ′ each of which with |π0(P ′)|
path components by Lemma 3.7. If g1P

′ 6= g2P
′, then by Lemma 3.3

(iii) g1 and g2 are not in the same path component. Hence the result
holds. �
Proposition 3.11. If P ′ is a path saturated sub-H-group of P , then
π0(P

′) is a subgroup of π0(P ).

Proof. Note that since P ′ is a path saturated subset of P , every path
component in P ′ is in fact a path component of P i.e. π0(P

′) ⊆ π0(P ).
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For any g ∈ P we denote the path component of P containing g by [g].
Let [g1], [g2] ∈ π0(P ′), then g1, g2 ∈ P ′ and by Lemma 2.11 g1g

−1
2 ∈̃P ′.

Hence [g1][g2]
−1 = [g1g

−1
2 ] ∈ π0(P ′). �

Example 3.12. Note that in the above proposition the hypothesis “path
saturatedness” is essential, for if X = R2 and Y is as in Example 3.4,
then π0(Ω(X)) = 1 and π0(Ω(Y )) = Z ∗ Z, where 1 is trivial group and
Z ∗ Z is the free product of two copies of Z.

Theorem 3.13. A path saturated pointed subset (A, p0) of P which is
closed under inherited multiplication and inversion is a sub-H-group of
P .

Proof. Let µA = µ|A×A and ηA = η|A be as multiplication and inversion
of A. By Remark 2.7 and Theorem 2.8, it suffices to show that i : A ↪→ P
is monic. Let h1, h2 : Z −→ A such that i ◦ h1 ' i ◦ h2 by a homotopy
H : Z × I −→ P . Since H(z, 0),H(z, 1) ∈ A and path components of
A and P coincide, H(z, t) ∈ A, for all z ∈ Z, t ∈ I. Hence the result
holds. �
Theorem 3.14. For every subgroup K of π0(P ), there exists a sub-H-
group PK of P such that π0(PK) = K.

Proof. Define PK = {g ∈ P | [g] ∈ K}. We show that PK is a sub-H-
group of P . Let x, y ∈ PK , then [x], [y] ∈ K. Since K is a subgroup
of π0(P ), [x][y] = [xy] ∈ K and [x]−1 = [x−1] ∈ K which implies
xy, x−1 ∈ PK . Therefore PK is closed under inherited multiplication
and inversion. Hence by Theorem 3.13 PK is a sub-H-group. �

The following corollary is a consequence of definitions.

Corollary 3.15. Let P ′ be a path saturated sub-H-group of P and K =
π0(P

′). Then using notation of Theorem 3.14 we have P ′ = PK .

Note that if P ′ and P ′′ are sub-H-groups of P , then P ′P ′′ do not
need to be an H-group since (p′1p

′′
1)(p

′
2p

′′
2) is not necessarily connected to

(p′1p
′
2)(p

′′
1p

′′
2) by a path, where p′1, p

′
2 ∈ P ′ and p′′1, p

′′
2 ∈ P ′′. For example,

consider Z = Im(α4) in Example 3.4, then ΩZ and ΩY are sub-H-groups
of ΩX and (α1 ∗α4) ∗ (α3 ∗α4) is not homotopic to (α1 ∗α3) ∗ (α4 ∗α4).
But if P is an Abelian H-group, then P ′P ′′ will be an H-group. In the
following proposition we have a useful generalization of this observation.

Proposition 3.16. If P ′ and P ′′ are sub-H-groups of P , then P ′P ′′ is
a sub-H-group of P if and only if P ′P ′′ = P ′′P ′.

Proof. First suppose that P ′P ′′ is a sub-H-group of P . By definition we
have π0(P

′P ′′) = {[g′]|g′=̃ab for some a ∈ P ′, b ∈ P ′′} = {[a][b]|a ∈
P ′, b ∈ P ′′} = π0(P

′)π0(P
′′). Put H = π0(P

′) and K = π0(P
′′),
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then π0(P
′P ′′) = HK and similarly π0(P

′′P ′) = KH. Since P ′P ′′

is a path saturated sub-H-group of P , by Proposition 3.11 HK is a
subgroup of π0(P ) and hence HK = KH. Since P ′P ′′ is a path sat-
urated sub-H-group of P , by Corollary 3.15 P ′P ′′ = PHK . By the
proof of Theorem 3.14 it is easy to see that PHK = PKH = P ′′P ′.
Hence P ′P ′′ = P ′′P ′. Conversely, suppose that P ′P ′′ = P ′′P ′. In
order to show that P ′P ′′ is a sub-H-group of P , by Theorem 3.13
it is enough to show that P ′P ′′ is closed under inherited multiplica-
tion and inversion. For any g′1, g

′
2 ∈ P ′P ′′ there are a1, a2 ∈ P ′ and

b1, b2 ∈ P ′′ such that g′1=̃a1b1 and g′2=̃a2b2. By Lemma 2.10 we have
g′1g

′
2=̃(a1b1)(a2b2)=̃(a1(b1a2))b2. Since P

′P ′′ = P ′′P ′, there are a′2 ∈ P ′

and b′1 ∈ P ′′ such that b1a2=̃a
′
2b

′
1. Now by Lemma 2.10 we have

g′1g
′
2=̃(a1(b1a2))b2=̃(a1(a

′
2b

′
1))b2=̃(a1a

′
2)(b

′
1b2) ∈ P ′P ′′. Also by Lemma

2.10, we have (g′1)
−1=̃(a1b1)

−1=̃b−1
1 a−1

1 ∈ P ′′P ′ = P ′P ′′. Hence the
result holds. �

Lemma 3.17. If P ′ and P ′′ are sub-H-groups of P , then the following
statements hold.
(i) P ′P ′ = P̃ ′.

(ii) gP ′ = gP̃ ′(= g̃P ′), for each g ∈ P .
(iii) P ′P ′′ = P̃ ′P̃ ′′(= P̃ ′P ′′).
(iv) (g1P

′)(g2P
′) = g1((P

′g2)P
′) = (g1(P

′g2))P
′, for each g1, g2 ∈ P .

(v) g′P ′ = P̃ ′, for each g′∈̃P ′.

Proof. (i) For any g′ ∈ P ′P ′ there are a, b ∈ P ′ such that by Lemma
2.11 g′=̃ab=̃µ′(a, b) ∈ P ′, where µ′ is the multiplication of P ′. Hence

P ′P ′ ⊆ P̃ ′. Conversely, let g′ ∈ P̃ ′, then g′∈̃P ′ and so there is a ∈ P ′

such that g′=̃a. Hence g′=̃a=̃ap0 ∈ P ′P ′.

(ii) Clearly gP ′ ⊆ gP̃ ′. For any g′ ∈ gP̃ ′ there is a ∈ P̃ ′ such that
g=̃ga. Also there is a′ ∈ P ′ such that a=̃a′. Hence by Lemma 2.10
g′=̃ga=̃ga′ ∈ gP ′.

(iii) Clearly P ′P ′′ ⊆ P̃ ′P̃ ′′. For any g′ ∈ P̃ ′P̃ ′′ there are a ∈ P̃ ′ and

b ∈ P̃ ′′ such that g′=̃ab. Also, there are a′ ∈ P ′ and b′ ∈ P ′′ such that
a=̃a′ and b′=̃b. Hence by Lemma 2.10 g′=̃ab=̃a′b′ ∈ P ′P ′′.
(iv) It follows by Remark 3.2.
(v) For any g′′ ∈ g′P ′ there is a ∈ P such that g′′=̃g′a. Since g′∈̃P ′

there is b ∈ P ′ such that g′=̃b. Hence by Lemmas 2.10 and 2.11

g′′=̃g′a=̃ba=̃µ′(b, a) ∈ P ′ and so g′′ ∈ P̃ ′. Conversely, for any g′′ ∈ P̃ ′

there is d ∈ P ′ such that g′′=̃d=̃p0d=̃g
′(g′)−1d=̃g′(b−1d) ∈ g′P ′. �

Remark 3.18. If P ′ is a sub-H-group of P , then we can multiply g1P
′ and

g2P
′ as (g1P

′)(g2P
′) and it seems natural to hope that (g1P

′)(g2P
′) =

(g1g2)P
′. But this does not always happen. As an example, put P ′ =
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ΩY , g1 = α2 and g2 = α4 in Example 3.4, then α2 ∗ α1 ∗ α4 ∗ α3 ∈
(g1P

′)(g2P
′), but α2 ∗ α1 ∗ α4 ∗ α3 /∈ (g1.g2)P

′. The following lemma
gives us one possible criterion.

Lemma 3.19. If P ′ is a sub-H-group of P , then the following two con-
ditions are equivalent.
(i) (g1P

′)(g2P
′) = (g1g2)P

′, for all g1, g2 ∈ P ;
(ii) gP ′ = P ′g (or equivalently (g−1P ′)g = P̃ ′ = g−1(P ′g)), for all
g ∈ P .

Proof. Let (ii) hold, then by Lemma 3.17 we have (g1P
′)(g2P

′) = g1((P
′g2)P

′)
= g1((g2P

′)P ′) = g1(g2(P
′P ′)) = g1(g2P

′) = (g1g2)P
′. Conversely, let

(i) hold. Then (g−1P ′)g ⊆ ((g−1P ′)g)P ′ = (g−1P ′)(gP ′) = (g−1g)P ′ =

P̃ ′. This implies that gP ′ ⊆ P̃ ′g = P ′g. Since this containment holds
for all g ∈ P , we have P ′g ⊆ gP ′, and hence the result follows. �

Note that by Remark 3.2 (g−1P ′)g = g−1(P ′g), hence we can use

g−1P ′g instead of (g−1P ′)g or g−1(P ′g). Also, note that if g−1P ′g ⊆ P̃ ′,

for all g ∈ P , then we have gP ′g−1 = P̃ ′, for all g ∈ P .

Definition 3.20. Let P ′ be a sub-H-group of P . Then we call P ′ a

normal sub-H-group of P , denoted by P ′EP , if and only if g−1P ′g ⊆ P̃ ′,
for all g ∈ P ( or equivalently (g−1g′)g=̃g−1(g′g)∈̃P ′ for each g ∈ P and
g′ ∈ P ′). Also, we define the quotient of P by P ′, denoted by P/P ′ as
follows:

P/P ′ = {gP ′ | g ∈ P}.

Theorem 3.21. If P ′ is a normal sub-H-group of P , then P/P ′ is a

group in which the coset p0P
′(= P̃ ′) is the identity element.

Proof. As a binary operation define (g1P
′)(g2P

′) = (g1g2)P
′. If g1P

′ =
g2P

′, h1P
′ = h2P

′, then by Lemma 3.3 g−1
1 g2∈̃P ′, h−1

1 h2∈̃P ′. Normality
of P ′ and Lemmas 2.10 and 2.11 guaranties that

(g1h1)
−1(g2h2)=̃(h−1

1 g−1
1 )(g2h2)=̃(h−1

1 (g−1
1 g2))h1=̃(h−1

1 (g−1
1 g2)h1)(h

−1
1 h2)∈̃P ′

which implies that (g1h1)P
′ = (g2h2)P

′. Therefore the above binary op-
eration is well-defined. Associativity follows from Remark 3.2. By Lem-
mas 2.10 and 3.3 (gP ′)(p0P

′) = (gp0)P
′ = gP ′ = (p0g)P

′ = (p0P
′)(gP ′),

for all g ∈ P . Hence p0P
′ is the identity element. Finally, By Lemmas

2.10 and 3.3 we have (gg−1)P ′ = p0P
′ = (g−1g)P ′, for all g ∈ P . Hence

g−1P ′ is the inverse of gP ′. �

It is easy to that if P ′ is a normal sub-H-group of P , then so does P̃ ′.

Lemma 3.22. If P ′ is a normal sub-H-group of P , then P/P ′ ∼= P/P̃ ′.
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Proof. Using Lemma 3.17 (ii) and the fact that p0P
′ = P̃ ′ is identity

element of P/P ′, the result holds. �
Theorem 3.23. If P ′ is a sub-H-group of P and P ′′ is a sub-H-group
of P ′, then the following statements hold.
(i) If P ′ is a path saturated normal sub-H-group of P , then π0(P

′) is a
normal subgroup of π0(P ).
(ii) P ′′ is a sub-H-group of P .
(iii) If P ′′ is normal in P and P ′, then P ′/P ′′ is a subgroup of P/P ′′.
Also, P ′/P ′′ is a normal subgroup of P/P ′′ if and only if P ′ is a normal
sub-H-group of P .

Proof. Using definitions and Lemmas 2.10, 2.11 and 3.3 the results hold.
�

Note that If P ′′ is normal in P , then it is not necessarily normal in P ′.
For example, by the notations of Example 3.4, ΩY is normal in ΩR2,
but not in ΩX.

Lemma 3.24. The path component of P that contains p0, named prin-
ciple component of P which is denoted by P0, is a normal sub-H-group
of P and π0(P ) ' P/P0.

Proof. Clearly P0 = {̃p0} so the first claim follows by Lemma 2.10. For
the second claim, define θ : π0(P ) −→ P/P0 by θ([g]) = gP0 which is
easily a group isomorphism. �

4. H-homomorphisms

In this section, we assume that (P, µ1, η1, c1) and (Q,µ2, η2, c2) are two
H-groups with based points p0 and q0, respectively. We also recall that
ϕ : P −→ Q is an H-homomorphism if µ2 ◦ (ϕ×ϕ) ' ϕ ◦µ1 rel{(p0, p0)}
and ϕ ◦ η1 ' η2 ◦ ϕ rel{p0}.

Lemma 4.1. Let ϕ : (P, µ1, η1, c1) −→ (Q,µ2, η2, c2) be an H-homomorphism,
then µ2(ϕ(a), ϕ(b))=̃ϕ(µ1(a, b)) and ϕ(η1(a))=̃η2(ϕ(a)), for all a, b ∈ P .

Proof. Since µ2 ◦ (ϕ × ϕ) ' ϕ ◦ µ1 rel{(p0, p0)}, there is a continuous
map F : P × P × I −→ Q such that F (a, b, 0) = µ2 ◦ (ϕ × ϕ)(a, b) and
F (a, b, 1) = ϕ ◦ µ1(a, b). Hence λ : I −→ Q defined by λ(t) = F (a, b, t)
is path in Q from µ2(ϕ(a), ϕ(b)) to ϕ(µ1(a, b)). Also, since ϕ ◦ η1 '
η2 ◦ ϕ rel{p0}, there is a continuous map H : P × I −→ Q such that
H(a, 0) = ϕ ◦ η1(a) and H(a, 1) = η2 ◦ ϕ(a). Hence γ : I −→ Q defined
by γ(t) = H(a, t) is a path in Q from ϕ(η1(a)) and η2(ϕ(a)). �

In order to simplify the notation we use ab instead of both µ1(a, b) and
µ2(a, b), and a

−1 instead of both η1(a) and η2(a) if there is no ambiguity.
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Using these notations and the above lemma, we have ϕ(ab)=̃ϕ(a)ϕ(b)
and ϕ(a−1)=̃(ϕ(a))−1, for all a, b ∈ P and any H-homomorphism ϕ :
P −→ Q.

Definition 4.2. Let ϕ : P −→ Q be an H-homomorphism. We define
the kernel of ϕ as

kerϕ = {g ∈ P | ϕ(g)=̃q0},
where q0 is the based point of Q.

Proposition 4.3. Let ϕ : (P, µ1, η1, c1) −→ (Q,µ2, η2, c2) be an H-
homomorphism. Then kerϕ is a path saturated normal sub-H-group of
P .

Proof. Let a, b ∈ kerϕ, then by Lemmas 2.10 and 4.1 we have ϕ(ab)=̃ϕ(a)ϕ(b)
=̃q0q0=̃q0 and ϕ(a

−1)=̃(ϕ(a))−1=̃q−1
0 =̃q0 which imply that kerϕ is closed

under multiplication and inversion of P . By definition of kerϕ, it is easy
to see that it is path saturated. Now by Theorem 3.13 kerϕ is a sub-H-
group of P . Finally by Lemma 2.10 we have ϕ(g−1(g′g))=̃(ϕ(g))−1(ϕ(g′)ϕ(g))=̃
(ϕ(g))−1(q0ϕ(g))=̃(ϕ(g))−1ϕ(g)=̃q0, for all g ∈ P and g′ ∈ kerϕ which
implies kerϕE P . �

Let ϕ : P −→ Q be an H-homomorphism, A ⊆ P and B ⊆ P ′, then
by definition

ϕ̃(A) = {q ∈ Q | q∈̃ϕ(A)},

ϕ̃−1(B) = {p ∈ P | ϕ(p)∈̃B}.
Now we can state the following useful lemma which is proved by a similar
proof of Proposition 4.3.

Lemma 4.4. Let ϕ : (P, µ1, η1, c1) −→ (Q,µ2, η2, c2) be an H-homomorphism.
Then

(i) If (P ′, µ′1, η
′
1, c

′
1) is a sub-H-group of P , then ϕ̃(P ′) is a saturated

sub-H-group of Q;

(ii) If (Q′, µ′2, η
′
2, c

′
2) is a sub-H-group of Q, then ˜ϕ−1(Q′) is a sub-H-

group of P. If Q′ is normal, then so is ˜ϕ−1(Q′).

Suppose that N is a normal sub-H-group of P , ϕ is an H-homomorphism
from P to Q and π is the natural map from P to P/N . We would
like to find an induced H-homomorphism ϕ : P/N −→ Q such that
ϕ(gN) = ϕ(g). But there is no meaning of H-homomorphism for ϕ
because P/N is not necessarily an H-group related to P . Note that al-
though we can assume every abstract group as a topological group by
discrete topology, but it is prevalent that topology of P/N must be re-
lated to the topology of P . By using the functor π0, we can overcome
this problem and have some results as follow in the category of groups.
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In Section 5, we will endow P/N by the quotient topology induced from
P and prove that P/N by this topology is a quasitopological group in
the sense of [1] and the rest of results in this section hold in the category
of quasitopological groups.

For the canonical map π : P −→ P/N , let π : π0(P ) −→ P/N defined
by π([g]) = gN . Here is the key result.

Theorem 4.5. For any H-homomorphism ϕ : P −→ Q whose kernel
kerϕ = K contains a normal sub-H-group N of P , π0(ϕ) can be factored
through P/N . In other words, there is a unique group homomorphism

π0(ϕ) : P/N −→ π0(Q) such that π0(ϕ) ◦ π = π0(ϕ), i.e. the following
diagram is commutative:

π0(P )
π0(φ) //

π
��

π0(Q)

P
N .

π0(φ)

;;v
v

v
v

v

Furthermore,
(i) π0(ϕ) is an epimorphism if π0(ϕ) is onto;

(ii) π0(ϕ) is a monomorphism if and only if K = Ñ .

Proof. Define π0(ϕ) : P/N −→ π0(Q) by π0(ϕ)(gN) = [ϕ(g)]. If
g1N = g2N , then g−1

2 g1∈̃N ⊆ K. Hence ϕ(g−1
2 g1)=̃q0 which implies

that ϕ(g1)=̃ϕ(g2) and so [ϕ(g1)] = [ϕ(g2)]. Also π0(ϕ)((g1N)(g2N)) =
[ϕ(g1g2)] = [ϕ(g1)][ϕ(g2)]. Clearly the diagram is commutative and

π0(ϕ) is unique.
(i) It follows from commutativity of the diagram.

(ii) Assume π0(ϕ) is monomorphism. Since K is path saturated and

contains N , we have Ñ ⊆ K. Let g ∈ K, then ϕ(g)=̃q0 and so

π0(ϕ)(gN) = [q0]. By injectivity of π0(ϕ), gN = Ñ and therefore

K = Ñ . The converse is trivial.
�

The factor theorem yields the following fundamental result .

Theorem 4.6. (The First H-isomorphism Theorem). If ϕ : P −→ Q

is an H-homomorphism with kernel K, then π0(ϕ̃(P )) is isomorphic to
P/K.

Proof. Consider θ : P/K −→ π0(ϕ̃(P )) by θ(gK) = [ϕ(g)]. Since ϕ is
an H-homomorphism, θ is well defined and homomorphism. For any

[q] ∈ π0(ϕ̃(P )) there exist p ∈ P such that q=̃ϕ(p) and so θ(pK) =
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[ϕ(p)] = [q]. Hence θ is onto. Also, if θ(gK) = [ϕ(g)] = [q0], then
ϕ(g)=̃q0 and hence θ is injective. �

If M and N are path saturated sub-H-groups of P , G1 = π0(M)
and G2 = π0(N), then using Theorem 3.15 M ∩ N = PG1∩G2 that is a
sub-H-group of P .

Lemma 4.7. Let M and N be path saturated sub-H-groups of P and
N E P . Then the following statements hold.
(i) MN = NM and MN is a sub-H-group of P ;
(ii) N is a normal sub-H-group of MN ;
(iii) M ∩N is a normal sub-H-group of M .

Proof. Lemma 3.19, Proposition 3.16 and normality of N imply (i).
Since N and MN are path saturated and π0(MN) = π0(M)π0(N),
by Corollary 3.15 and (i) π0(N) is a normal subgroup of π0(M)π0(N)
which implies that N is a normal sub-H-group of MN . The proof of
(iii) is similar to (ii). �
Theorem 4.8. (The Second H-isomorphism Theorem). If M and N
are path saturated sub-H-groups of P and N E P , then

M/M ∩N ∼=MN/N.

Proof. Define θ : M/M ∩N −→ MN/N by θ(g(M ∩ N)) = gN . It
is routine to check that θ is a well defined group homomorphism. If
θ(g(M ∩ N)) = gN = p0N , then g∈̃N (equivalently g ∈ N since N is
path saturated) and hence θ is a monomorphism. Assume gN ∈MN/N .
By definition of MN , there exist m∈̃M and n∈̃N such that g=̃mn.
Hence θ(m(M ∩ N)) = mN = mnN = gN which implies that θ is an
epimorphism. �
Theorem 4.9. (The Third H-isomorphism Theorem). If N and M are
path saturated normal sub-H-groups of P and N is contained in M , then

P/M ∼=
P/N

M/N
.

Proof. Define θ : P/N −→ P/M by θ(gN) = gM which is a group
epimorphism with kernel M/N . �

Now suppose that N is a normal sub-H-group of P . IfM is a path sat-
urated sub-H-group of P containing N, then there is a natural analogue
ofM in the quotient H-group P/N , namely the subgroupM/N . In fact,
we can make this correspondence precisely. Let Ψ be a map from the
set of path saturated sub-H-groups of P containing N to the set of sub-
groups of P/N by Ψ(M) =M/N . We claim that Ψ is a bijection. For, if
M1/N =M2/N , then for any m1 ∈M1, we have m1N = m2N , for some
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m2 ∈M2, so that m−1
2 m1∈̃N which is contained inM2. ThusM1 ⊆M2,

and by symmetry the reverse inclusion holds, so that M1 = M2 and Ψ
is injective. Now, if G is a subgroup of P/N and π : P −→ P/N is the
canonical map, then

π−1(G) = {p ∈ P | pN ∈ G}

is a path saturated sub-H-group of P containing N , and Ψ(π−1(G)) =
{pN | pN ∈ G} = G proving surjectivity of Ψ. The map Ψ has a number
of other interesting properties, summarized in the following result.

Theorem 4.10. (The Correspondence Theorem). If N is a normal sub-
H-group of P , then the above map Ψ sets up a one-to-one correspondence
between path saturated sub-H-groups of P containing N and subgroups
of P/N . The inverse of Ψ is the map Φ : G 7→ π−1(G), where π is the
canonical map of P to P/N . Moreover, the following statements hold.
(i) M1 is a sub-H-group of M2 if and only if M1/N ≤ M2/N , and in
this case we have

[M2 :M1] = [M2/N :M1/N ].

(ii) If M is a normal sub-H-group of P , then M/N is a normal subgroup
of P/N .
(iii) M1 is a normal sub-H-group of M2 if and only if M1/N is a normal
subgroup of M2/N , and in this case,

M2/M1
∼=
M2/N

M1/N
.

We introduced monics, epics and H-homomorphisms in hTop∗ in Sec-
tion 2. Now we define H-morphisms.

Definition 4.11. (i) AnH-monomorphism is a monic H-homomorphism.
(ii) An H-epimorphism is an epic H-epimorphism.
(iii) An H-endomorphism is an H-homomorphism of an H-group to it-
self.
(iv) An H-automorphism is an H-isomorphism of an H-group to itself.

5. Topological view

In this section (P, µ, η, c) is an H-group , (P ′, µ′, η′, c′) is a sub-H-
group of P and P/P ′ is the set of all left cosets of P ′ in P . We intend to
topologized the set P/P ′ by the quotient topology induced by the canon-
ical map q : P −→ P/P ′ which makes it a quasitopological group. Also,
we study the path component space of an H-group and find out some
conditions for significance of semilocally 0-connectedness introduced in
[3].
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As introduced in [9], the path component space of a topological space
X is π0(X) with the quotient topology with respect to the quotient map

q′ : X −→ π0(X), where q′(x) = [x] which is denoted by πqtop0 (X). Also

a continuous map f : X −→ Y induces a continuous map πqtop0 (f) :

πqtop0 (X) −→ πqtop0 (Y ) taking the path component containing x in X to
the path component containing f(x) in Y .

Definition 5.1. A space X is semilocally 0-connected if for each point
x ∈ X, there is an open neighborhood U of x such that the induced
map πqtop0 (i) : πqtop0 (U) −→ πqtop0 (X) by the inclusion i : U −→ X is a
constant map (see [3, Definition 2.1]).

Proposition 5.2. A space X is semilocally 0-connected if and only if
each path component of X is open.

Proof. Let X =
⊔

i∈I Xi, where Xi’s are path components of X. For an
arbitrary x there is j ∈ I such that x ∈ Xj . Since X is semilocally 0-

connected, there exists an open neighborhood U of x such that πqtop0 (i) :

πqtop0 (U) −→ πqtop0 (X) is a constant map, or equivalently U meets just
one path component of X which implies U ⊆ Xj . Conversely, if each
path component of X is open, then put U to be the path component
containing x. �

Remark 5.3. Obviously locall path connectivity follows semilocally 0-
connectedness. Also, X is semilocally 0-connected if and only if πqtop0 (X)
has the discrete topology (see [3, Remark 2.2]).

Let P be an H-group with the based point p0 and P0 = {̃p0} be
the principal component of P . Then by Lemma 3.24, P0 is a path
saturated normal sub-H-group of P and θ : P/P0 −→ π0(P ) defined
by θ(gP0) = [g] is a group isomorphism. By topologizing P/P0 by the
quotient topology induced by the canonical map q : P −→ P/P ′ we can
get more result as follows.

Theorem 5.4. The group isomorphism θ : P/P0 −→ πqtop0 (P ) is a
homeomorphism.

Proof. Consider the following commutative diagram:

P
1P //

q

��

P

q′
��

P/P0
θ // πqtop0 (P ).

Since q and q′ are quotient maps, the result holds. �
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Let P ′ be a sub-H-group of P and P/P ′ be the set of all left cosets of P ′

endowed with the quotient topology induced from P by π : P −→ P/P ′.
Some facts about the canonical map π are collected in the following.

Proposition 5.5. With the above assumption we have
(i) π is an onto continuous map.
(ii) If P is semilocally 0-connected, then π is open .

Proof. (i) It is obvious and follows by the definition of quotient topology.
For (ii), let U be open in P . We must show that π(U) is open in P/P ′

i.e. π−1(π(U)) is open in P . We have π−1(π(U)) = Ũ =
∪

α∈JOα,
where Oα’s are path components of P that intersect U . Semilocally
0-connectivity of P implies that Oα’s are open and hence π−1(π(U)) is
open, as desired. �

Theorem 5.6. Let N be a normal sub-H-group of P . Then P/N is a
homogeneous space.

Proof. For any a ∈ P define LaN : P/N −→ P/N by LaN (gN) = (ag)N .
Then it is easy to check that LaN is well-defined mapping of P/N onto
itself. Continuity of LaN comes from the continuity of La : P −→ P
defined by La(g) = ag, the quotient map π : P −→ P/N and the
following commutative diagram.:

P
La //

π
��

P

π
��

P/N
LaN // P/N.

Applying the previous argument to a−1 we get LaN
−1 = La−1N which

is continuous. Hence LaN is a homeomorphism. Therefore P/N acts on
itself by left and right translation (RaN (gN) = (ga)N) as a group of self
homeomorphisms. Clearly these actions are both transitive, and hence
the result holds. �

Note that La is not necessarily a homeomorphism because La◦(La)
−1 =

La◦La−1 is homotopic to 1P but is not equal to 1P . However, fortunately
La’s are homotopy equivalence.

Theorem 5.7. Let N be a normal sub-H-group of P . Then P/N is a
quasitopological group.

Proof. It was proved in the previous theorem that all translations are
continuous. Continuity of the inversion η : P/n −→ P/N defined by
η(gN) = g−1N follows from the quotient map q : P −→ P/N , the
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continuity of the homotopy inversion η : P −→ P and the following
commutative diagram:

P
η //

π
��

P

π
��

P/N
η // P/N.

�

Corollary 5.8. πqtop0 is a functor from the category of H-groups to the
category of quasitopological groups.

Theorem 5.9. Let P be a semilocally 0-connected H-group with N as
normal sub-H-group. Then P/N is a topological group.

Proof. By Proposition 5.5, π is a continuous open map which implies
that π×π is a quotient map. Hence the following commutative diagram
shows that the multiplication in P/N is continuous:

P × P
µ //

π×π
��

P

π
��

P/N × P/N
µ // P/N.

The result holds by Theorem 5.7. �

Theorem 5.10. Let P be a semilocally 0-connected H-group with normal
sub-H-group N , then P/N is a discrete topological group.

Proof. Since P is semilocally 0-connected, by Proposition 5.2 Ñ is open
which implies that the identity element in the topological group P/N is
open. Hence P/N has discrete topology. �

If we consider quotients of H-groups and path component spaces by
quotient topology as described above, then all group homomorphisms
and group isomorphisms in Section 4 hold in the category of quasitopo-
logical group and continuous homomorphism.

6. revisiting of topological fundamental group

For n ≥ 1, πqtopn (X,x) is the familiar n-th homotopy group endowed
with the quotient topology inherited from the path components of based
n-loops in X with the compact-open topology [2, 3, 4, 5, 7, 8].

In this section we reprove some results in topological homotopy groups
and topological fundamental groups by using advantages of Section 5
which can be found in [3] and [5].
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Theorem 6.1. If X is a path connected topological space, then πtopn (X,x) ∼=
πtopn (X, y) as quasitopological groups, for each x, y ∈ X and n ≥ 1.

Proof. By Example 2.2, α+ is an H-isomorphism between Ω(X,x) and

Ω(X, y), where α is a path from x to y. Since πqtop0 is a functor, πqtop0 (α+)
is an equivalence morphism in the category of quasitopological groups.
Therefore πqtop1 (X,x) ∼= πqtop1 (X, y). Also α+ is a homotopy equivalence,
hence Ω(α+) : Ω(Ω(X,x), cx) −→ Ω(Ω(X, y), cy) is an H-isomorphism
and therefore a homotopy equivalence, where cz is the constant loop at
z ∈ X. Consider Ωn as the composition of Ω with itself n times for n ∈ N.
For n > 1, we can construct by induction H-isomorphisms Ωn(α+) :
Ω(Ωn(X,x), cx) −→ Ω(Ωn(X, y), cy), where Ωn(α+)(λ) = Ωn−1(α+) ◦ λ.
Since πqtop0 is a functor, πqtop0 (Ωn(X, cx)) ∼= πqtop0 (Ωn(X, cy)). There-

fore πqtopn (X,x) = πqtop0 (Ωn(X,x)) ∼= πqtop0 (Ωn(X, y)) = πtopn (X, y), as
desired. �

Theorem 6.2. For any homotopically equivalent topological spaces (X,x)

and (Y, y), we have πtopn (X,x) ∼= πtopn (Y, y) as quasitopological groups, for
all n ≥ 1.

Proof. We know that for each n ∈ N, Ωn is a functor from the category of
pointed topological spaces, Top∗, to the category of H-groups and hence
Ωn sends equivalent objects to equivalent objects. Since πqtop0 is also a
functor from the category of H-groups to the category of quasitopological
groups, πqtop0 (Ωn(X,x)) ∼= πqtop0 (Ωn(Y, y)), as desired. �

Lemma 6.3. For any locally path connected, semilocally simply con-
nected space X, Ω(X,x) is locally path connected, for each x ∈ X.

Proof. Use the proof of Lemma 3.2 in [5]. �

Theorem 6.4. For any locally path connected space X, πqtop1 (X,x) is a
discrete topological group, for each x ∈ X if and only if X is semilocally
simply connected.

Proof. AssumeX is semilocally simply connected. By Lemma 6.3 Ω(X,x)

is locally path connected. Hence Remark 5.3 implies that πqtop0 (Ω(X,x)) ∼=
πqtop1 (X,x) is a discrete topological group. For converse see [5, Theorem
1]. �

H.Wada in [14] showed that for every m-dimensional finite polyhedron
Y and locally n-connected space X, the mapping space XY is locally
(n-m)-connected. Therefore we have the following result.

Theorem 6.5. For every locally n-connected pointed space (X,x), the
loop space Ω(X,x) is locally (n-1)-connected.
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In [7] it is shown that the topological n-th homotopy group of every
locally n-connected metric space is a discrete topological group. In the
following theorem we prove this result in general case, in fact without
metricness.

Theorem 6.6. For every locally n-connected space X, πtopn (X,x) is a
discrete topological group, for each x ∈ X.

Proof. By Theorem 6.5, Ω(X,x) is locally (n-1)-connected space and so
Ωn(X,x) is locally 0-connected or equivalently a locally path connected

H-group. Also πqtop0 (Ωn(X,x)) ∼= πqtopn (X,x). Thus πqtopn (X,x) is a
discrete topological group by Remark 5.3. �

A topological space X is called n-semilocally simply connected if for
each x ∈ X there exists an open neighborhood U of x for which any
n-loop in U is nullhomotopic in X. In [7] it is proved that for locally (n-

1)-connected metric spaces, discreteness of πtopn (X,x) and n-semilocally
connectivity of X are equivalent. By using this fact and Theorem 6.6
we have the same result without metricness.

Corollary 6.7. Suppose that X is a locally (n-1)-connected space and
x ∈ X. Then the following are equivalent.
(i) πtopn (X,x) is discrete.
(ii) X is n-semilocally simply connected at x.

Definition 6.8. ([13]) A non-trivial loop α : (I, ∂I) −→ (X,x) is called
small if there exists a representative of the homotopy class [α] ∈ π1(X,x)
in every open neighborhood U of x. A space X is called small loop at
x ∈ X if every non-trivial loop α : (I, ∂I) −→ (X,x) is small. A non-
simply connected space X is called small loop space if X is small loop
at every x ∈ X.

Biss in [2] showed that the topological fundamental group of the Har-
monic Archipelago has indiscrete topology. Z. Virk in [13] introduced a
class of spaces, named small loop spaces, and constructed an example of
small loop spaces by using the Harmonic Archipelago. In the next the-
orem we will show that the topological fundamental group of an space
which is small loop at least at one point has indiscrete topology and so is
a topological group. A basic account of small loop spaces may be found
in [13].

Theorem 6.9. If X is small loop at x, then πqtop1 (X,x) has indiscrete
topology.

Proof. Let X be small at x ∈ X. If there exists an open subset U of
πqtop1 (X,x) such that ∅ 6= U 6= πqtop1 (X,x), then we can assume that U

contains [cx], the identity element of πqtop1 (X,x), since πqtop1 (X,x) is a
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quasitopological group. Let [α] ∈ πqtop1 (X,x) such that [α] /∈ U , then
q−1(U) is an open neighborhood of cx in Ω(X,x) that does not contain
α. There is a basic open neighborhood of cx like

⋂n
i=1 < Ki, Ui >

such that cx ∈
⋂n

i=1 < Ki, Ui >⊆ q−1(U). Let V =
⋂n

i=1 Ui, then
< I, V >⊆ q−1(U). Note that V is a non-empty open subset of X, since
x ∈ Ui, for each i=1,2,...,n. By small loop property of X at x, there
exists a loop αV : I −→ V such that [α] = [αV ]. But αV ∈< I, V >
implies that [αV ] = q(αV ) ∈ U . Hence [α] = [αV ] ∈ U which is a
contradiction. �
Remark 6.10. Brazas [4] introduced a new topology on fundamental
groups made them topological groups and denoted this new functor by
πτ1 . For a topological space X, πqtop1 (X,x) and πτ1 (X,x) has the same
underlying set and algebraic structure but different topologies. In fact,
the topology of πτ1 (X,x) is obtained by removing some open subsets of

πqtop1 (X,x) to make it a topological group. Note that since the topol-

ogy of πτ1 (X,x) is coarser than the one of πqtop1 (X,x), in fact πτ1 (X,x)

and πqtop1 (X,x) have the same open subgroups [4, Corollary 3.9], and
πτ1 (X,x) is always a topological group, Theorem 6.9 holds if we replace

πqtop1 (X,x) with πτ1 (X,x).

By an n-Hawaiian like space X we mean the natural inverse limit

lim←−(Y
(n)
i , y∗i ), where

(Y
(n)
i , y∗i ) =

∨
j≤i

(Xn
j , x

∗
j )

is the wedge of X
(n)
j ’s in which X

(n)
j ’s are (n-1)-connected, locally (n-

1)-connected, n-semilocally simply connected, and compact CW spaces
(see [8]). The third author et.al. in [8] proved that the topological n-th
homotopy group of an n-Hawaiian like space is prodiscrete metrizable
topological group for all n > 1. Also, they proved in [7] that for a

metric space X, πtopn (X,x) ∼= πqtop1 (Ωn−1(X,x), cx). Since weak join of
metric spaces is metric, n-Hawaiian like spaces are metric which implies
that πqtop1 (Y, y) ∼= πtopn (X,x), where Y is Ωn−1(X,x) and y = cx for
n-Hawaiian like space X. Therefore we have a family of spaces with
topological fundamental groups as topological groups.

Theorem 6.11. If Y = Ωn−1(X,x), for n-Hawaiian like space X and

n > 1, then πqtop1 (Y, y) is a topological group. Moreover, it is a prodis-
crete metric space.
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