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ANN Artificial Neural Network 
gbest Global Best Position 
pbest Particle best Position 
2D Two Dimension ߱ weighting function  
R random function 
s Position of Particle 
m Iteration Number 
dv Displacement due to new Velocity  
Re Reynolds Number 
SIMP
LE 

Semi-Implicit Method For Pressure – 
Linked Equation ܵథᇱ  Source Term from non-orthogonality, 
numerical dissipation terms and 
external sources 

Introduction 

Ground effect vehicles which operate close to the 
ground by the use of aerodynamic interaction between 
the wings and the surface known as ground effect,have 
been the center of researchers’ attention for a long 
time since 1995 [1-13]. The interaction enhances the 
lift and decreasesthe drag considerably as comparedto 
an out of ground effect vehicle. Thus, the aerodynamic 
enhancement promotes the efficiency of the ground 
effect vehicles against other transportation 
systems.Therefore, aerodynamicists have sought to 
make use of some approaches amplifying the device 
efficiency. One of these approaches is aerodynamic 
shape optimization based on computational fluid 
dynamics (CFD). The optimal design of WIG airfoils 
has been studied by only a few researchers, whereas 
most of them have focused on the shape geometries. 
Kim and Joh[14]have obtained the optimized airfoil 
shape by using the single-objective optimization 
technology; and Kim and Chun [15] have also 
performed computational optimization for an airfoil 
geometry. More recently, Park and Lee [16] have 
numerically performed an optimization by considering 
the lift coefficient, static height stability, and lift-to-
drag ratio as objective functions and optimized the 
airfoil structureby a multi-objective optimization 
algorithm. Furthermore, the optimization ofwing in 
ground effect has been performed by Lee and Lee [17] 
and in parallel,finding the optimum shape usingmulti-
objective genetic algorithm and the analysis of the 
three-dimensional wings in ground effect have been 
carried out by Lee et al. [18, 19]. Another optimization 
design of an airfoil which moves close to the ground 
has been investigated by Kim et al. [20], taking into 
account the device shape based on lift coefficient 
maximization. In 2013, an aerodynamic shape 
optimization of WIG vehicle was conducted by three 
objective functions, lift coefficient, the aerodynamic 
center of height, and the lift-to-drag ratio [21].  

As a result of literature study, these types of 
designs impose high costs and lose the WIG vehicle 
advantages while finding the best wing for WIG 
vehicles remains a great challenge among the 
researchers. At present, most of the WIG vehicles 
utilizepredefined static conditions such as angle of 
attack and ground clearance. Besides, these parameters 
play a central role in the device efficiency and they are 
irrefutable variables in the aerodynamic optimization 
of WIG vehicles which were neglected in the most 
previous studies.  

The aim of the current study is to optimize the 
shape and static conditions of a sectional wing, 
moving near the ground. Aiming to achieve this 
goal, a highly accurate numerical simulation method 
and response surface methodology (RSM) are 
designed and the Adaptive Neuro-Fuzzy Interface 
System (ANFIS) is employed in order to dampthe 
noise and find the design point perfectly near the 
global optimum.Theinfluence of design variables, 
ground clearance, incidence angle, thickness and 
camber of the foil, have been initially investigated 
by a high resolution Normalized Variable Diagram 
(NVD) scheme, used in the boundedness criteria. In 
the optimization process, lift to drag ratio (L/D) is 
considered as the objective function and the design 
variables consist of thickness and camber of airfoil, 
angle of attack and ground clearance. Subsequently, 
sensitivity analysis is done and the amount of 
objective function allergy from design variables is 
also explored.  

Governing Equation and Discretization 

The basic equations, which describe conservation of 
mass, momentum and scalar quantities can be 
expressed in the following vector form which is 
independentfromthe coordinate system. ఋఘఋ௧ + ሬܸԦ൯ߩ൫ݒ݅݀ = ܵ௠                            (1) ఋ(ఘ௏ሬሬԦ)ఋ௧ + ሬܸԦߩ൫ݒ݅݀ ⊗ ሬܸԦ − ሬܶԦ൯ = Ԧܵ௩                           (2) ఋ(ఘథ)ఋ௧ + ߶ሬܸԦߩ൫ݒ݅݀ − Ԧ൯ݍ = Ԧܵథ             (3) 

The stress tensor and scalar flux vector are 
usually expressed in terms of basic dependent 
variables. The stress tensor for a Newtonian fluid is: ሬܶԦ =  Ԧ                                            (4)ܫܲ−

and the Fourier-type law usually gives the scalar flux 
vector: ݍԦ = Γథ݃(5)                                                       ߶݀ܽݎ 

In this study, k − ε model is used for turbulence 
flow. The model is simple and enjoysgood stability 
with easy convergence. 
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The discretization of the differential equations is 
carried out using a finite-volume approachandutilizing 
the Gaussian theorem. The discrete expressions are 
presented to refer to only one face of the control 
volume, namely, e, for the sake of brevity. For any ϕ variable (which may also stand for the velocity 
components), the result of the integration yields: ఋఔఋ௧ ௣௡ାଵ(߶ߩ)ൣ − ௣௡൧(߶ߩ) + ௘ܫ − ௪ܫ + ௡ܫ ௦ܫ − = ܵథ(6)    ߥߜ 

 WhereI’s are the combined cell-face convection Iୡand diffusion Iୈfluxes. The diffusion flux is 
approximated by central differences. The discretization 
of the convective flux requires special attention and it 
helps developing the various schemes. A representation 
of the convective flux for cell-face (e) is: ܫ௘௖ = .ߩ) ܸ. ௘߶௘(ܣ =  ௘߶௘                                         (7)ܨ
 

The value of ϕୣis not known and it should be 
estimated from the values at neighboring grid points 
by interpolation. The expression for ϕୣis determined 
by the SBIC scheme [22], that is based on the NVD 
technique [23] using interpolation from the nodes E, P 
and W. The functional relationship utilized in SBIC 
scheme for ϕഥୣ is given as: 

 ߶ത௘ = ߶ത௣, ത௣߶ܨܫ ∉ [0,1]  ߶ത௘ = − ௫̅೛ି௫̅೐ࣥ(௫̅೛ିଵ) ߶ത௣ଶ + ൬1 + ௫̅೛ି௫̅೐ࣥ(௫̅೛ିଵ)൰ ߶ത௣,ܨܫ߶ത௣ ∈ [0, ࣥ]  ߶ത௘ = ௣ݔ̅ − ௣ݔ௘̅ݔ̅ − 1 + ௣ݔ̅ − ௣ݔ௘̅ݔ̅ − 1 ߶ത௣,ܨܫ߶ത௣ ∈ [ࣥ, 1] 

(8)

Where 
 ߶ത௣ = థ೛ିథೈథಶିథೈ ,               ߶ത௘ = థ೐ିథೈథಶିథೈ         ̅ݔ௣ = ௫೛ି௫ೈ௫ಶି௫ೈ ,               ߶ത௘ = ௫೐ି௫ೈ௫ಶି௫ೈ  

(9)

 
The limits on the selection of ࣥ could be 

determined in the following way. Obviously, the lower 
limit is ࣥ = 0, which would represent switching 
between upwind and central differencing. It is not 
favorable, because it is essential to avoid the abrupt 
switching between the schemes in order to achieve the 
converged solution. The value of ࣥ should be kept as 
low as possible in order to attain the maximum 
resolution of the scheme. The final form of the 
discretized equation from each approximation is given 
as:    ܽ௣. ߶௣ = ∑ ܽ௠. ߶௠ + ܵథᇱ + ܵௗ௖௠ୀா,ௐ,ே,ௌ           (10) 

Where a,s are the convection-diffusion 
coefficients. The term Sமᇱ  in Eq. (10) contains 
quantities arising from non-orthogonality, numerical 

dissipation terms and external sources. For the 
momentum equations, it is easy to separate the 
pressure-gradient source from the convection 
momentum fluxes. Sୢୡis the contribution due to the 
adapted deferred correction procedure. 

RSM Algorithm 

This approach is an approximation-based optimization 
method which is capable offinding good solutions for 
intricate engineering optimization problems by 
computing specific values of the objective function for 
different combinations of the design variables[24, 25]. 
Indeed, this method has been successfully applied for 
solving complex engineering problems[26-28]. The 
main argument to all these problems is the fact that 
inherent merit functions generally involve both 
intensive and expensive numerical or experimental 
tests. However, the number of tests required for the 
optimization process should be minimized. This 
method consists of numerical methods in which all 
design variables are discretized either according to a 
simple parametric scheme or using a given numerical 
planning, such as factorial design, orthogonal design, 
or central composite design[29]. After acquiring data, 
it is necessary to fit a mathematical equation to 
describe the behavior of the response according to the 
levels of values studied.The importance of adopted 
fitting model is in using an accurate method, Adaptive 
Neuro-Fuzzy Interface System (ANFIS) [30].Once the 
surface response is available, conventional 
optimization techniques, such as gradient-based 
techniques or global optimization techniques, may be 
applied to estimate the function optimal point by 
searching in the constructed surface. In the present 
study, active-set methodology is employedto find the 
optimal point and KKT (Karush-Kuhn-Tucker) 
condition.Also Quasi-Newton algorithms are utilized. 
The accuracy of the obtained optimal value naturally 
depends on the selected design and the adopted fitting 
model[30]. The remaining steps of the RSM-based 
optimization methodology are aimedto improve the 
quality of the obtained optimal solutions. Additional 
numerical tests are performed in orderto acquire 
additional response surfaces until a convergence 
criterion is satisfied. If the difference between the 
optimum values obtained from the surface response 
and the values obtained via the numerical simulation 
reaches a given threshold, the optimization process is 
stopped.The flowchart of the process is depicted in 
Fig.1.  

The objective function for maximizing the lift to 
drag ratio and design variables, being considered here, 
consist of the thickness (t/c), camber (Ca/c) of wing 
section, angle of attack (AOA), and distance from the 
ground(h/c). The study of the related bibliography 
allows the designer to define the following interest 
area: [t/cmin-t/cmax][Ca/cmin-Ca/cmax][AOAmin-
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AOAmax][h/cmin-h/cmax]=[0.09-0.15][0-0.04][2.5-
7.5][0.1-0.8]. A balanced multilevel design is 
primarily matriculated with 3 levels for each factor and 
the numerical simulationis performedfor all levels. 

 

Figure 1. Flow chart of RSM method 

Results and Discusion 

Grid generation and validation 

In the numerical simulation, grid and domain 
independency and comparison of the current result 
with thepublished results data should be investigated. 
The grid structure that is used in CFD simulation is 
created by a structured mesh employed because of its 
simplicity and applicability to the current flow 
configuration (i.e., with a near-by ground). Schematic 
shape of these two-dimensional structured grids is 
illustratedin Fig. 2(a). According to Fig. 2(b), the 
dimension of domain has been obtained after doing 
several various lengths for b, f, u and independent 
lengths have been chosen.  

 

 
(a) 

 
(b) 

Figure 2. (a) H grid topology and H grid. (b) Dimension and 
boundary condition of 2D domain 

The grid sizing is determined after grid 
independence whichis found by doing several different 
trials.which illustrate thesurface pressure coefficient 
distribution. For example, the effect of grid size is 
exposed in Fig. 3. For other cases, the above process is 
utilized for grid and domain independences. The 
setting of numerical simulation are shown in Table 1. 
The Reynolds number in this study is 2.4×105.  

 

Figure 3. Effect of grid sizing on pressure distribution on the 
surface of the airfoil for10˚ and h/c=0.2angle of attack 
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Table 1. Settings for Numerical Simulation. 

Flow turbulent 

Solver 2D Double Precision 
Momentum Equation 
Solver 

Normalize variable diagram 

Algorithm SIMPLE 
turbulent model k  
Bounded scheme SBIC 

 

In Fig. 4, the pressure distribution on the surface 
of NACA0015 airfoil moving near the ground is 
indicated and validated with experimental data [1]. 
Figs. 5.a and 5.b demonstrate the velocity profile 
behind the airfoil at x/c=0.5 and x/c=1 from trailing 
edge for AOA=5° and h/c=0.1,thenthese results are 
compared with the experimental data [1]. These 
comparisons prove the numerical results are in a good 
argument with experimental data. 

Figure 4. Comparison between the present numerical 
results with experimental data, (a) Pressure coefficient 

distribution for airfoil NACA 0015 for an AOA 10º 
and  h/c=0.2, 

 

(a)                                              (b) 

Figure 5. Distributions of mean velocity in the wake region 
of the airfoil for AOA=5˚,h/c=0.1 (a) x/c=0.5 and (b) x/c=1 

Subsequently, Table 2 draws an analogy between 
the lift and drag coefficients for the present numerical 
results and the experimental data [1] and it can be 
concluded that the numerical results arehighly 
congruent with the experimental data. It is noteworthy 
that the difference between drag coefficients from the 
numerical simulation and the experiment data is 
attributed to the airfoil configuration near the ground, 
turbulent models and the amount of uncertainty in the 
experimental procedures. Furthermore, the same 
behaviors are observed in some related publication 
such as [32],where all of cases in this research are 
under the same conditions. 

Table 2. Comparison of the experimental and current 
numerical aerodynamic coefficients of airfoil NACA 0015 at 

AOA=2.5°. 

  CL CD 

h/c=0.1 
 

Experimental data 0.370 0.0112 

Numerical data 
Experimental data 

0.368 
0.297 

0.0178 
0.0115 

h/c=0.5 
 Numerical data 

Experimental data 
0.275 
0.261 

0.0220 
0.0118 

h/c=0.8 
 Numerical data 0.265 0.0230 

Numerical simulation results 

In this research, the e    ffect of the camber and 
thickness of the airfoil have beennumerically 
investigated in ground proximately for different angles 
of attack and ground clearances. However, the lift and 
drag coefficients and lift to drag ratio have been 
initiallyanalyzed at 3 levels for each factor withspecial 
angles of attack: 2.5˚, 5˚ and 7.5˚ degrees.Moreover, 
the ground clearance in this study is fallen into 3 main 
categories: h/c=0.1, 0.5 and 0.8. Besides, toattain the 
best airfoil in thepresent condition, the camber and 
thickness of airfoils were to be taken into 
consideration; therefore, a broad range of them have 
beendesignated and both of these parametershave 
beendivided into 3 segments. The aerodynamic 
characteristics of these five different 2D airfoils have 
beeninitially examined according to the assumed 
cambers and thicknesses. Tables 3(a)-(e) represent the 
lift and drag coefficients and L/D in thevariant angles 
of attack as varying ground clearances. In fact, the 
tables demonstrate some significant trends; for 
instance, the lift has an upward trend for all cases 
when the airfoils closely approach the ground. In 
almost all of the cases, the lift coefficients are 
dramatically risen by a gradual growth of the camber 
contrast a slight drop of the thickness. Actually, this 
behavior lays emphasis on the flow blockage, which 
hashappened.  

u/U

y/
c

0 0.5 1

Num
EXP

0.1

0.3

0.2

u/U

y/
c

0 0.5 1

Num
EXP

0.1

0.2

0.3
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Furthermore, drag has the same trend with lift 
when the ground clearance is slightly changed; 
whilethis behavior is in agreement with the 
experimental data [9,11]. On the other hand, this 

simulation confirms that the drag coefficient in thin 
airfoils is reduced consistently down from AOA= 
2.5°to 5°, after that there is a tendency to rise and the 
drag tends upward toAOA=7.5°.  

Table 3. Lift and drag coefficients of the mentioned airfoils 

              h/c 
AOA (deg)      

0.1 0.5 0.8 
CL CD CL CD CL CD 

2.5° 0.322 0.0123 0.312 0.0130 0.298 0.0142 
5° 0.680 0.0192 0.556 0.0222 0.539 0.0224 
7.5° 0.890 0.0398 0.775 0.0390 0.753 0.0405 

(a) t/c=0.09 
 

              h/c 
AOA(deg)      

0.1 0.5 0.8 
CL CD CL CD CL CD 

2.5° 0.315 0.0140 0.308 0.0175 0.295 0.0180 
5° 0.645 0.0220 0.555 0.0230 0.535 0.0256 
7.5° 0.860 0.0350 0.765 0.0380 0.743 0.0395 

(b) t/c=0.12 
 

              h/c 
AOA(deg)      

0.1 0.5 0.8 
CL CD CL CD CL CD 

2.5° 0.368 0.0178 0.275 0.0220 0.265 0.0230 
5° 0.600 0.0230 0.550 0.0235 0.520 0.0290 
7.5° 0.803 0.0335 0.740 0.0340 0.730 0.0380 

t/c=0.15 

              h/c 
AOA(deg)      

0.1 0.5 0.8 
CL CD CL CD CL CD 

2.5° 0.545 0.0182 0.446 0.0265 0.429 0.0280 
5° 0.777 0.0271 0.683 0.0289 0.661 0.0324 
7.5° 0.987 0.0353 0.890 0.0402 0.880 0.0450 

(c) Ca/c=0.02 

 

             h/c 
AOA(deg)      

0.1 0.5 0.8 
CL CD CL CD CL CD 

2.5° 0.710 0.0280 0.665 0.0285 0.636 0.0295 
5° 0.970 0.0340 0.860 0.0350 0.825 0.0360 
7.5° 1.110 0.0450 1.051 0.0470 1.017 0.0500 

(d) Ca/c=0.04 

 
It can be clearly seen that the lift coefficient is 

sharply grown when h/c is slightly decreased, as 
other parameters (camber, thickness, AOA) remaind 
unchanged;the reverse behavior isalso observed in 
the drag coefficient. Likewise, thesetrends are true 
when the thickness is gently lowered; whilethe 
reasons forthese behaviors can be explained by the 
contour of velocity around the airfoils for different 
thicknesses, which are depicted in Figs. 6(a) and 
(b), respectively. These figures show that the 
increase of thickness obviously leads to the 

formation of convergent–divergent passage between 
the airfoil and ground; consequently, it plays a 
significant role in the growth of velocity in the 
mentioned zone(Fig.7) and it is an irrefutable proof 
forpressure disturbance changes on the airfoil 
surfaces. Actually, the thickness reduction 
drasticallyenhances the pressure along the lower 
surface of airfoil and affects the pressure along the 
upper surface as demonstrated in Fig. 8. It can be 
concluded that the airfoil under the mentioned 
conditions causesflow blockage. 
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(a) 

(b) 

Figure 6. Countor of velocity around the airfoil at (a) 
t/c=0.09, (b) t/c=0.15 and AOA=7.5o and h/c=0.1 

  
h/c=0.1 h/c=0.5 

Figure 7. Velocity profiles between the airfoils and ground 
surfaces for various thickness values and AOA=5o. 

Figure 8.  Pressure coefficient distribution on the surface of 
the airfoils for different thickness at AOA=5o and h/c=0.1 

 
However, the L/D is marginally dropped in the 

close proximity of the ground whilethe camber of 
airfoil is consistently risen; but in the high ground 
clearance, the L/D is dramatically risen, untilit reaches 
a plateau and then there is a plunge, as shown in 
Fig.9.The trends are rooted in the air blockage in the 
area between the ground and the sectional wing 
surfaces; whenthe camber of airfoil is grown and the 
wing comes closer to the ground, the flow blockage 
would be so strong. Therefore, the thickness of the 
boundary layer in this area would be pressed and the 
lift coefficient is sharply grown (Fig.10). Nonetheless, 
the effect of air blockage decreases when the airfoil 
goes up.  

 

Figure 9. Behavior of L/D as varying camber (ca/c) and h/c 
for the airfoils under study. 
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(a) h/c=0.1 (b) h/c=0.8 

Figure 10. Velocity profile in the area between the airfoil 
and ground surfaces for different camber values and  

AOA=5°. 

Hence, pressure coefficient distributions along the 
upper and lower surfaces of airfoils are illustrated in 
Fig.11 with various cambers, in both low and high 
ground clearances. The difference of pressure between 
the upper and lower surfaces is increased. 
Nevertheless, it is noteworthy that the pressure 
differences between the rtwo surfacesare enormously 
changed in the lower ground clearance, as can be 
found by the comparison between Figs. 11(a) and (b). 
Consequently, the lift coefficients in low h/c are 
significantly greaterthan in high h/c. In contrast, the 
drag coefficients have the reverse trend and they are 
slightly reduced whilethe moving airfoil approachesto 
the ground. On the other hand, the lift and drag 
coefficients have a noticeable growth by theincreasing 
camber; but the percentage of their growth is various. 
As a result, the behavior of L/D is not simplistic and 
easily predictable when other parameters (camber, 
thickness, AOA, h/c) are changed.  

 

 
(a) 

 
 (b) 

Figure 11.  Pressure coefficient distribution on the surface of 
the airfoils for different cambers at AOA 5o (a)  h/c=0.1, (b) 

h/c=0.8 

As a result of the numerical simulations and above 
discussions, the combination of the wing shape and static 
conditions ompoundsthe matter of improving the 
performance. Actually, their relationship is nonlinear and 
unpredictable; thisalso sets out some powerful arguments 
thatboth wing shape and static conditionsshould be 
simultaneously deliberated in the WIG studies, especially 
in the optimization process. Thisis a clear illustration of 
the importance of using a strong and accurate 
optimization method. 

Optimization results 

High L/D provides a net gain in economic efficiency; 
hence, this is one of the principal design parameters of 
the WIG craft. Numerical simulation makes a case for 
general influences of four parameters (camber, 
thickness, AOA, h/c) on the objective function (L/D); 
therefore, to find the optimum shape and condition, it 
is needed to go into great details. In this paper, RSM 
method is applied and response surface is achieved 
according to the numerical simulation. The data in 
table 2 is used to build initial response surfaces in 
terms of the aerodynamic coefficients and the ANFIS 
approach sets out some powerful rules, which will form 
the searching space accurately [30]. 

Anyway, an approximation of the optimal L/D 
value (ηୟ୮୮) is obtained using the active set method, 
which finds the global maximizer of the constructed 
surfaces. For the design parameters (i.e., t/c, Ca/c, h/c 
and AOA) yielding ηୟ୮୮, an additional numerical 
simulation is conducted to get η୬୳୫, which is compared 
to ηୟ୮୮. The convergence criterion in Eq. (11) decides if 
a new response surface is needed or not: 

ߝ  = ฬఎ೙ೠ೘ିఎೌ೛೛ఎೌ೛೛ ฬ < 10%  
(11)
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In case a new surface is required, the interest 
region is systematically decreased and additional 
experiments are considered around the latest point 
found for the evaluation of ηୟ୮୮ (Fig. 1). In this 
study, only three additional surfaces have been 
constructed until convergence is reached. Fig. 
12demonstrates the three response surfaces attained 
at the last optimization level with a final interest 
region range. Moreover, table 4 summarizes the main 
numerical results obtained during the whole 
optimization process. Finally, the best combination of 

design parameters corresponds to the aim, obtaining 
the maximum value of η. 

Pursuant to the following sentences, the best 
shape characteristics of moving airfoil and static 
conditions are obtained by RSM, and the optimization 
results are presented in Table 4. According to the 
results, the best moving airfoil should have3.26% 
camber and 9.0% thickness; moreover, the optimum 
sectional wing should be also approximately 0.1 close 
to the ground and the best angle of attack is attained as 
over 7.5°.  

 

Table 4. Optimum evolution through the optimization process 

itteration Ca/c t/c h/c AOA L/D(Numeric) L/D(Optimized) error 

1 0.0000 0.090 0.1 5.54 32.57 37.12 0.14 

2 0.0330 0.092 0.76 7.35 36.96 41.45 0.12 

3 0.0326 0.090 0.1 7.5 42.01 45.82 0.09 
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(b) 
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