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A CHARACTERIZATION FOR METRIC
TWO-DIMENSIONAL GRAPHS AND THEIR

ENUMERATION
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Abstract. The metric dimension of a connected graph G is the
minimum number of vertices in a subset B of G such that all
other vertices are uniquely determined by their distances to the
vertices in B. In this case, B is called a metric basis for G. The
basic distance of a metric two-dimensional graph G is the distance
between the elements of B. Giving a characterization for those
graphs whose metric dimensions are two, we enumerate the number
of n vertex metric two-dimensional graphs with the basic distance
1.

1. Introduction

Let G = (V,E) be a connected simple graph. For two vertices u and
v of G, the distance dG(x, y) or d(x, y) of x and y is the length of a
minimum path connecting x to y. For a subset R = {r1, . . . , rk} of V
and a vertex v, the representation of v with respect to R is the k-tuple
⟨v|R⟩ = (d(v, r1), . . . , d(v, rk)). The subset R is called a resolving set
for G if any vertex has a unique representation with respect to R. A
resolving set B of V is called a metric basis for G if it has the minimum
possible number of elements for a resolving set. The metric dimension
G, denoted by dimM(G) is then equal to this minimum number. For a
study about these notions, we refer the reader to [4] and [8].
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As a simple known fact, dimM(G) = 1 if and only if G is a path.
The metric dimension of an n vertex graph G is n− 1 if and only if G
is the complete graph Kn; see [3].

The concept of a resolving set has various applications in differ-
ent areas including network discovery and verification [1], problems
of pattern recognition and image processing [6], robot navigation [5],
mastermind game [2], and combinatorial search and optimization [7].

2. A Characterization for dimM(G) = 2

In this section, we aim to characterize all two metric dimensional
graphs, but prior to this we need to extend the notion of a path.

Definition 2.1. Let x and d be two positive integers with x ⩾ d and let
y be a nonnegative integer. An extended path P(x, y, d) of the length
x, width y, and height 2d + 1 is a simple graph with the following
properties:

i. V (P) = ∪x
i=0Pi, where Pi = {vi,|i−d|, vi,|i−d|+1, . . . , vi,i+d} for 0 ⩽

i ⩽ y and Pi = {vi,|i−d|, vi,|i−d|+1, . . . , vi,i+d−1} for y+1 ⩽ i ⩽ x;
ii. neighbors of vi,j are vk,ℓ with |i− k| ⩽ 1 and |j − ℓ| ⩽ 1.

Example 2.2. As an example, the generalized path P(7, 4, 1) has ver-
tices of the form

77
66 76

45 55 65
34 44 54

23 33 43
12 22 32

01 11 21
10

and there is an edge between any two vertices, which are horizontally,
vertically, or diagonally adjacent. Whence any horizontal, vertical, or
diagonal line is a path. Here, Pi’s are vertical lines numbered from left
to right by P0, P1, . . . , P7. The length of the first diagonal path from
top is y = 4, the left coordinate of any vertex in the last path is x = 7,
and the left coordinate of the only vertex in the first horizontal path
from down is d = 1.

As another example, the generalized path P(6, 3, 4) has vertices of
the form
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69
58 68

37 47 57 67
26 36 46 56 66

15 25 35 45 55 65
04 14 24 34 44 54 64

13 23 33 43 53 63
22 32 42 52 62

31 41 51
40

and there is an edge between any two vertices which are horizontally,
vertically, or diagonally adjacent.

Definition 2.3. Let G be a metric two-dimensional graph with the
metric basis B = {a, b}. Then d(a, b) is called the basic distance of G
with respect to B and is denoted by BDB(G).

Proposition 2.4. Let x and d be two positive integers with x ⩾ d
and let y be a nonnegative integer. If (x, y, d) ̸= (1, 0, 1), then the
generalized path P(x, y, d) is a metric two-dimensional graph with the
metric basis B = {v0,d, vd,0} and the basic distance d with respect to B.
Moreover, ⟨vi,j|B⟩ = (i, j) for each vi,j ∈ P.

Proof. At first we note that if (x, y, d) ̸= (1, 0, 1), then P(x, y, d) is not
a path. We can therefore deduce that dimM(P(x, y, d)) ⩾ 2. We show
that B = {a := v0,d, b := vd,0} is a metric basis for P(x, y, d). In fact,
we use induction on i+j to show that ⟨vi,j|B⟩ = (i, j) for each vi,j ∈ P .

The minimum possible value for i+ j is d. There are d+ 1 vertices
vi,j = v0,d, v1,d−1, . . . , vd−1,1, vd,0

with i+ j = d. Consider the shortest path
a = v0,d, v1,d−1, . . . , vd−1,1, vd,0 = b

to see that ⟨vi,j|B⟩ = (i, j) for these vertices. In particular note that
d(a, b) = d. Thus BDB(P(x, y, d)) = d.

Now let ⟨vi,j|B⟩ = (i, j) for each vertex vi,j with i + j < N . Let
vk,ℓ be a vertex with k + ℓ = N . Any path from vi,j to a should pass
from one of the vertices vi−1,j−1, vi−1,j, vi−1,j+1. The distance between
each of these vertices to a is i− 1, by the induction hypothesis. Thus
d(vi,j, a) = i. A similar argument shows that d(vi,j, b) = j. □
Lemma 2.5. Let x and d be two positive integers with x ⩾ d and let y
be a nonnegative integer. Then P(x, y, d) = P(x, y, 1) ∪ P(x, x, d − 1)
and P(x, y, 1) ∩ P(x, x, d− 1) is a path.
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Proof. Let V (P) = ∪x
i=0Pi, where Pi = {vi,|i−d|, vi,|i−d|+1, . . . , vi,i+d} for

0 ⩽ i ⩽ y and Pi = {vi,|i−d|, vi,|i−d|+1, . . . , vi,i+d−1} for y + 1 ⩽ i ⩽ x.
Put

P ′
i = {v′i,j−(d−1) : vi,j ∈ Pi and j ⩾ i+ d− 2},

P ′′
i = {v′′i−1,j : vi,j ∈ Pi and j ⩽ i+ d− 2}.

Now if P ′ is the subgraph of P induced by ∪x
i=0P

′
i and P ′′ is the sub-

graph of P induced by ∪x
i=1P

′′
i , then P ′ = P(x, y, 1),P ′′ = P(x, x, d−

1),P(x, y, d) = P ′∪P ′′ and P ′∩P ′′ is the path {v1,d−1, v2,d, . . . , vx,x+d−2}.
□

Theorem 2.6. A simple graph G is a metric two-dimensional graph
with the basic distance d if and only if it is a subgraph of a gener-
alized path P(x, y, d) with (x, y, d) ̸= (1, 0, 1) satisfying the following
properties:

i. v0,d, vd,0 ∈ G;
ii. N(vi,j) ∩ {vi−1,j−1, vi−1,j, vi−1,j+1} ̸= ∅ and

N(vi,j) ∩ {vi−1,j−1, vi,j−1, vi+1,j−1} ̸= ∅ for each vij ∈ G.

Proof. An inductive argument proves that any subgraph of P(x, y, d)
with (x, y, d) ̸= (1, 0, 1) possessing the properties (i) and (ii) is a metric
two-dimensional graph with the basis B = {a := v0,d, b := vd,0} and
the basic distance d.

Conversely, suppose that G is a metric two-dimensional graph with
the basis B = {a, b} and the basic distance d. Let

x := max{d(v, a) : v ∈ G},

and
y := max{i : (i, i+ d) = ⟨v|B⟩, for some v ∈ G}.

Define φ : G → P(x, y, d) by φ(v) = vi,j, where (i, j) = ⟨v|B⟩. We
show that

|i− d| ⩽ j ⩽ i+ d, for i = 0, . . . , y,
|i− d| ⩽ j ⩽ i+ d− 1, for i = y + 1, . . . , x.

We have d(v, a) = i and d(v, b) = j, since (i, j) = ⟨v|B⟩. The triangle
inequality implies that d = d(a, b) ⩽ d(a, v)+d(v, b) = i+j. Moreover,
j = d(v, b) ⩽ d(v, a)+d(a, b) = i+d and i = d(v, a) ⩽ d(v, b)+d(b, a) =
j + d. Thus |i− d| ⩽ j ⩽ i+ d for each 0 ⩽ i ⩽ x.

If i ⩾ y + 1, then j cannot be i+ d, since otherwise we should have
(i, i + d) = (i, j) = ⟨v|B⟩ which contradicts the definition of y. Hence
j ⩽ i+ d− 1 for i ⩾ y + 1.
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We therefore have φ(V (G)) ⊆ V (P(x, y, d)). Now let e = uv be an
edge in V (G). If φ(u) = vi,j and φ(v) = vkℓ, then

i = d(u, a) ⩽ d(u, v) + d(v, a) = 1 + k,

and
k = d(v, a) ⩽ d(v, u) + d(u, a) = 1 + i.

Thus |i− k| ⩽ 1. By the same argument, |j − ℓ| ⩽ 1. This shows that
k = i− 1, i or i+ 1 and ℓ = j − 1, j or j + 1. Whence φ(e) is an edge
in P(x, y, d) and so G is a subgraph of P(x, y, d).

Clearly, v0,d = a, vd,0 = b ∈ G. To show that (ii) does also hold, note
that if, for example, N(vi,j) ∩ {vi−1,j−1, vi−1,j, vi−1,j+1} = ∅, then there
is no path with the length i from vi,j to a. □

3. Enumerating of Metric two-dimensional Graphs with
the Basic Distance 1

Lemma 2.5 shows that any generalized path P(x, y, d) can be re-
garded as a larger path P(x′, y′, d′). Thus the generalized path men-
tioned in Theorem 2.6 is not unique. A simple argument based on the
property (ii) of Theorem 2.6 implies that if x = max{d(v, a) : v ∈
G}, y = max{i : (i, i + d) = ⟨v|B⟩, for some v ∈ G} and d = d(a, b),
then the boundary ∂P(x, y, d)

v0,d, v1,d−1, v2,d−2, . . . , vd,0, vd+1,1vd+2,2, . . . , vx,x−d, v1,d+1, v2,d+2, . . . , vy,y+d

of P(x, y, d) are vertices of G. Whence this x, y and d are the least
possible values such that G is a subgraph of P(x, y, d).
Definition 3.1. Let G be a simple metric two-dimensional graph. We
say that G is fitted in P(x, y, d), denoted by G ⊑ P(x, y, d), if

x = max{d(v, a) : v ∈ G},
y = max{i : (i, i+ d) = ⟨v|B⟩, for some v ∈ G},
d = d(a, b),

or equivalently G contains the boundary ∂P(x, y, d)

v0,d, v1,d−1, v2,d−2, . . . , vd,0, vd+1,1vd+2,2, . . . , vx,x−d, v1,d+1, v2,d+2, . . . , vy,y+d

of P(x, y, d). The parameters x and y are called the length and width
of G and are denoted by ℓ(G) and w(G), respectively.

We now want to enumerate the number of n vertex metric two-
dimensional graph with the basic distance 1. Prior to this, we enu-
merate the number of n vertex metric two-dimensional graph with the
length x, width y, and the basic distance 1. We denote the latter
number by ν(n;x, y).
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Lemma 3.2. ν(n;x, y) ⩾ 1 if and only if x+ y + 2 ⩽ n ⩽ 2x+ y + 1.

Proof. Suppose that there is an n vertex metric two-dimensional graph
G with the length x, width y and the basic distance 1. Using Theorem
2.6, we fit it in P(x, y, 1). Since the boundary of P(x, y, 1) has x+y+1
elements, we should have n ⩾ x + y + 1. If n = x + y + 1, then
G = ∂P(x, y, 1) which is a path and has metrics dimension 1. Thus
n ⩾ x+ y + 2. Moreover, n = |V (G)| ⩽ |V (P(x, y, 1))| = 2x+ y + 1.

On the other hand, if x+ y+ 2 ⩽ n ⩽ 2x+ y+ 1, then we can write
n = x + y + 1 + r, where 1 ⩽ r ⩽ x. Now consider the subgraph of
P(x, y, 1) induced by ∂P(x, y, 1) ∪ {v1,1, . . . , vr,r}. This is an n vertex
subgraph of P(x, y, 1) satisfying (i) and (ii) of Theorem 2.6. □

Based on Lemma 3.2, for simplicity, we denote ν(n;x, y) by µ(m;x, y).
We note that µ(m;x, y) ⩾ 1 if and only if 1 ⩽ m ⩽ x.

Lemma 3.3. µ(x;x, y) = 4 × 20y−1 × 10x−y for each x ⩾ y ⩾ 1 and
µ(x;x, 0) = 2× 10x−1 for each x ⩾ 1.

Proof. Let G be an n vertex metric two-dimensional graph G with the
length x, width y and the basic distance 1, where n = 2x + y + 1.
Thus G ⊑ P(x, y, 1) and the induced subgraph ∂P(x, y, 1) of P(x, y, 1)
should be a subgraph of G. For other vertices

{v1,1, . . . , vy,y, vy+1,y+1, . . . , vx,x},

we should put the edges in such a way that (ii) of Theorem 2.6 is
satisfied. For v1,1 putting edges v1,1v0,1 and v1,1v1,0 is compulsory, and
we have 4 choices for ‘to put’ or ‘not to put’ the edges v1,1v1,2 and
v1,1v2,1.

If 1 < i ⩽ y, then for vi,i putting one of the 5 sets of edges,

{vi,ivi−1,i−1}, {vi,ivi−1,i, vi,ivi,i−1}, {vi,ivi−1,i−1, vi,ivi−1,i},
{vi,ivi−1,i−1, vi,ivi,i−1}, {vi,ivi−1,i−1, vi,ivi−1,i, vi,ivi,i−1}

is compulsory and we have 4 choices for ‘to put’ or ‘not to put’ the
edges vi,ivi,i+1 and vi,ivi+1,i.

If y+1 ⩽ i ⩽ x, then the 4 choices decreases into 2 choices, since we
do not have vi,i+1.

Finally, if y = 0, then we have 2 choices for v1,1 and 10 choices for
vi,i when 1 < i ⩽ x. □

Though we know that µ(0;x, y) = 0, but for the following recur-
sive relation, we need to assume, as a convenient, that µ(0;x, y) = 1.
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Furthermore, for y ⩾ 1, we assume that

ω(j) =

 4, j = 1,
20, 2 ⩽ j ⩽ y,
10, y + 1 ⩽ j ⩽ x,

and for y = 0 we assume that

ω(j) =

{
2, j = 1,
10, 2 ⩽ j ⩽ x.

Theorem 3.4. Let x be a positive integer, let y be a nonnegative
integer, and let 1 ⩽ m < x. Then µ(m;x, y) satisfies the recursive
relation

µ(m;x, y) =
m+1∑
i=1

(
i−1∏
j=1

ω(j)) · µ(m− (i− 1);x− i,max{y − i, 0}),

with the boundary values

µ(0;x, y) = 1, µ(x;x, y) =
x∏

j=1

ω(j).

Proof. To determine µ(m;x, y), we in fact need to enumerate the num-
ber of n = x + y + 1 + m vertex metric two-dimensional subgraphs
G of P(x, y, 1) with the basic distance 1. Let m < x. Then there
is a vertex vi,i ∈ P(x, y, 1) \ G. Let i be the first index such that
vi,i ∈ P(x, y, 1) \ G. Then 1 ⩽ i ⩽ m + 1. Since v1,1, . . . , vi−1,i−1 ∈ G,
we have

∏i−1
j=1 ω(j) choices for selecting appropriate edges. Then we

have µ(m − (i − 1);x − i,max{y − i, 0}) choices for selecting other
edges for other vertices of G. □

Corollary 3.5. Let x be a positive integer and let 1 ⩽ m < x. Then

µ(m;x, 0) = µ(m;x− 1, 0) +
m+1∑
i=2

2× 10i−2 · µ(m− (i− 1);x− i, 0).

Example 3.6. We evaluate µ(m;x, 0) for m = 1, 2, 3 and x > m.
A simple verification shows that µ(1;x, 0) = 2x. For m = 2 < x we

have

µ(2;x, 0) = µ(2;x− 1, 0) + 2µ(1;x− 2, 0) + 20µ(0;x− 3, 0)

= µ(2;x− 1, 0) + 2 · 2(x− 2) + 20

= µ(2;x− 1, 0) + 4(x+ 3).
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Iterating the above equation, we have
µ(2;x, 0) = µ(2;x− 1, 0) + 4(x+ 3)

= µ(2;x− 2, 0) + 4(x+ 2) + 4(x+ 3)

= µ(2;x− 3, 0) + 4(x+ 1) + 4(x+ 2) + 4(x+ 3)

= . . .

= µ(2; 2, 0) + 4(2 + 4) + . . . 4(x+ 3)

= 20 + 4

(
(x+ 3)(x+ 4)

2
− 15

)
= 2(x− 1)(x+ 8).

Finally, for m = 3 < x, we have
µ(3;x, 0) = µ(3;x− 1, 0) + 2µ(2;x− 2, 0) + 20µ(1;x− 3, 0)

+ 200µ(0;x− 4, 0)

= µ(3;x− 1, 0) + 2 · 2(x− 3)(x+ 6) + 20 · 2(x− 3) + 200

= µ(3;x− 1, 0) + 4(x2 + 13x+ 2).

A similar method gives

µ(3;x, 0) =
4

3
x3 + 28x2 +

104

3
x− 192.

Corollary 3.7. Let x be a positive integer and let 1 ⩽ m < x. Then
µ(m;x, 0) is a polynomial of x of degree m.
Proof. Using induction on m + x, we can assume that the right hand
side of Corollary 3.5 is a polynomial of x of degree m. Whence the left
hand side is also a polynomial of x of degree m. □

We now can simply evaluate ν(n); the number of all n vertex labeled
metric two-dimensional graph with the basis B = {a, b} and the basic
distance 1.

Theorem 3.8. The number of all n vertex labeled metric two-dimensional
graph G with the basis B = {a, b} and the basic distance 1, is

ν(n) =

⌊n−1
3

⌋∑
y=0

n−y−2∑
x=⌈n−y−1

2
⌉

µ(n− x− y − 1;x, y).

Proof. Each G can be fitted in a P(x, y, 1) where, by Lemma 3.2, we
should have x + y + 2 ⩽ n ⩽ 2x + y + 1. Thus the valid values of x
and y are 0 ⩽ y ⩽ ⌊n−1

3
⌋ and ⌈n−y−1

2
⌉ ⩽ x ⩽ n − y − 2. We know

that the number of metric two-dimensional subgraph of P(x, y, 1) is
µ(n− x− y − 1;x, y). □
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A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS
AND THEIR ENUMERATION

M. MOHAGHEGHI-NEZHAD, F. RAHBARNIA, M. MIRZAVAZIRI and R. GHANBARI

آن ها شمارش و دو متریک بعد با گراف های مشخص سازی

قنبری رضا و میرزاوزیری مجید رهبرنیا، فریدون محققی نژاد، مصطفی
ایران مشهد، مشهد، فردوسی دانشگاه ریاضی، علوم دانشکده

گراف، رئوس از B زیرمجموعه ی در لازم راس های تعداد حداقل از است عبارت G گراف متریک بعد
شوند. تعیین منحصربه فرد به طور ،B راس های تا آنها فاصله ی واسطۀ به دیگر راس های تمام به طوری که
فاصله به صورت ،G بعدی دو گراف یک پایه فاصله می نامیم. G گراف متریک پایه را B حالت این در
می شود مشخص سازی دو متریک بعد با گراف های ابتدا مقاله، این در می شود. تعریف B عنصر دو بین

شمرد. خواهیم را باشد یک آن ها پایه فاصله که دو، متریک بعد با گراف های رئوس تعداد سپس و

شمارش پایه ای، فاصله گراف، متریک پایه کاشف، مجموعه گراف ها، متریک بعد کلیدی: کلمات
گراف ها.
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