Journal of Algebraic Systems

Vol. 7, No. 2, (2020), pp 179-187

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

M. MOHAGHEGHI NEZHAD, F. RAHBARNIA*, M. MIRZAVAZIRI AND R. GHANBARI

Abstract

The metric dimension of a connected graph G is the minimum number of vertices in a subset B of G such that all other vertices are uniquely determined by their distances to the vertices in B. In this case, B is called a metric basis for G. The basic distance of a metric two-dimensional graph G is the distance between the elements of B. Giving a characterization for those graphs whose metric dimensions are two, we enumerate the number of n vertex metric two-dimensional graphs with the basic distance 1.

1. Introduction

Let $G=(V, E)$ be a connected simple graph. For two vertices u and v of G, the distance $d_{G}(x, y)$ or $d(x, y)$ of x and y is the length of a minimum path connecting x to y. For a subset $R=\left\{r_{1}, \ldots, r_{k}\right\}$ of V and a vertex v, the representation of v with respect to R is the k-tuple $\langle v \mid R\rangle=\left(d\left(v, r_{1}\right), \ldots, d\left(v, r_{k}\right)\right)$. The subset R is called a resolving set for G if any vertex has a unique representation with respect to R. A resolving set B of V is called a metric basis for G if it has the minimum possible number of elements for a resolving set. The metric dimension G, denoted by $\operatorname{dim}_{\mathrm{M}}(G)$ is then equal to this minimum number. For a study about these notions, we refer the reader to [4] and [8].

[^0]As a simple known fact, $\operatorname{dim}_{\mathrm{M}}(G)=1$ if and only if G is a path. The metric dimension of an n vertex graph G is $n-1$ if and only if G is the complete graph K_{n}; see [3].

The concept of a resolving set has various applications in different areas including network discovery and verification [1], problems of pattern recognition and image processing [6], robot navigation [5], mastermind game [2], and combinatorial search and optimization [7].

2. A Characterization for $\operatorname{dim}_{\mathrm{M}}(G)=2$

In this section, we aim to characterize all two metric dimensional graphs, but prior to this we need to extend the notion of a path.

Definition 2.1. Let x and d be two positive integers with $x \geqslant d$ and let y be a nonnegative integer. An extended path $\mathcal{P}(x, y, d)$ of the length x, width y, and height $2 d+1$ is a simple graph with the following properties:
i. $V(\mathcal{P})=\cup_{i=0}^{x} P_{i}$, where $P_{i}=\left\{v_{i,|i-d|}, v_{i,|i-d|+1}, \ldots, v_{i, i+d}\right\}$ for $0 \leqslant$ $i \leqslant y$ and $P_{i}=\left\{v_{i,|i-d|}, v_{i,|i-d|+1}, \ldots, v_{i, i+d-1}\right\}$ for $y+1 \leqslant i \leqslant x$;
ii. neighbors of $v_{i, j}$ are $v_{k, \ell}$ with $|i-k| \leqslant 1$ and $|j-\ell| \leqslant 1$.

Example 2.2. As an example, the generalized path $\mathcal{P}(7,4,1)$ has vertices of the form

						66	
				$\mathbf{4 5}$	55	65	
			34	44	54		
		23	33	43			
	12	22	32				
01	11	21					
	10						

and there is an edge between any two vertices, which are horizontally, vertically, or diagonally adjacent. Whence any horizontal, vertical, or diagonal line is a path. Here, P_{i} 's are vertical lines numbered from left to right by $P_{0}, P_{1}, \ldots, P_{7}$. The length of the first diagonal path from top is $y=4$, the left coordinate of any vertex in the last path is $x=\mathbf{7}$, and the left coordinate of the only vertex in the first horizontal path from down is $d=\mathbf{1}$.

As another example, the generalized path $\mathcal{P}(6,3,4)$ has vertices of the form

						69
					58	68
			37	47	57	67
		26	36	46	56	66
	15	25	35	45	55	65
04	14	24	34	44	54	64
	13	23	33	43	53	63
		22	32	42	52	62
			31	41	51	
				40		

and there is an edge between any two vertices which are horizontally, vertically, or diagonally adjacent.

Definition 2.3. Let G be a metric two-dimensional graph with the metric basis $B=\{a, b\}$. Then $d(a, b)$ is called the basic distance of G with respect to B and is denoted by $B D_{B}(G)$.
Proposition 2.4. Let x and d be two positive integers with $x \geqslant d$ and let y be a nonnegative integer. If $(x, y, d) \neq(1,0,1)$, then the generalized path $\mathcal{P}(x, y, d)$ is a metric two-dimensional graph with the metric basis $B=\left\{v_{0, d}, v_{d, 0}\right\}$ and the basic distance d with respect to B. Moreover, $\left\langle v_{i, j} \mid B\right\rangle=(i, j)$ for each $v_{i, j} \in \mathcal{P}$.
Proof. At first we note that if $(x, y, d) \neq(1,0,1)$, then $\mathcal{P}(x, y, d)$ is not a path. We can therefore deduce that $\operatorname{dim}_{\mathrm{M}}(\mathcal{P}(x, y, d)) \geqslant 2$. We show that $B=\left\{a:=v_{0, d}, b:=v_{d, 0}\right\}$ is a metric basis for $\mathcal{P}(x, y, d)$. In fact, we use induction on $i+j$ to show that $\left\langle v_{i, j} \mid B\right\rangle=(i, j)$ for each $v_{i, j} \in \mathcal{P}$.

The minimum possible value for $i+j$ is d. There are $d+1$ vertices

$$
v_{i, j}=v_{0, d}, v_{1, d-1}, \ldots, v_{d-1,1}, v_{d, 0}
$$

with $i+j=d$. Consider the shortest path

$$
a=v_{0, d}, v_{1, d-1}, \ldots, v_{d-1,1}, v_{d, 0}=b
$$

to see that $\left\langle v_{i, j} \mid B\right\rangle=(i, j)$ for these vertices. In particular note that $d(a, b)=d$. Thus $B D_{B}(\mathcal{P}(x, y, d))=d$.

Now let $\left\langle v_{i, j} \mid B\right\rangle=(i, j)$ for each vertex $v_{i, j}$ with $i+j<N$. Let $v_{k, \ell}$ be a vertex with $k+\ell=N$. Any path from $v_{i, j}$ to a should pass from one of the vertices $v_{i-1, j-1}, v_{i-1, j}, v_{i-1, j+1}$. The distance between each of these vertices to a is $i-1$, by the induction hypothesis. Thus $d\left(v_{i, j}, a\right)=i$. A similar argument shows that $d\left(v_{i, j}, b\right)=j$.

Lemma 2.5. Let x and d be two positive integers with $x \geqslant d$ and let y be a nonnegative integer. Then $\mathcal{P}(x, y, d)=\mathcal{P}(x, y, 1) \cup \mathcal{P}(x, x, d-1)$ and $\mathcal{P}(x, y, 1) \cap \mathcal{P}(x, x, d-1)$ is a path.

Proof. Let $V(\mathcal{P})=\cup_{i=0}^{x} P_{i}$, where $P_{i}=\left\{v_{i,|i-d|}, v_{i,|i-d|+1}, \ldots, v_{i, i+d}\right\}$ for $0 \leqslant i \leqslant y$ and $P_{i}=\left\{v_{i,|i-d|}, v_{i,|i-d|+1}, \ldots, v_{i, i+d-1}\right\}$ for $y+1 \leqslant i \leqslant x$.

Put

$$
\begin{aligned}
P_{i}^{\prime} & =\left\{v_{i, j-(d-1)}^{\prime}: v_{i, j} \in P_{i} \text { and } j \geqslant i+d-2\right\}, \\
P_{i}^{\prime \prime} & =\left\{v_{i-1, j}^{\prime \prime}: v_{i, j} \in P_{i} \text { and } j \leqslant i+d-2\right\} .
\end{aligned}
$$

Now if \mathcal{P}^{\prime} is the subgraph of \mathcal{P} induced by $\cup_{i=0}^{x} P_{i}^{\prime}$ and $\mathcal{P}^{\prime \prime}$ is the subgraph of \mathcal{P} induced by $\cup_{i=1}^{x} P_{i}^{\prime \prime}$, then $\mathcal{P}^{\prime}=\mathcal{P}(x, y, 1), \mathcal{P}^{\prime \prime}=\mathcal{P}(x, x, d-$ 1), $\mathcal{P}(x, y, d)=\mathcal{P}^{\prime} \cup \mathcal{P}^{\prime \prime}$ and $\mathcal{P}^{\prime} \cap \mathcal{P}^{\prime \prime}$ is the path $\left\{v_{1, d-1}, v_{2, d}, \ldots, v_{x, x+d-2}\right\}$.

Theorem 2.6. A simple graph G is a metric two-dimensional graph with the basic distance d if and only if it is a subgraph of a generalized path $\mathcal{P}(x, y, d)$ with $(x, y, d) \neq(1,0,1)$ satisfying the following properties:

$$
\begin{aligned}
& \text { i. } v_{0, d}, v_{d, 0} \in G \text {; } \\
& \text { ii. } N\left(v_{i, j}\right) \cap\left\{v_{i-1, j-1}, v_{i-1, j}, v_{i-1, j+1}\right\} \neq \emptyset \text { and } \\
& N\left(v_{i, j}\right) \cap\left\{v_{i-1, j-1}, v_{i, j-1}, v_{i+1, j-1}\right\} \neq \emptyset \text { for each } v_{i j} \in G \text {. }
\end{aligned}
$$

Proof. An inductive argument proves that any subgraph of $\mathcal{P}(x, y, d)$ with $(x, y, d) \neq(1,0,1)$ possessing the properties (i) and $(i i)$ is a metric two-dimensional graph with the basis $B=\left\{a:=v_{0, d}, b:=v_{d, 0}\right\}$ and the basic distance d.

Conversely, suppose that G is a metric two-dimensional graph with the basis $B=\{a, b\}$ and the basic distance d. Let

$$
x:=\max \{d(v, a): v \in G\},
$$

and

$$
y:=\max \{i:(i, i+d)=\langle v \mid B\rangle, \text { for some } v \in G\} .
$$

Define $\varphi: G \rightarrow \mathcal{P}(x, y, d)$ by $\varphi(v)=v_{i, j}$, where $(i, j)=\langle v \mid B\rangle$. We show that

$$
\begin{array}{ll}
|i-d| \leqslant j \leqslant i+d, & \text { for } i=0, \ldots, y \\
|i-d| \leqslant j \leqslant i+d-1, & \text { for } i=y+1, \ldots, x .
\end{array}
$$

We have $d(v, a)=i$ and $d(v, b)=j$, since $(i, j)=\langle v \mid B\rangle$. The triangle inequality implies that $d=d(a, b) \leqslant d(a, v)+d(v, b)=i+j$. Moreover, $j=d(v, b) \leqslant d(v, a)+d(a, b)=i+d$ and $i=d(v, a) \leqslant d(v, b)+d(b, a)=$ $j+d$. Thus $|i-d| \leqslant j \leqslant i+d$ for each $0 \leqslant i \leqslant x$.

If $i \geqslant y+1$, then j cannot be $i+d$, since otherwise we should have $(i, i+d)=(i, j)=\langle v \mid B\rangle$ which contradicts the definition of y. Hence $j \leqslant i+d-1$ for $i \geqslant y+1$.

We therefore have $\varphi(V(G)) \subseteq V(\mathcal{P}(x, y, d))$. Now let $e=u v$ be an edge in $V(G)$. If $\varphi(u)=v_{i, j}$ and $\varphi(v)=v_{k \ell}$, then

$$
i=d(u, a) \leqslant d(u, v)+d(v, a)=1+k
$$

and

$$
k=d(v, a) \leqslant d(v, u)+d(u, a)=1+i .
$$

Thus $|i-k| \leqslant 1$. By the same argument, $|j-\ell| \leqslant 1$. This shows that $k=i-1, i$ or $i+1$ and $\ell=j-1, j$ or $j+1$. Whence $\varphi(e)$ is an edge in $\mathcal{P}(x, y, d)$ and so G is a subgraph of $\mathcal{P}(x, y, d)$.

Clearly, $v_{0, d}=a, v_{d, 0}=b \in G$. To show that (ii) does also hold, note that if, for example, $N\left(v_{i, j}\right) \cap\left\{v_{i-1, j-1}, v_{i-1, j}, v_{i-1, j+1}\right\}=\emptyset$, then there is no path with the length i from $v_{i, j}$ to a.

3. Enumerating of Metric two-dimensional Graphs with the Basic Distance 1

Lemma 2.5 shows that any generalized path $\mathcal{P}(x, y, d)$ can be regarded as a larger path $\mathcal{P}\left(x^{\prime}, y^{\prime}, d^{\prime}\right)$. Thus the generalized path mentioned in Theorem 2.6 is not unique. A simple argument based on the property (ii) of Theorem 2.6 implies that if $x=\max \{d(v, a): v \in$ $G\}, y=\max \{i:(i, i+d)=\langle v \mid B\rangle$, for some $v \in G\}$ and $d=d(a, b)$, then the boundary $\partial \mathcal{P}(x, y, d)$
$v_{0, d}, v_{1, d-1}, v_{2, d-2}, \ldots, v_{d, 0}, v_{d+1,1} v_{d+2,2}, \ldots, v_{x, x-d}, v_{1, d+1}, v_{2, d+2}, \ldots, v_{y, y+d}$ of $\mathcal{P}(x, y, d)$ are vertices of G. Whence this x, y and d are the least possible values such that G is a subgraph of $\mathcal{P}(x, y, d)$.

Definition 3.1. Let G be a simple metric two-dimensional graph. We say that G is fitted in $\mathcal{P}(x, y, d)$, denoted by $G \sqsubseteq \mathcal{P}(x, y, d)$, if

$$
\begin{aligned}
& x=\max \{d(v, a): v \in G\} \\
& y=\max \{i:(i, i+d)=\langle v \mid B\rangle, \text { for some } v \in G\} \\
& d=d(a, b)
\end{aligned}
$$

or equivalently G contains the boundary $\partial \mathcal{P}(x, y, d)$
$v_{0, d}, v_{1, d-1}, v_{2, d-2}, \ldots, v_{d, 0}, v_{d+1,1} v_{d+2,2}, \ldots, v_{x, x-d}, v_{1, d+1}, v_{2, d+2}, \ldots, v_{y, y+d}$ of $\mathcal{P}(x, y, d)$. The parameters x and y are called the length and width of G and are denoted by $\ell(G)$ and $w(G)$, respectively.

We now want to enumerate the number of n vertex metric twodimensional graph with the basic distance 1. Prior to this, we enumerate the number of n vertex metric two-dimensional graph with the length x, width y, and the basic distance 1 . We denote the latter number by $\nu(n ; x, y)$.

Lemma 3.2. $\nu(n ; x, y) \geqslant 1$ if and only if $x+y+2 \leqslant n \leqslant 2 x+y+1$.
Proof. Suppose that there is an n vertex metric two-dimensional graph G with the length x, width y and the basic distance 1. Using Theorem 2.6, we fit it in $\mathcal{P}(x, y, 1)$. Since the boundary of $\mathcal{P}(x, y, 1)$ has $x+y+1$ elements, we should have $n \geqslant x+y+1$. If $n=x+y+1$, then $G=\partial \mathcal{P}(x, y, 1)$ which is a path and has metrics dimension 1. Thus $n \geqslant x+y+2$. Moreover, $n=|V(G)| \leqslant|V(\mathcal{P}(x, y, 1))|=2 x+y+1$.

On the other hand, if $x+y+2 \leqslant n \leqslant 2 x+y+1$, then we can write $n=x+y+1+r$, where $1 \leqslant r \leqslant x$. Now consider the subgraph of $\mathcal{P}(x, y, 1)$ induced by $\partial \mathcal{P}(x, y, 1) \cup\left\{v_{1,1}, \ldots, v_{r, r}\right\}$. This is an n vertex subgraph of $\mathcal{P}(x, y, 1)$ satisfying (i) and (ii) of Theorem 2.6.

Based on Lemma 3.2, for simplicity, we denote $\nu(n ; x, y)$ by $\mu(m ; x, y)$. We note that $\mu(m ; x, y) \geqslant 1$ if and only if $1 \leqslant m \leqslant x$.

Lemma 3.3. $\mu(x ; x, y)=4 \times 20^{y-1} \times 10^{x-y}$ for each $x \geqslant y \geqslant 1$ and $\mu(x ; x, 0)=2 \times 10^{x-1}$ for each $x \geqslant 1$.

Proof. Let G be an n vertex metric two-dimensional graph G with the length x, width y and the basic distance 1 , where $n=2 x+y+1$. Thus $G \sqsubseteq \mathcal{P}(x, y, 1)$ and the induced subgraph $\partial \mathcal{P}(x, y, 1)$ of $\mathcal{P}(x, y, 1)$ should be a subgraph of G. For other vertices

$$
\left\{v_{1,1}, \ldots, v_{y, y}, v_{y+1, y+1}, \ldots, v_{x, x}\right\}
$$

we should put the edges in such a way that (ii) of Theorem 2.6 is satisfied. For $v_{1,1}$ putting edges $v_{1,1} v_{0,1}$ and $v_{1,1} v_{1,0}$ is compulsory, and we have 4 choices for 'to put' or 'not to put' the edges $v_{1,1} v_{1,2}$ and $v_{1,1} v_{2,1}$.

If $1<i \leqslant y$, then for $v_{i, i}$ putting one of the 5 sets of edges,

$$
\begin{aligned}
& \left\{v_{i, i} v_{i-1, i-1}\right\},\left\{v_{i, i} v_{i-1, i}, v_{i, i} v_{i, i-1}\right\},\left\{v_{i, i} v_{i-1, i-1}, v_{i, i} v_{i-1, i}\right\}, \\
& \left\{v_{i, i} v_{i-1, i-1}, v_{i, i} v_{i, i-1}\right\},\left\{v_{i, i} v_{i-1, i-1}, v_{i, i} v_{i-1, i}, v_{i, i} v_{i, i-1}\right\}
\end{aligned}
$$

is compulsory and we have 4 choices for 'to put' or 'not to put' the edges $v_{i, i} v_{i, i+1}$ and $v_{i, i} v_{i+1, i}$.

If $y+1 \leqslant i \leqslant x$, then the 4 choices decreases into 2 choices, since we do not have $v_{i, i+1}$.

Finally, if $y=0$, then we have 2 choices for $v_{1,1}$ and 10 choices for $v_{i, i}$ when $1<i \leqslant x$.

Though we know that $\mu(0 ; x, y)=0$, but for the following recursive relation, we need to assume, as a convenient, that $\mu(0 ; x, y)=1$.

Furthermore, for $y \geqslant 1$, we assume that

$$
\omega(j)= \begin{cases}4, & j=1 \\ 20, & 2 \leqslant j \leqslant y \\ 10, & y+1 \leqslant j \leqslant x\end{cases}
$$

and for $y=0$ we assume that

$$
\omega(j)= \begin{cases}2, & j=1 \\ 10, & 2 \leqslant j \leqslant x\end{cases}
$$

Theorem 3.4. Let x be a positive integer, let y be a nonnegative integer, and let $1 \leqslant m<x$. Then $\mu(m ; x, y)$ satisfies the recursive relation

$$
\mu(m ; x, y)=\sum_{i=1}^{m+1}\left(\prod_{j=1}^{i-1} \omega(j)\right) \cdot \mu(m-(i-1) ; x-i, \max \{y-i, 0\})
$$

with the boundary values

$$
\mu(0 ; x, y)=1, \quad \mu(x ; x, y)=\prod_{j=1}^{x} \omega(j) .
$$

Proof. To determine $\mu(m ; x, y)$, we in fact need to enumerate the number of $n=x+y+1+m$ vertex metric two-dimensional subgraphs G of $\mathcal{P}(x, y, 1)$ with the basic distance 1 . Let $m<x$. Then there is a vertex $v_{i, i} \in \mathcal{P}(x, y, 1) \backslash G$. Let i be the first index such that $v_{i, i} \in \mathcal{P}(x, y, 1) \backslash G$. Then $1 \leqslant i \leqslant m+1$. Since $v_{1,1}, \ldots, v_{i-1, i-1} \in G$, we have $\prod_{j=1}^{i-1} \omega(j)$ choices for selecting appropriate edges. Then we have $\mu(m-(i-1) ; x-i, \max \{y-i, 0\})$ choices for selecting other edges for other vertices of G.

Corollary 3.5. Let x be a positive integer and let $1 \leqslant m<x$. Then

$$
\mu(m ; x, 0)=\mu(m ; x-1,0)+\sum_{i=2}^{m+1} 2 \times 10^{i-2} \cdot \mu(m-(i-1) ; x-i, 0)
$$

Example 3.6. We evaluate $\mu(m ; x, 0)$ for $m=1,2,3$ and $x>m$.
A simple verification shows that $\mu(1 ; x, 0)=2 x$. For $m=2<x$ we have

$$
\begin{aligned}
\mu(2 ; x, 0) & =\mu(2 ; x-1,0)+2 \mu(1 ; x-2,0)+20 \mu(0 ; x-3,0) \\
& =\mu(2 ; x-1,0)+2 \cdot 2(x-2)+20 \\
& =\mu(2 ; x-1,0)+4(x+3)
\end{aligned}
$$

Iterating the above equation, we have

$$
\begin{aligned}
\mu(2 ; x, 0) & =\mu(2 ; x-1,0)+4(x+3) \\
& =\mu(2 ; x-2,0)+4(x+2)+4(x+3) \\
& =\mu(2 ; x-3,0)+4(x+1)+4(x+2)+4(x+3) \\
& =\ldots \\
& =\mu(2 ; 2,0)+4(2+4)+\ldots 4(x+3) \\
& =20+4\left(\frac{(x+3)(x+4)}{2}-15\right) \\
& =2(x-1)(x+8) .
\end{aligned}
$$

Finally, for $m=3<x$, we have

$$
\begin{aligned}
\mu(3 ; x, 0) & =\mu(3 ; x-1,0)+2 \mu(2 ; x-2,0)+20 \mu(1 ; x-3,0) \\
& +200 \mu(0 ; x-4,0) \\
& =\mu(3 ; x-1,0)+2 \cdot 2(x-3)(x+6)+20 \cdot 2(x-3)+200 \\
& =\mu(3 ; x-1,0)+4\left(x^{2}+13 x+2\right)
\end{aligned}
$$

A similar method gives

$$
\mu(3 ; x, 0)=\frac{4}{3} x^{3}+28 x^{2}+\frac{104}{3} x-192 .
$$

Corollary 3.7. Let x be a positive integer and let $1 \leqslant m<x$. Then $\mu(m ; x, 0)$ is a polynomial of x of degree m.

Proof. Using induction on $m+x$, we can assume that the right hand side of Corollary 3.5 is a polynomial of x of degree m. Whence the left hand side is also a polynomial of x of degree m.

We now can simply evaluate $\nu(n)$; the number of all n vertex labeled metric two-dimensional graph with the basis $B=\{a, b\}$ and the basic distance 1.

Theorem 3.8. The number of all n vertex labeled metric two-dimensional graph G with the basis $B=\{a, b\}$ and the basic distance 1, is

$$
\nu(n)=\sum_{y=0}^{\left\lfloor\frac{n-1}{3}\right\rfloor} \sum_{x=\left\lceil\frac{n-y-1}{2}\right\rceil}^{n-y-2} \mu(n-x-y-1 ; x, y) .
$$

Proof. Each G can be fitted in a $\mathcal{P}(x, y, 1)$ where, by Lemma 3.2, we should have $x+y+2 \leqslant n \leqslant 2 x+y+1$. Thus the valid values of x and y are $0 \leqslant y \leqslant\left\lfloor\frac{n-1}{3}\right\rfloor$ and $\left\lceil\frac{n-y-1}{2}\right\rceil \leqslant x \leqslant n-y-2$. We know that the number of metric two-dimensional subgraph of $\mathcal{P}(x, y, 1)$ is $\mu(n-x-y-1 ; x, y)$.

References

1. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak and L. S. Ram, Network dicovery and verification, IEEE Journal on Selected Areas in Communications, 24(12) (2006), 2168-2181.
2. J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math., 21(2) (2007), 423-441.
3. G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3) (2000), 99-113.
4. F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
5. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70(3) (1996), 217-229.
6. R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process, 25 (1984), 113-121.
7. A. Sebo and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2) (2004), 383-393.
8. P. J. Slater, Leaves of trees, Proc. 6th Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic Univ., Boca Raton, Fla., Congressus Numerantium 14, Winnipeg: Utilitas Math., (1975), 549-559.

Mostafa Mohagheghi Nezhad

Department of Applied Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran.
Email: mostafa.mohaqeqi@mail.um.ac.ir

Freydoon Rahbarnia

Department of Applied Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran.
Email: rahbarnia@um.ac.ir

Madjid Mirzavaziri

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran.

```
Email: mirzavaziri@um.ac.ir
```


Reza Ghanbari

Department of Applied Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran.
Email: rghanbari@um.ac.ir

Journal of Algebraic Systems

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

M. MOHAGHEGHI-NEZHAD, F. RAHBARNIA, M. MIRZAVAZIRI and R. GHANBARI
مشخصسازى گرافهاى با بعد متريك دو و شمارش آنها
مصطفى محققىنزاد، فريدون رهبرنيا، مجيد ميرزاوزيرى و رضا قنبرى
دانشكده علوم رياضى، دانشگاه فردوسى مشهد، مشهد، ايران
بعد متريى گراف G عبارت است از حداقل تعداد راسهاى لازم در زيرمجموعهى B از از رئوس گراف،
بهطورىكه تمام راسهاى ديگر

> بين دو عنصر B تعريف مىشود. و سپس تعداد رئوس گرافهاى با با بعد متريك دو، كه فاصله پايه آنها يك باشد را را خواهيم شمرد.
> گرافهات كليدى: بعد متريک گرافها، مجموعه كاشف، پايه متريک گراف، فاصله پایهاى، شمارش

[^0]: MSC(2010): 05C30.
 Keywords: Metric dimension, resolving set, metric basis, basic distance, contour of a graph.
 Received: 15 August 2018, Accepted: 27 January 2019.
 $*$ Corresponding author.

