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A B S T R A C T

Rainbow trout (Oncorhynchus mykiss) is one of the most popular aquacultured species in the world. Sustainable
production of this fish at commercial scale is very important but requires maintaining good water quality
throughout the total rearing period. The present study aimed to develop a rainbow trout production index in
order to raise awareness about the conditions of the rearing environment, enhance production, and reduce
losses. For this purpose, an intensive rainbow trout production system was selected as the study system. In this
system, there were seven stations including (a) 3000 5-g fish, (b) 3000 25-g fish, (c) 3000 50-g fish, (d) 3000
100-g fish, (e) 3000 220-g fish, (f) 2000 350-g fish, and (g) 2000 830-g fish. The fuzzy inference system was used
to develop the target rearing index. Water quality parameters involved in the variation in the rainbow trout
rearing conditions were classified into three groups including un-ionized ammonia, nitrite, and nitrate,
Alkalinity and phosphate, along with dissolved oxygen and linear velocity. For each group and condition of
rearing, a separate fuzzy inference system was defined and the output of each fuzzy system was named I1, I2, I3.
Finally, I1, I2, and I3 were considered as the inputs to a fuzzy system in order to evaluate their effects on the index
of general rearing conditions (I). The results indicated that un-ionized ammonia, nitrite, nitrate, and phosphate
had negative effects while dissolved oxygen, linear velocity, and alkalinity positively affected water quality and
rearing index. Most of the decline in the rainbow trout rearing index was related to the effect of un-ionized
ammonia, nitrite, and nitrate due to food decomposition. Therefore, intelligence feeding based on fish appetite
through reducing food conversion rate and water pollution can improve rainbow trout production in this system.
The index of rainbow trout production conditions reflects the type, amount, and effect of water quality pollutants
on rearing conditions. Producers can use this information to reduce the negative environmental effects and
improve the product quality.

1. Introduction

Water quality parameters are closely related to both fish health and
environmental quality. Organic aquaculture can help maintain natural
environment, biodiversity, and animal welfare, which include the
ecologically integrated systems enhancing the quality and health of the
products. Water quality and effluent are considered as serious concerns
in the ecosystems (Lembo and Mente, 2019), and good water quality is
one of the vital requirements of successful aquaculture. Food input
leads to the reduction of water quality in the pools and increase of
stress. As the food input increases, the metabolic waste entering the
pools increases as well. Due to the food input, the concentration of
phytoplanktons, total ammonia, and carbon dioxide increases while the
concentration of dissolved oxygen decreases (Anyadike et al., 2016).

Water quality is usually determined through toxicity tests, which
assess the tolerance power of various aquatic organisms against dif-
ferent toxic ingredients. Each aquatic species can have a different re-
sponse to a specific toxic compound (Carbajal-Hernández et al., 2012).
Although water quality may be simultaneously reduced by different
environmental factors, focusing on major ones can make water con-
servation and renewal more economic and facilitate determining
management priorities (Li et al., 2015). In this regard, dependable
monitoring and assessment programs are required for the numerous and
complicated changes in water quality in order to achieve a compre-
hensive understanding of pollution and its effects. Long-term mon-
itoring generates a large set of intricate data. Accordingly, more sui-
table techniques to manage water quality variables, acceptable range
interpretation of each parameter, and methods to integrate different
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parameters in the evaluation process are clearly required (Ferreira
et al., 2011).

Artificial intelligence methods are regarded as a suitable substitute
technique for modeling a complex and non-linear system in many fields
(Liu et al., 2013). Fuzzy models are the most widely used artificial in-
telligence technique water quality modeling with the benefits of flex-
ibility, clarity, and user friendliness (Akerkar and Sajja, 2010). Such
models discover the nonlinear relationships between ecological vari-
ables with regards to the inherent uncertainty of the variables
(Kampichler et al., 2000). In addition, the indicators, as a re-
presentative of the constituted elements, integrate scientific knowledge
in order to facilitate decision-making (Valenti et al., 2018).

Carbajal-Hernández et al. (2012) developed an indicator to evaluate
the water quality for shrimp culture based on a fuzzy inference system.
To this end, the water quality parameters were classified and the ne-
gative environmental effects of the parameters in the shrimp habitat
were evaluated by the fuzzy inference system. Then, the most important

parameters were prioritized using hierarchical analysis and finally, a
new indicator was developed to assess the ecological condition of water
quality. In another study, Forio et al. (2017) used a fuzzy inference
system to identify the key factors in the water quality of the aquatic
ecosystems in the America Guayas River Basin. The variables of the
system included land use, chlorophyll, and flow velocity. The results of
the study indicated that land use played the most determining role in
the water quality of aquatic ecosystems in that area. In addition,
Bórquez-Lopez et al. (2018) evaluated two methods of fuzzy logic and
mathematic functions as two dynamic feeding strategies in the intensive
shrimp culture system. They used dissolved oxygen and temperature
variation in both methods. The results demonstrated that the dissolved
oxygen significantly affected food conversion rate while the effect of
temperature on the rate was not much significant. Further, the results
demonstrated that food conversion rate considerably improved in the
fuzzy logic strategy. About 35 % of food was saved compared to the
control group, i.e. the conventional feeding table. In a study conducted

Fig. 1. Study farm in Orktand region, Kalat County, Razavi Khorasan Province, Iran.

Fig. 2. The general structure of the fuzzy in-
ference systems developed in this study (Fuzzy
system(1): Investigate the relationship between
un-ionized ammonia, nitrite, nitrate and in-
dicator of rainbow trout rearing conditions;
Fuzzy system(2): Assess the relationship be-
tween phosphate and alkalinity with the index
of rainbow trout rearing conditions; fuzzy
system(3): Evaluate the relationship between
dissolved oxygen and linear velocity with index
of rainbow trout rearing conditions; fuzzy
system(4): It combines the results of the re-
lationship between un-ionized ammonia, ni-
trite, nitrate, phosphate, alkalinity, dissolved
oxygen and linear velocity with index of
rearing conditions, and provides a general
index for rainbow trout rearing conditions.
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by Zhou et al. (2018), a feeding control method was proposed based on
machine vision, near-infrared, and adaptive network-based fuzzy in-
ference system in order to achieve auto decision-making feeding based
on fish appetite. The quantitative index of fish feeding behavior was
extracted by Delaunay triangulation and image texture. Network-based
fuzzy inference system was established based on fuzzy rules and was
employed to obtain auto on-demand feeding. The performance of the
method was evaluated using specific growth rate, weight gain rate, food
conversion rate, and water quality parameters. Based on the results, the
accuracy of the feeding decision of the adaptive neural-based fuzzy
inference system (ANFIS) was 98 %. Although, this method did not
show a significant difference in the growth promotion of fish compared

to the feeding table, food conversion rate could be reduced by 10.77 %
and water pollution could be also lowered. Furthermore, Wu et al.
(2015) employed fuzzy logic controller and adaptive network-based
fuzzy inference system to support decision-making about the feeding
process of silver perch based on fish appetite. Fish appetite was de-
tected by measuring the concentration of dissolved oxygen through
evaluating two flocking indexes and struggle strength characteristics.
The results indicated that a decision threshold of 0.17 was inferred from
the fuzzy logic method, and the rate of judgment accuracy of 97.9 %
was obtained from ANFIS.

The results of the previous studies revealed that how fuzzy inference
system can quickly and accurately predict the relationship between

Fig. 3. Overview of the fuzzy systems constructed in this study (a) The general structure of the fuzzy system(1); (b) The general structure of the fuzzy system(2); (c)
The general structure of the fuzzy system(3); (d) The general structure of the fuzzy system(4).
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water quality parameters, evaluate the importance of each parameter,
and report the condition of water quality as one integrated score. The
producers in organic aquaculture aim to avoid the negative environ-
mental effects on production procedures with the lowest price (Luna
and Llorente, 2019). Therefore, since water quality in any aquaculture
system represents the condition of aquatics rearing, awareness of water
quality can provide a framework to eliminate possible risks, such as
diseases, incidence, and mortality, and control the production condition
without any cost. The present study aimed to develop a rearing index
for rainbow trout based on the effect of the essential parameters, in-
cluding dissolved oxygen and linear velocity, as well as the contaminant
parameters, including un-ionized ammonia, nitrite, nitrate, phosphate,
and alkalinity, of water quality by using a fuzzy inference system. De-
veloping such an urgent and comprehensive rearing index for raising
awareness about water quality is considered as an innovation in organic
aquaculture, which undoubtedly helps farmers control and manage
aquatic systems effectively. Accordingly, they can prevent great losses
and treatment costs through timely actions.

2. Materials and methods

2.1. Study area and system

The study area was a fish production farm in the Ortkand area, Kalat
County, Razavi Khorasan province in Iran (36° 59′ N, 59° 46′ E). The
farm was located in the mountainous area of the Sarrud village and the
water was supplied from Ortkand River with a minimum and maximum
discharge of 600 and 2300 l /s, respectively. The farm produced 80 t
fish and 10 million fingerlings every year (Fig. 1). The study system was
an intensive aquaculture system with seven stations including (a) 3000
5-g fish, (b) 3000 25-g fish, (c) 3000 50-g fish, (d) 3000 100-g fish, (e)
3000 220-g fish, (f) 2000 350-g fish, and (g) 2000 830-g fish. The
system had concrete pools with the dimensions of 30 × 3 × 2 m3. The
pools were filled with the river water and the depth of water in them
was 2 m. The schools of fish evaluated in this study were from a native
trout species in Iran, which were different in terms of evolutionary
stages. In the schools, the fish weighing up to 1 g were classified as frys,
fish weighing 25–30 g as fingerlings, fish up to 100 g as pre-fattened,

and fish over 150 and under 1000 g were classified as fish fattened
(Nafisi Behbaadi, 2006).

2.2. Data collection

The present study employed the physical parameters, such as linear
velocity, and chemical parameters, such as un-ionized ammonia, nitrite,
nitrate, alkalinity, phosphate, and dissolved oxygen, of water quality in
fuzzy inference systems in order to develop a model for assessing the
rearing conditions of rainbow trout. Dissolved oxygen (mg/L) was
measured using the Portable multimeter model AZ-8603 with 0.01
precision. The linear velocity was obtained by dividing the flow rate of
the input water in each pool into the surface of the pool (Eq. (1)):

=V Q
S (1)

Where V denotes linear velocity (cm/s), Q denotes the flow rate of input
water in each pool (m3/s), and S denotes the surface of each pool (m2).

The parameters such as un-ionized ammonia (mg/L), nitrite (mg/L),
nitrate (mg/L), phosphate (mg/L), and alkalinity (mg/L) were mea-
sured by the ultraviolet visible spectrophotometer apparatus DR 5000 ™
model.

2.3. Fuzzy inference system

Fuzzy inference is a process which maps the input data to output
data based on fuzzy logic. Decision-making can be done based on
mapping or pattern recognition (Ocampo-Duque et al., 2006). In gen-
eral, the process of evaluating the fuzzy inference system in comprised
of three stages including fuzzification, inference, and defuzzification. In
the first stage, the inputs are read and the degree of their membership
to each of the fuzzy sets are determined through membership functions.
The output of this step is a fuzzy degree between zero and one, de-
termining the amount of input membership in the fuzzy set. Fuzzy rules
are actually the heart of the fuzzy system, which describe the re-
lationship between the fuzzy sets defined in the fuzzy inference system
with each other and how they affect the output. The duty of the fuzzy
inference engine is to calculate the fuzzy output by considering and

Fig. 4. Membership functions used for un-ionized ammonia, nitrite, nitrate and I1 parameters (Dm: Degree of memberships).
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combining fuzzy rules. In other words, the fuzzy inference engine learns
how to convert a collection of inputs into outputs by calculating any of
the fuzzy rules in the fuzzy rules base. Defuzzification is the last prin-
cipal stage of any fuzzy system, which specifies each point in a fuzzy set
in the form of a precise number as an output (Hosseini, 2018).

2.4. Developing a rainbow trout rearing index

After collecting the required data and in order to facilitate in-
vestigating the effect of the interaction between water quality para-
meters on the changes in rainbow trout rearing conditions, the data
were classified into three groups including un-ionized ammonia, nitrite,
and nitrate as the first group, Alkalinity and phosphate as the second
group, and dissolved oxygen and linear velocity as the third group ac-
cording to the degree of adaptation and coordination. Then, a separate
fuzzy inference system was defined for each group and rearing condi-
tion, and the outputs of each fuzzy system, which was in fact the same
rainbow trout rearing index, were named as I1, I2, I3. Finally, I1, I2, and
I3 were considered as the inputs to a fuzzy system in order to evaluate
their effects on the index of general rearing conditions (I) and study the
overall effect of all water quality parameters on the rearing index
(Fig. 2).

2.5. Extended fuzzy systems

The fuzzy system (1) consisted of three input parameters, including

un-ionized ammonia, nitrite, and nitrate, 125 laws, and an output
parameter (I1). The fuzzy systems (2) and (3) each one consisted of two
input parameters, the first were alkalinity and phosphate and the
second were dissolved oxygen and linear velocity, 25 laws, and one
output parameter (I2 in the second system and I3 in the third system).
Finally, the fuzzy system (4) included three input parameters, i.e. I1, I2,
and I3, 125 laws, and one output parameter (I). Fig. 3 illustrates an
overview of the four fuzzy systems. Triangular and trapezoidal mem-
bership functions were used for input and output parameters. For each
membership function related to the input parameters, five linguistic
expressions were defined including very low (VL), low (L), moderate
(M), high (H), and very high (VH). Regarding the membership functions
associated with the output parameters, five linguistic expressions in-
cluding very bad (VB), bad (B), good (G), very good (VG), and excellent
(E) were considered. The membership functions used for the parameters
of un-ionized ammonia, nitrite, nitrate, and I1 are shown in Fig. 4,
which are similar to the membership functions associated with other
parameters. For each parameter, five fuzzy sets were determined cor-
responding to the related linguistic expressions. For instance, the output
parameter rearing index varied from very bad (0–35), bad (20–50),
good (35–65), very good (50–80) to excellent (65–100). In addition, the
units, domain, and fuzzy sets were defined for the input and output
parameters of the fuzzy systems and are presented in Table 1.

The rules defined for fuzzy systems in the present study are based on
the science of the specialists’ knowledge in the aquaculture sector and
available resources (Nafisi Behbaadi, 2006; Bari, 2001). For example,
the first rule of the fuzzy system (1) is "If the concentration of un-io-
nized ammonia is very low and the concentration of nitrite is very low
and the concentration of nitrate is very low, then the rainbow trout
rearing index is at an excellent level". Further, the first rule of the fuzzy
system (2) states that "If the amount of alkalinity is very low and the
concentration of phosphate is very low, then the rainbow trout rearing
index is at a bad level". Furthermore, the first rule of the fuzzy system
(3) expresses that "If the concentration of dissolved oxygen is very low
and the linear velocity is very low, then the rainbow trout rearing index
is very bad". Finally, in the fuzzy system (4), the first rule is “If I1 is very
bad and I2 is very bad and I3 is very bad then, the rainbow trout rearing
index is at a very bad level". Other rules were similarly defined. The
subscription operator and Mamdani fuzzy inference system was used to
construct the rules and aggregation, and the gravity center method was
employed for defuzzification. These methods were implemented in the
MATLAB software (version 2016b).

3. Results and discussion

3.1. Analysis of fuzzy models

The rainbow trout rearing index was 65, which was in the range of
very good. The results of the four fuzzy inference systems are presented
in the form of surface response diagrams in Fig. 5. As can be seen, in-
creasing the un-ionized ammonia, nitrite and nitrate concentration
leads to the decrease in value of the rainbow trout rearing index. Al-
though ammonia and nitrite are toxic and dangerous substances in
rainbow trout rearing environment, rainbow trout is sensitive to low
ammonia concentrations, i.e. less than 0.02 mg/L. Nitrite is produced
by Nitrosomonas bacteria as a result of ammonia oxidation. Another
toxic substance is nitrate, which is produced by Nitrobacter bacteria
due to the oxidation of nitrite in water sources. In general, nitrate in
low concentrations, i.e. less than 300 mg/L, is not considered as ha-
zardous for rearing rainbow trout. However, in some conditions such as
recirculating aquaculture systems, its concentration increases to a very
high amount, i.e. over 1000 mg/L, which is dangerous. Under such
conditions, nitrate must be removed from the environment by fresh
water (Nafisi Behbaadi, 2006). Therefore, increasing the concentration
of these substances can decrease the rainbow trout rearing index as
indicated in Fig. 5(a–b). Dissolved oxygen in water is one of the major

Table 1
Fuzzy sets and thresholds related to input and output parameters in rainbow
trout rearing condition model.

Variable Unit Range Fuzzy set parameters

NH3 (mg/L) (0.0–1.2) )−∞ 0.1 0.13 0.14)
(0.13 0.14 0.15)
(0.14 0.15 0.16)
(0.15 0.16 0.17)
(0.16 0.17 0.2 ∞)

NO2 (mg/L) (0–0.4) (−∞ 0 0.1 0.15)
(0.1 0.15 0.2)
(0.15 0.2 0.25)
(0.2 0.25 0.3)
(0.25 0.3 0.4 ∞)

NO3 (mg/L) (0–1000) (−∞ 0 300 400)
(300 400 500)
(400 500 600)
(500 600 700)
(600 700 1000 ∞)

PO4 (mg/L) (0.7–1.6) (−∞ 0.1 3.1 3.6)
(3.1 3.6 4.1)
(3.6 4.1 4.6)
(4.1 4.6 5.1)
(4.6 5.1 7.6 ∞)

Alkalinity (mg/L) (30–150) (−∞ 30 70 80)
(70 80 90)
(80 90 100)
(90 100 110)
(100 110 150 ∞)

DO (mg/L) (1–13) (−∞ 1 5 6)
(5 6 7)
(6 7 8)
(7 8 9)
(8 9 13 ∞)

VL (cm/S) (0–8) (−∞ 0 2 3)
(2 3 4)
(3 4 5)
(4 5 6)
(5 6 8 ∞)

I VB (0–100) (−∞ 0 20 35)
B (20 35 50)
G (35 50 65)
VG (50 65 80)
E (65 80 100 ∞)
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factors in cold water fish rearing since this fish needs more oxygen than
warm water fish. In general, the dissolved oxygen in the input water to
the rainbow trout farms should be at the saturation level (Nafisi
Behbaadi, 2006). Since the variations of the flow velocity change the
concentration of dissolved oxygen (Wu et al., 2015), there is a direct
relationship between these two. Accordingly, increasing these para-
meters can increase the rainbow trout rearing index as shown in
Fig. 5(c). Tallar and Suen (2016) developed an indicator for assessing
the quality of aquaculture based on the parameters of dissolved oxygen,

fecal coliform, ammonia, and pH. The results of multiple regression
analysis in their study indicated that the aquaculture water quality
index had a positive and significant correlation with dissolved oxygen
and fecal coliform. Thus, increasing the dissolved oxygen results in
increasing the aquaculture water quality while increasing the ammonia
and pH decreases the quality. The results of Tallar and Suen’s (2016)
study are consistent with those of the present study. Phosphate is
considered as one of the main sources of water pollution and is dan-
gerous to aquatic organisms, leading to a decrease in the rainbow trout

Fig. 5. Response surface diagrams derived from fuzzy inference systems (a: represents variation of the rearing index in relation to changes in un-ionized ammonia
and nitrate concentrations; b: indicates variation of the rearing index in relation to changes in ammonia and nitrite concentrations; c: shows the variation of the
rearing index relative to changes in dissolved oxygen concentrations and linear velocity; d: shows variation of the rearing index relative to changes in phosphate and
alkalinity concentrations; e: illustrates variation of rearing index relative to I1 and I2 changes; f: shows the rearing index changes relative to the I1 and I3 changes.).
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rearing index. However, Fig. 5(d) displays that increasing alkalinity is
beneficial due to the reduced sensitivity of fish to carbon dioxide, and it
increases the rainbow trout rearing index (Nafisi Behbaadi, 2006). In
general, any changes in the concentration of water quality parameters
have a direct effect on the variation of total rainbow trout rearing index
as illustrated in Fig. 5(e–f). In a study by Yalcuk and Postalcioglu
(2015), the pool water quality was evaluated in a four-trout farm with
different sources, including the input of water from the mountain for
three farms and from the artesian for one farm, and at different times,
i.e. once a week in hard conditions and twice a week during normal
times, in the form of chemical oxygen demand, nitrogen ammonium,
pH, and electrical conductivity through a fuzzy inference system. The
results demonstrated the effectiveness of the fuzzy inference system
method in predicting water quality parameters in trout production
pools. It is difficult to compare the results of their study to those of the
present study since the parameters, water supply sources of the pools,
and sampling climate conditions of the studies are different. Never-
theless, the results are similar to each other. In the present study, the
essential and contaminated parameters of rainbow trout rearing and
their interactions were evaluated. One integrated score was allocated to
the rainbow trout rearing conditions in the system understudy. Since
fish had different weights and sizes in the system of the present study,
the results can cover all the growth stages of rainbow trout. Further, the
linear velocity was considered, which indicated the dissolved oxygen
variation as the most essential element in culturing the rainbow trout.
However, the numerous number of rules, types of membership func-
tions, selection of parameters, and determination of fuzzy sets could be
sources of error in the present study.

3.2. Intelligence methods and controlling water quality

Water quality in intensive aquaculture can be drastically reduced by
food input and food is regarded as one of the main sources of costs
(Zhou et al., 2018). The present study identified un-ionize ammonia,
nitrite, and nitrate as the main pollutants of water quality, produced as
a result of food decomposition. Inappropriate and unreasonable feeding
led to considerable waste of food as leftover, an increase in fish faces,
and consequently significant water contamination and economic losses.
In addition, traditional feeding approach is arduous and susceptible to
error since it depends on the operator’s observation and experience.
Therefore, it is necessary to investigate and apply more precise tools
and methods for managing production and nutrition in aquaculture
(Wu et al., 2015). Nowadays, intelligent methods, such as fuzzy in-
ference system and adaptive network-based fuzzy inference system, are
developed in order to control the feeding process. Such expert methods
can significantly reduce food waste and water pollution, save a lot of
money, and create sustainable aquaculture production by precisely
estimating fish appetite, food searching behavior, and main variations
in water quality parameters, such as dissolved oxygen, temperature,
and nitrogenous compounds (Hosseini, 2018; Bórquez-Lopez et al.,
2018; Wu et al., 2015; Zhou et al., 2018).

3.3. Benefits of present study for rainbow trout farmers

The present study and similar research help to increase the pro-
duction and improve the performance of rainbow trout by informing
producers about the condition of the production system. Being aware
about the general rearing conditions in the form of one integrated score
is a simple and understandable approach which helps the aquaculturists
to better manage different decisions, including the necessary arrange-
ments to control the rearing system and increase profits. The results of
the present study can be a starting point for further research and de-
veloping an application, which can establish a mutually beneficial
contact between experts and farmers for a sustainable production
system.

4. Conclusion

In the present study, the fuzzy inference system was used to develop
a rainbow trout rearing index in an intensive production system in Iran.
The farm understudy was in a very good range with the rainbow trout
rearing index of 65. The results indicated that there is a close re-
lationship between the parameters of water quality and rainbow trout
rearing conditions. Increasing ammonia, nitrogenous compounds such
as nitrite and nitrate, and phosphate decreases the rainbow trout
rearing index whereas increasing the dissolved oxygen, linear velocity,
and alkalinity increases the index and improves the growth perfor-
mance of the fishes.

Declaration of Competing Interest

All authors have participated in (a) conception and design, or
analysis and interpretation of the data; (b) drafting the article or re-
vising it critically for important intellectual content; and (c) approval of
the final version.

This manuscript has not been submitted to, nor is under review at,
another journal or other publishing venue.

The authors have no affiliation with any organization with a direct
or indirect financial interest in the subject matter discussed in the
manuscript.

Acknowledgment

Thanks to the Research Deputy of Ferdowsi University of Mashhad
for the financial support from plan number 45748.

References

Akerkar, R., Sajja, P., 2010. Knowledge-Based Systems. Jones & Bartlett Publishers.
Anyadike, C., Mbajiorgu, C., Ajah, G., 2016. Review of aquacultural production system

models. Niger. J. Technol. 35, 448–457.
Bari, J., 2001. (Translation) In: Lawson, T.B. (Ed.), Principal Aquatics Engineering.

Deputy of aquatics reproduction and culture. Administration of education and pro-
motion, Tehran.

Bórquez-Lopez, R., Casillas-Hernandez, R., Lopez-Elias, J., Barraza-Guardado, R.,
Martinez-Cordova, L., 2018. Improving feeding strategies for shrimp farming using
fuzzy logic, based on water quality parameters. Aquac. Eng. 81, 38–45.

Carbajal-Hernández, J.J., Sánchez-Fernández, L.P., Carrasco-Ochoa, J.A., Martínez-
Trinidad, J.F., 2012. Immediate water quality assessment in shrimp culture using
fuzzy inference systems. Expert Syst. Appl. 39, 10571–10582.

Ferreira, N., Bonetti, C., Seiffert, W., 2011. Hydrological and water quality indices as
management tools in marine shrimp culture. Aquaculture 318, 425–433.

Forio, M.A.E., Mouton, A., Lock, K., Boets, P., Nguyen, T.H.T., Ambarita, M.N.D.,
Musonge, P.L.S., Dominguez-Granda, L., Goethals, P.L., 2017. Fuzzy modelling to
identify key drivers of ecological water quality to support decision and policy
making. Environ. Sci. Policy 68, 58–68.

Hosseini, F., 2018. Predicting Water Quality and Surveying Its Effect on Rainbow Trout
(Oncorhynchus Mykiss) Growth Performance. MSc theses. Ferdowsi university of
Mashhad.

Kampichler, C., Barthel, J., Wieland, R., 2000. Species density of foliage-dwelling spiders
in field margins: a simple, fuzzy rule-based model. Ecol. Modell. 129, 87–99.

Lembo, G., Mente, E., 2019. Organic Aquaculture. Springer.
Li, X., Maier, H.R., Zecchin, A.C., 2015. Improved PMI-based input variable selection

approach for artificial neural network and other data driven environmental and water
resource models. Environ. Model. Softw. 65, 15–29.

Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., Wei, Y., 2013. A hybrid approach of support vector
regression with genetic algorithm optimization for aquaculture water quality pre-
diction. Math. Comput. Model. 58, 458–465.

Luna, M., Llorente, I., Cobo, Á., 2019. Integration of environmental sustainability and
product quality criteria in the decision-making process for feeding strategies in
seabream aquaculture companies. J. Clean. Prod. 217, 691–701.

Nafisi Behbaadi, M., 2006. Scientific Guide to the Reproduction and Production of
Rainbow Trout. First edition of Hormozgan University Publishers, Tehran.

Ocampo-Duque, W., Ferre-Huguet, N., Domingo, J.L., Schuhmacher, M., 2006. Assessing
water quality in rivers with fuzzy inference systems: a case study. Environ. Int. 32,
733–742.

Tallar, R.Y., Suen, J.-P., 2016. Aquaculture Water Quality Index: a low-cost index to
accelerate aquaculture development in Indonesia. Aquac. Int. 24, 295–312.

Valenti, W.C., Kimpara, J.M., Preto, B., Moraes-Valenti, P., 2018. Indicators of sustain-
ability to assess aquaculture systems. Ecol. Indic. 88, 402–413.

Wu, T.-H., Huang, Y.-I., Chen, J.-M., 2015. Development of an adaptive neural-based
fuzzy inference system for feeding decision-making assessment in silver perch

F.H. Galezan, et al. Aquacultural Engineering 89 (2020) 102051

7

http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0005
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0010
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0010
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0015
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0015
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0015
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0020
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0020
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0020
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0025
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0025
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0025
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0030
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0030
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0035
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0035
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0035
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0035
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0040
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0040
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0040
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0045
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0045
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0050
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0055
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0055
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0055
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0060
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0060
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0060
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0065
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0065
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0065
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0070
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0070
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0075
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0075
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0075
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0080
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0080
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0085
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0085
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0090
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0090


(Bidyanus bidyanus) culture. Aquac. Eng. 66, 41–51.
Yalcuk, A., Postalcioglu, S., 2015. Evaluation of pool water quality of trout farms by fuzzy

logic: monitoring of pool water quality for trout farms. Int. J. Environ. Sci. Technol.
12, 1503–1514.

Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., Yang, X., 2018. Near infrared com-
puter vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture.
Comput. Electron. Agric. 146, 114–124.

F.H. Galezan, et al. Aquacultural Engineering 89 (2020) 102051

8

http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0090
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0090
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0095
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0095
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0095
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0100
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0100
http://refhub.elsevier.com/S0144-8609(19)30080-9/sbref0100

	Evaluating the Rearing condition of Rainbow Trout (Oncorhynchus Mykiss) Using Fuzzy Inference System
	Introduction
	Materials and methods
	Study area and system
	Data collection
	Fuzzy inference system
	Developing a rainbow trout rearing index
	Extended fuzzy systems

	Results and discussion
	Analysis of fuzzy models
	Intelligence methods and controlling water quality
	Benefits of present study for rainbow trout farmers

	Conclusion
	mk:H1_13
	Acknowledgment
	References




