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Background: Convolutional neural networks (CNN) have enabled significant progress

in speech recognition, image classification, automotive software engineering, and

neuroscience. This impressive progress is largely due to a combination of algorithmic

breakthroughs, computation resource improvements, and access to a large amount

of data.

Method: In this paper, we focus on the automated detection of autism spectrum

disorder (ASD) using CNN with a brain imaging dataset. We detected ASD patients using

most common resting-state functional magnetic resonance imaging (fMRI) data from a

multi-site dataset named the Autism Brain Imaging Exchange (ABIDE). The proposed

approach was able to classify ASD and control subjects based on the patterns of

functional connectivity.

Results: Our experimental outcomes indicate that the proposed model is able to detect

ASD correctly with an accuracy of 70.22% using the ABIDE I dataset and the CC400

functional parcellation atlas of the brain. Also, the CNN model developed used fewer

parameters than the state-of-art techniques and is hence computationally less intensive.

Our developed model is ready to be tested with more data and can be used to prescreen

ASD patients.

Keywords: convolutional neural networks, autism spectrum disorder, ABIDE, fMRI, atlas

1. INTRODUCTION

Autism spectrum disorder (ASD), a type of neurological disorder, appears in children between
6 and 17 years of age and affects communication skills and social behavior. ASD affects social
interactions and communication and causes repetitive behaviors in patients (Bhat et al., 2014a,b;
Huang et al., 2019). According to the WHO, ASD affects one child in 160, and these children
often present with other conditions like depression, anxiety, and attention deficit hyperactivity
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disorder (ADHD)1. Early diagnosis during childhood is
important and can improve the social skills and communication
problems of children with ASD and enhance their quality of
life. In order to control and treat this disease, an early diagnosis
is crucial. One of the most important tasks for diagnosing
neurological diseases such as epilepsy, Alzheimer, and autism
is to develop a model based on functional or structural region
relationships in the brain (Wing, 1997; American Psychiatric
Association, 2011; Chen et al., 2011). Hence, functional magnetic
resonance imaging (fMRI) is used to study the brain and
its structures. It detects correlated fluctuations in the blood
oxygen level-dependent (BOLD) signals from the brain regions.
The most common data-driven method for autism diagnosis
and the investigation of its biomarkers is the autism brain
imaging data exchange (ABIDE), which is a collaborative effort
involving neuroimaging and phenotypic data obtained from
1,112 individuals (Di Martino et al., 2014). The ABIDE is a
worldwide multi-site database consisting of two phases. The first
phase (ABIDE I) consists of 1,112 individuals, with 539 ASD
patients and 573 others, from 17 sites. The second phase (ABIDE
II) has 521 ASD patients and 593 healthy controls and was
obtained from 19 sites. The ABIDE I dataset is obtained from
17 international imaging sites and is composed of structural,
resting-state fMRI data and phenotypic information.

Recently, many efforts have been made to identify ASD based
on deep learning with fMRI (Koyamada et al., 2015; Anirudh and
Thiagarajan, 2017; Subbaraju et al., 2017). In Koyamada et al.
(2015), a deep neural network (DNN) model was investigated
in order to build a subject-transfer decoder. The authors used
principal sensitivity analysis (PSA) to construct a decoder for
visualizing different features of all individuals in the dataset.
Their proposed neural network includes two hidden layers and
a softmax output layer, in which the two hidden layers in the
middle classify brain activities into seven human categories from
499 subjects.

It has been shown that ASD disrupts the functional
connectivity between the multiple brain regions that affect global
brain networks. Therefore, the main goal of many researchers
in this area is to classify ASD and control subjects based on
the neural patterns of functional connectivity (Bourgeron, 2009;
Anderson et al., 2011; Mennes et al., 2011; Schipul et al., 2011;
Nielsen et al., 2013; von dem Hagen et al., 2013; Plitt et al., 2015;
Dvornek et al., 2017; Parisot et al., 2017, 2018; Aghdam et al.,
2018; Xing et al., 2018; Kazeminejad and Sotero, 2019; Sharif
and Khan, 2019) and improve the accuracy of classification.
For example, Nielsen et al. (2013) achieved 60% classification
accuracy, and Abraham et al. (2017) obtained 67% accuracy
in classifying ASD and control subjects. Heinsfeld et al. (2018)
applied deep learning algorithms to identify ASD patients and
improved the accuracy, reaching 70%. They employed two
stacked denoising autoencoders to extract a lower-dimensional
version of the ABIDE I dataset and also identified the areas of the
brain that played the most important role in differentiating ASD
from typical controls (TC). The volumetric convolutional neural
network (CNN) model, which is considered as the full-resolution

1http://www.healthdata.org/gbd

3D spatial structure of resting-state functional MRI data, is
investigated in Khosla et al. (2018).

In recent years, the use of CNN has attracted a lot of
attention in the field of classification and representation learning.
CNNs are powerful classifiers with high accuracies in many
applications with many free parameters. Also, CNN models have
higher accuracy for feature extraction and can handle many free
parameters. The CNN model includes different parts such as an
activation function, convolutional layers, fully connected layers,
normalization layers, and pooling layers.

The CNN technique has the ability to interpret brain
biomarkers in ASD patients using fMRI. The ASD biomarkers
play an important role in early diagnosis and treatment (Li et al.,
2018b). Li et al. (2018a) proposed multi-channel convolutional
neural networks based on a patch-level data-expanding method
to diagnose early biomarkers of ASD. Choi (2017), multivariate
and high dimensional data are reduced to two-dimensional
features, and the functional connectivity pattern associated with
ASD is investigated by using a variational autoencoder (VAE).

The stereotypical motor movements (SMM) in autism
patients are body rocking and complex hand movements,
which will affect learning and social skills. The CNN is used
to learn different features from multi-sensor accelerometer
signals of SMM (Rad et al., 2015). A fully automated brain
tumor segmentation method using CNN was proposed in
Havaei et al. (2017).

The purpose of the present study is to investigate the
performance of a CNN in classifying ASD and control subjects.
We used the fMRI data represented by a multi-site database
known as ABIDE I. The ABIDE I data have been preprocessed
by the Preprocessed Connectomes Project (PAC). We improved
the previously reported results and obtained 70.2% accuracy in
the distinction of ASD from control subjects. The performance
of the developed model is evaluated using three supervised
methods, namely SVM (support vector machine), KNN (K-
nearest neighbors), and RF (random forest) classifiers on the
preprocessed ABIDE I dataset. Our results show that the average
accuracy values after optimization or hyperparameter tuning for
SVM, KNN, and RF are 69, 62, and 60%, respectively. Therefore,
the proposed CNN model outperformed these machine learning
methods. It has been shown that having a CNN model with
fewer parameters is very important and leads to less overhead
for the new models (Iandola et al., 2016). Our developed model
has obtained high accuracy and was also able to train with
fewer parameters, which reduces the computation time. An
autoencoder has been used to diagnose schizophrenia (Zeng
et al., 2018). Functional connectivity MRI data from multiple
sites have been used for classification. The authors obtained
an accuracy of 85% for multi-site pooling classification and
81% for leave-site-out transfer classification. In this approach,
each time, one site out of 17 sites was used as a test and
the rest were used for training. The results show that the
sites named the Kennedy Krieger Institute, Baltimore (KKI),
San Diego State University (SDSU), and University of Utah
School of Medicine (USM) achieved higher accuracies than
other sites.

The rest of the paper is organized as follows. The details of the
ABIDE I dataset, the data preprocessing, and the development of
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TABLE 1 | The distribution of sex and average age at different sites for typical

control (TC) and ASD classes.

TC ASD

Site Abbreviation Average

age

Sex Average

age

Sex

Male Female Male Female

CALTECH California Institute 28 14 4 27.4 15 4

of Technology

CMU Carnegie Mellon 26.8 10 3 26.4 11 3

University

KKI Kennedy Krieger 10 20 8 10 16 4

Institute,

Baltimore

LEUVEN University of

Leuven

18.2 29 5 17.8 26 3

MAX MUN Ludwig

Maximilians

24.6 27 1 26.1 21 3

University, Munich

NYU NYU Langone 15.7 74 26 14.7 65 10

Medical

Center, New York

OHSU Oregon Health 10.1 14 0 11.4 12 0

and Science

University

OLIN Olin, Institute of 16.7 13 2 16.5 16 3

Living,

Hartford Hospital

PITT University of 18.9 23 4 19 25 4

Pittsburgh

School of

Medicine

SBL Social Brain Lab

BCN

33.7 15 0 35 15 0

NIC UMC

Groningen

and Netherlands

Institute for

Neurosciences

SDSU San Diego State 14.2 16 6 14.7 13 1

University

STANFORD Stanford

University

10 16 4 10 15 4

TRINITY Trinity Center 17.1 25 0 16.8 22 0

for Health

Sciences

UCLA University of

California,

13 38 6 13 48 6

Los Angeles

UM University of

Michigan

14.8 56 18 13.2 57 9

USM University of Utah 21.3 25 0 23.5 46 0

School of

Medicine

YALE Child Study

Center,

12.7 20 8 12.7 20 8

Yale University

TABLE 2 | Different parameters in structural MRI imaging for each site in ABIDE I.

Voxel size (mm3) Flip angle (deg) TR (ms) TE (ms) T1 (ms)

CALTECH 1 10 1,590 2.73 800

CMU 1 8 1,870 2.48 1,100

KKI 1 8 8 3.7 843

LEUVEN 0.98× 0.98×1.2 8 9.6 4.6 885.145

MAX MUN 1 9 1,800 3.06 900

NYU 1.3 × 1.3 7 2,530 3.25 1,100

OHSU 1 10 2,300 3.58 900

OLIN 1 8 2,500 2.74 900

PITT 1.1 × 1.1 × 1.1 7 2,100 3.93 1,000

SBL 1 8 9 3.5 1,000

SDSU 1 45 11.08 4.3 NA

STANFORD 0.86 × 1.5 ×0.86 15 8.4 1.8 NA

TRINITY 1 8 8.5 3.9 1060.17

UCLA 1 ×1× 1.2 9 2,300 2.84 853

UM 1.2 × 1 × 1 15 250 1.8 500

USM 1 ×1× 1.2 9 2,300 2.91 900

YALE 1 9 1,230 1.73 624

the new CNNmodel are provided in section 2. In section 3, visual
representations of the most important brain areas are presented.
Section 4 shows the detailed results of analysis, and finally, the
results are discussed in section 5.

2. MATERIALS AND METHODS

2.1. Materials
In this work, we used the first phase of resting-state fMRI
data from the multi-site ABIDE I. ABIDE I is a consortium of
collected resting-state fMRIs from 17 international imaging sites
and matched controls that is provided for scientific research.
Each site in the ABIDE I dataset uses different parameters and
protocols. The fMRI protocol has been used as the imaging
protocol at all of the sites. In this work, brain volume is
represented by small cubic elements named voxels. The inclusion
criteria for sites was having at least 20 subjects meeting other
criteria for inclusion like successful preprocessing with manual
visual inspection of normalization to MNI space of MPRAGE.
The autism diagnostic observation tool and autism diagnostic
interview-revised were used for ASD diagnosis or typical control
confirmation in the majority of the sites. These types of data
increase understanding of the neural bases of ASD. Resting-state
fMRI is based on neural measurements of functional connectivity
between multiple brain regions. This functional connectivity is
calculated by the correlation of the average time series from
the regions of interest (ROI). Fluctuations in blood oxygenation
lead to low-frequency fluctuation correlations in resting-state
fMRI, which gives the connectivity matrix. In the present study,
we used the datasets from 505 ASD patients and 530 typical
controls. These datasets contain T1 structural brain images, fMRI
images, and phenotypic information relating to different patients.
The phenotypic information is classified based on sex, age, and
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FIGURE 1 | Proposed CNN architecture for automated detection of ASD.

FIGURE 2 | The most important ROIs for ASD classification in the prediction model according to the saliency map. We consider Red, Blue, Green, and Yellow areas

corresponding to (61.9; −36.3; 34.4), (−27.6; −40.2; −17.6), (−2.1; −43.0; −40.7), (−22.5; −85.5; 31.0), respectively.

autism diagnostic observation schedule (ADOS) score for ASD
subjects andmean framewise displacement (FD) quality, which is
a measure of subject head motion2. The distributions of sex and
average age at different sites for typical control (TC) and ASD
patients are summarized in Table 1.

2http://preprocessed-connectomes-project.org/abide/quality_assessment.html

TABLE 3 | Important areas for ASD classification in prediction mode.

Color Red Blue Green Yellow

ROI

number

C115 C188 C247 C326

Center of

mass

(61.9; −36.3;

34.4)

(−27.6; −40.2;

−17.6)

(−2.1; −43.0;

−40.7)

(−22.5; −85.5;

31.0)

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 1325

http://preprocessed-connectomes-project.org/abide/quality_assessment.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sherkatghanad et al. Automated Detection of Autism Spectrum Disorder

2.2. Data Preprocessing of the ABIDE I
Dataset
The Preprocessed Connectomes Project (PCP) is a publicly
available preprocessed version of data from both the 1,000
Functional Connectomes Project (FCP) and the International
Neuroimaging Data-Sharing Initiative (INDI)3. We used data
from the FCP using the configurable pipeline, the Analysis of
Connectomes (CPAC). After the preprocessing, we obtained
871 quality MRI images with phenotypic information. The
preprocessing step included slice timing correction, correction
for motion, and normalization of voxel intensity. Nuisance
regression was employed to delete the signal fluctuations caused
by head motion, respiration, cardiac pulsation, and scanner drift.
The signal fluctuation was modeled using 24 motion parameters
for head motion, a quadratic and linear term for scanner drift,
and CompCor with five principal components for physiological
noise (Friston et al., 1995; Fox et al., 2005; Lund et al., 2005;
Behzadi et al., 2007). Bandpass filtering (0.01–10 Hz) was used
in our analysis.

We used the CC400 functional parcellation atlas of the brain
throughout our study. In this atlas, a brain connectivity matrix
is constructed for the average time series of the ROI, partitioned
into 400 regions. There are many different parameters in MRI
imaging, including voxel size, flip angle, TR, TE, and T1. Table 2
summarizes the different parameters in structural MRI imaging
for each site in ABIDEI.

In the following, we will describe our proposed CNN
architecture in detail.

2.3. Network Architecture
In this work, we obtained connectomes or functional
connectivity matrices for the detection of ASD classes. This
symmetric matrix shows the correlation between the mean
values of the time series obtained from an ROI. Each cell in the
matrix contains a Pearson correlation coefficient, and each row
is the representation of the ROI.

The Pearson correlation coefficient (ranges from −1 to 1)
is a correlation index between two areas of the brain regions,
with 1 representing high correlation between the two areas of
the brain and vice versa. Thus, a 392 × 392 matrix is found in
the CC400 functional parcellation atlas for each subject, which
represents the co-activation correlations of 392 brain areas. By
considering each row as the representation of a brain region,
we propose a CNN architecture for connectomic data. We used
a CNN architecture with one convolutional layer, interspersed
within max-pooling followed by densely connected layers (Please
see Figure 1). The functional connectivity matrices between pairs
of ROI are fed as input to convolutional layers. Our final CNN
model is as follows: 1 fully connected hidden layer and each
linear layer followed by a tanh activation function. The parallel
filters with dimensions from 1 × 392 to 7 × 392 act on rows
representing the brain regions. Thus, we take into account 400
filters of length 1 and width 392–400 filters of length 7 and
width 392. In this condition, the sizes of the weights are equal to
the representation matrix in the convolutional neural network.

3http://preprocessed-connectomes-project.org

The hidden layer followed by max-pooling is used to reduce
the number of features and avoid the overfitting problem. After
the max-pooling layer, a dropout regularization keeps only 25%
of the nodes for training. Finally, the output node is concated
and fully connected to a dense layer, which is subsequently
used for classification. Also, the model is trained for 300 epochs
with a batch size of 32, and the learning rate is set to 0.005.
The model as shown in Figure 1 is developed using a 10-fold
cross-validation strategy.

The proposed CNN model does not include feed-forward
convolution. We employed concatenation of several convolution
layers, and the whole result set obtained is passed to the
multilayer perceptron (MLP) to complete the classification. In
other words, each convolution layer has a specific meaning. For
example, when the filter size is 1 × 392, the connection of each
area with other areas will be considered, whereas when the filter
size is increased to 7 × 392, the connection of 7 areas near each
other with other areas will be seen. We combined these outputs
to obtain the final output, which is ensemble learning from the
convolution layers.

In the next section, we investigate the features that have the
most contribution in ASD classification using a visualization
method for our proposed CNNmodel.

3. VISUALIZATION OF IMPORTANT AREAS

Now, we are interested in visualizing the brain areas that are
significant in the classification of ASD and control patients
in the ABIDE I dataset. The field of computer vision has
enabled vast progress for the visualization of CNN models.
In neuroimaging, this technique provides the ability to gain
more insights into biomarkers, which are important in early
diagnosis and treatment. By using the visualization of image
classification models learned via deep Convolutional Networks
or ConvNet, we are able to reveal the important ROIs that play
important roles in the classification (Simonyan et al., 2013). We
obtained the important ROIs for ASD-detection using our model

TABLE 4 | Summary of performance values obtained for CNN with 10-fold

cross-validation.

Fold Accuracy Confidence

interval

Sensitivity Specificity F-score

1 0.6603 0.0901 0.6250 0.7000 0.6604

2 0.6699 0.0908 0.8889 0.4285 0.7384

3 0.7187 0.0899 0.8113 0.6046 0.7610

4 0.7582 0.0879 0.7755 0.7380 0.7755

5 0.7356 0.0926 0.7659 0.7000 0.7578

6 0.6395 0.1014 0.7826 0.4750 0.6990

7 0.7023 0.0978 0.7777 0.6153 0.7368

8 0.77901 0.0887 0.9318 0.6216 0.8283

9 0.6623 0.1056 0.7380 0.5714 0.7045

10 0.6849 0.1066 0.6500 0.7272 0.6933

Mean 0.7022 0.0855 0.7746 0.6182 0.7355
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FIGURE 3 | Results of the proposed CNN model: (A) ROC and (B) convolution matrix. Here, Class 0 and Class 1 indicate the control subjects and ASD patients,

respectively.

TABLE 5 | Summary of comparison table for automated detection of TC and ASD classes using the same database.

References Protocol Best method Performance (%)

Specificity Sensitivity Accuracy

Nielsen et al. (2013) – Multiple bins and leave- one-out classifier 58.00 62.00 60.00

Parisot et al. (2017) 10-fold CV Graph Convolutional Networks (GCN) – – 69.50

Dvornek et al. (2017) 10-fold CV LSTM32 – – 66.80

Parisot et al. (2018) 10-fold CV Graph Convolutional Networks (GCN) – – 70.40

Aghdam et al. (2018) 10-fold CV Deep belief Network (DBN) 32.96 84.00 65.56

Xing et al. (2018) 5-fold CV CNN with element-wise filters (CNN-EW) 70.40 66.44 66.88

Kazeminejad and Sotero (2019) Leave-one-site-out Deep learning and PCA 65.00 67.00 66.00

Sharif and Khan (2019) Leave-one-site-out Multi-Layer Perceptron (MLP) and Feature Selection – – 56.26

Abraham et al. (2017) 10-fold CV SVC-l1 and SVC-l2 Networks – – 67.00

Heinsfeld et al. (2018) 10-fold CV SVM 62.00 68.00 65.00

Heinsfeld et al. (2018) 10-fold CV Deep Neural Networks (DNN) and transfer learning 63.00 74.00 70.00

Present study 10-fold CV CNN 61.00 77.00 70.20

TABLE 6 | Results of ROC for CNN, SVM, KNN, and RF classifiers before optimization (BO) and after optimization (AO).

SVM KNN RF CNN

BO AO BO AO BO AO

Mean of accuracy 0.6890 0.6935 0.6142 0.6211 0.5983 0.5994 0.7022

Variance of accuracy 0.0022 0.0011 0.0011 0.0006 0.00062 0.00052 0.0020

Mean of sensitivity 0.7790 0.7459 0.7619 0.7452 0.7474 0.7595 0.7746

Variance of sensitivity 0.0028 0.0026 0.0045 0.004 0.0045 0.005 0.0078

Mean of specificity 0.5855 0.6325 0.4437 0.4784 0.4277 0.4149 0.6182

Variance of specificity 0.0057 0.0049 0.012 0.008 0.0065 0.0030 0.0098

Mean of AUC 0.7533 0.7553 0.6679 0.6724 0.6546 0.6635 0.7486

Variance of AUC 0.0018 0.0017 0.0021 0.0013 0.0005 0.0012 0.0006

Mean of F-score 0.6486 0.6719 0.5279 0.5516 0.5092 0.5015 0.7355
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with saliency technique (Figure 2). This approach is based on
computing the gradient of the class score with respect to the input
image and calculating the class saliency map. In other words, we
evaluated the gradient of the output category with respect to the
input image:

∂output

∂input
(1)

Here, output indicates output category, and input is related to
input image. The positive ratio indicates that a small change in
the input image pixel leads to an increase in the output. Thus, we
can obtain salient images of brain areas that play important roles
in ASD detection.

We observed that four brain areas are significant in the
diagnosis of ASD subjects for the CC400 functional parcellation
atlas of the brain. These areas are named as C115, C188, C247,
and C326, with the centers of mass equal to (61.9; −36.3; 34.4),
(−27.6;−40.2;−17.6), (−2.1;−43.0;−40.7), and (−22.5;−85.5;
31.0), respectively (Table 3).

Our results show that the right supramarginal gyrus, which is
considered to preserve self-other distinction during empathy in
ASD patients (Hoffmann et al., 2015), seems to play a significant
role in the diagnosis of autism. The fusiform gyrus, which is
hypoactive in patients with autism (van Kooten et al., 2008), is

also emphasized for ASD prediction. Also, the cerebellar vermis
is indicated as an important area for the ASD classification,
and this was reported to be smaller in autism cases (Kaufmann
et al., 2003). In addition, these results support the idea of
the disruption of anterior-posterior brain connectivity in ASD,
which has been shown in Just (2004), Kana et al. (2009), and
Cherkassky et al. (2006).

4. RESULTS

Nowadays, CNN is widely used for dataset classification. In this
study, we designed a CNN model for automated detection of
ASD using the ABIDE I dataset. The preprocessed neuroimaging
data from the ABIDE I dataset is used in our experiment. There
are 1,112 subjects (539 diagnosed with ASD, and 573 typical
controls) in the ABIDE I dataset, reduced to 871 subjects after
preprocessing. There is also a phenotype file for this dataset,
which includes the automated metrics, specified with the prefix
anat finc. Among them, we evaluated the functional metric called
mean framewise displacement and removed the outliers where
this parameter was over 0.2.

During training, the learning rate was set at 0.005 with batch
sizes of 32 and 400 epochs. The input to the network is a 392
× 392 matrix, where each row represents one of the regions of

FIGURE 4 | The receiver operating characteristic curve (ROC) is depicted for SVM (A,D), KNN (B,E), and RF (C,F) classifiers before and after optimization.
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FIGURE 5 | The confusion matrix before and after optimization for classifiers: SVM-(A,D); KNN-(B,E); RF-(C,F).

the brain. In our CNN architecture, we used the 400 filters with
sizes from 1 × 392 to 7 × 392. Generally, the width of the filter
can be of any size. Here, each row of the connectivity matrix
represents the correlation between the corresponding region and
the other regions of the brain. Therefore, we considered the width
of the filter as the dimension of the corresponding region and
equal to the size of each row of the connectivity matrix, which
is equal to 392. The length of the filter is its number of rows.
Choosing filters of larger sizes did not increase the accuracy
of the result. The applied CNN model does not use common
feed-forward convolution. In our proposed architecture, we
concatenated several convolution layers, and the entire obtained
result set was given to the MLP for classification. The filter size
of 1 × 392 in the convolution layer means that the connection
of each area with other areas will be seen, and the filter size of
4 × 392 means the connection of four areas near each other
with other areas will be seen, and at the end, we combine
these outputs to get the final output. The execution time for
this work was about 12 h and 30 min using 10-fold cross-
validation with the NVIDIA Tesla K80 model GPU.We achieved
an accuracy of 70.22 %, which is better than the rest of the
reported works (Table 4). The receiver operating characteristic

curve (ROC) and the confusion matrix for our CNN model are
shown in Figure 3.

Thus, to the best of our knowledge, the approach that has
been proposed in this paper has obtained the best accuracy
so far achieved using the ABIDE I dataset. Table 5 compares
the automated detection of TC and ASD classes achieved by
different studies using the same database. It can be seen from the
comparison table that we have obtained better results compared
to the other state-of-art techniques.

We evaluated the performance of SVM (support vector
machine), KNN (K-nearest neighbors), and RF (random
forest) classifiers on the preprocessed ABIDE I dataset. After
optimization (hyperparameter tuning), the average accuracy was
found to be 0.69 for SVM, 0.62 for KNN, and 0.6 RF. The results
of the three approaches after being trained with 10-fold cross-
validation are presented in Table 6. It can be seen that the CNN-
based architecture outperformed these ML classifiers in terms of
accuracy, specificity, and sensitivity.

The receiver operating characteristic curve (ROC) and
confusion matrix are used the evaluate the performance of the
SVM, KNN, and RF classifiers before and after optimization
(hyperparameter tuning), as shown in Figures 4, 5. Before
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optimization, we used a radial basis function (RBF) kernel with
regularization parameter C = 8 for the SVM classifier to obtain
the optimum performance. We chose k = 20 for the KNN
classifier. We set the max number of features (maxdepth) and

TABLE 7 | Summary of performance values obtained for 17 sites using our

proposed CNN model.

Site out Size Accuracy Confidence

interval

Specificity Sensitivity F-score

CALTECH 37 0.54 0.16 0.42 0.66 0.58

CMU 27 0.70 0.17 0.71 0.69 0.69

KKI 48 0.72 0.12 0.95 0.57 0.71

LEUVEN 63 0.65 0.12 0.37 0.88 0.73

MAX MUN 52 0.46 0.13 0.45 0.46 0.48

NYU 175 0.65 0.07 0.41 0.84 0.73

OHSU 26 0.57 0.19 0.66 0.5 0.56

OLIN 34 0.58 0.16 0.57 0.6 0.56

PITT 56 0.69 0.12 0.51 0.88 0.73

SBL 30 0.56 0.18 0.4 0.73 0.62

SDSU 36 0.75 0.14 0.64 0.81 0.8

STANFORD 39 0.48 0.16 0.94 0.05 0.09

TRINITY 47 0.61 0.14 0.63 0.6 0.62

UCLA 98 0.69 0.09 0.72 0.65 0.65

UM 140 0.66 0.08 0.95 0.4 0.56

USM 71 0.77 0.09 0.8 0.72 0.69

YALE 56 0.69 0.12 0.82 0.57 0.65

Mean 61 0.63 0.13 0.64 0.62 0.61

max number of levels in each decision tree (nestimators) as 300
and 100, respectively, for the RF classifier. After optimization,
we selected kernals such as “linear,” “rbf,” “poly,” and “sigmoid”
for SVM. We employed the grid search method for the KNN
classifier and chosen optimization parameters of 4, 8, 12,
16, 20, 24, 28, 32, 36, and 40. The tuning (maxdepth and
nestimators) of the RF classifier was optimized using the grid
search method. In this case, the maxdepth values were varied
from 120 to 600 with a step size of 60 and nestimators values
were varied from 20 to 180 with a step size of 20. The
results show that, by optimizing the tuning parameters, the
area under the ROC curve (AUC) will increase and hence,
the classification performance is improved. These results are
summarized in Table 6.

In order to evaluate the classifier performance for different

sites, we used a leave-site-out approach for our proposed CNN,

SVM, KNN, and RF classifiers (Heinsfeld et al., 2018). In this

method, each site is taken as one fold in the dataset, and

we applied a cross-validation approach on the remaining sites
instead of different folds. Therefore, each time, one site out of
17 is used to test, and the other sites are used for training.
We observe that the sites KKI, SDSU, and USM achieved
accuracies of more than 70% as compared to other sites when
using our proposed CNN model. The accuracy, confidence
interval 95%, specificity, sensitivity, and F-score values for
various sites are presented in Table 7 and the accuracy and
the confidence interval 95% are depicted in Figure 6. Also, a
summary of the performance values obtained for each site using
the SVM, KNN, and RF classifiers after optimization are given in
Tables 8–10, respectively.

FIGURE 6 | Box plot of accuracy vs. sites.
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TABLE 8 | Summary of performance values obtained for 17 sites using the SVM

classifier after optimization.

Site out Accuracy Specificity Sensitivity F-score

CALTECH 0.70 0.89 0.50 0.62

CMU 0.74 0.71 0.77 0.74

KKI 0.75 0.95 0.61 0.74

LEUVEN 0.63 0.34 0.88 0.72

MAX MUN 0.54 0.54 0.54 0.55

NYU 0.68 0.66 0.69 0.71

OHSU 0.73 0.58 0.86 0.77

OLIN 0.68 0.68 0.67 0.64

PITT 0.70 0.55 0.85 0.73

SBL 0.53 0.40 0.67 0.59

SDSU 0.72 0.64 0.77 0.77

STANFORD 0.61 0.94 0.30 0.44

TRINITY 0.57 0.72 0.44 0.52

UCLA 0.75 0.76 0.75 0.73

UM 0.76 0.80 0.72 0.76

USM 0.79 0.85 0.68 0.69

YALE 0.71 0.75 0.68 0.70

Mean 0.68 0.69 0.67 0.67

5. DISCUSSION AND CONCLUSIONS

In the present study, we proposed a CNN architecture to
identify and classify ASD patients and control subjects. Also,
the performance of three supervised learning methods, SVM,
KNN, and RF classifiers, on the preprocessed ABIDE I dataset
was investigated. The results show that the average accuracy
of our model using the test data is 70.2%, meaning that it
outperformed the best accuracy obtained on this dataset so far.
It has been observed that for the same accuracy, a CNN model
with fewer parameters is more efficient and has less overhead
for the new models (Iandola et al., 2016). Keeping this in mind,
our model is able to train with fewer parameters and achieve an
even better accuracy level than the best-performing models. The
existing best-known method used a huge number of parameters
(19, 961, 200) in its final stage, but our model used 4,398,802
parameters. The authors of Xing et al. (2018) used 1,268,160
parameters and obtained an accuracy of 66.88%, but we achieved
an accuracy of 70.20%. Hence, our proposed CNN architecture
is able to obtain higher classification performance with fewer
parameters, which will reduce the training time. Therefore, our
proposed model is less complex and faster as compared to other
similar models. Also, we studied each row of the connectivity
matrix as the representation of the correlation between the
corresponding region and the other regions of the brain in
our model.

Thus, we open up the possibility to illustrate the behavior of a
region of the brain and corresponding biomarkers by performing
a noise correction on each row of the connectivity matrix in
future work.

TABLE 9 | Summary of performance values obtained for 17 sites using the KNN

classifier after optimization.

Site out Accuracy Specificity Sensitivity F-score

CALTECH 0.54 0.47 0.61 0.56

CMU 0.59 0.35 0.85 0.67

KKI 0.60 0.75 0.50 0.60

LEUVEN 0.62 0.28 0.91 0.72

MAX MUN 0.50 0.50 0.50 0.52

NYU 0.59 0.40 0.74 0.68

OHSU 0.64 0.25 0.64 0.56

OLIN 0.68 0.68 0.66 0.64

PITT 0.58 0.41 0.78 0.65

SBL 0.57 0.33 0.80 0.65

SDSU 0.64 0.36 0.82 0.73

STANFORD 0.51 0.0.58 0.45 0.49

TRINITY 0.60 0.41 0.76 0.67

UCLA 0.63 0.48 0.82 0.67

UM 0.57 0.98 0.20 0.33

USM 0.46 0.20 0.96 0.56

YALE 0.64 0.43 0.86 0.70

Mean 0.58 0.46 0.70 0.61

TABLE 10 | Summary of performance values obtained for 17 sites using the RF

classifier after optimization.

Site out Accuracy Specificity Sensitivity F-score

CALTECH 0.48 0.52 0.44 0.45

CMU 0.66 0.35 1.00 0.74

KKI 0.64 0.90 0.46 0.60

LEUVEN 0.63 0.27 0.94 0.73

MAX MUN 0.56 0.42 0.67 0.62

NYU 0.68 0.50 0.82 0.75

OHSU 0.50 0.58 0.43 0.48

OLIN 0.64 0.63 0.67 0.62

PITT 0.67 0.48 0.89 0.73

SBL 0.60 0.33 0.87 0.68

SDSU 0.63 0.71 0.60 0.67

STANFORD 0.51 0.89 0.15 0.24

TRINITY 0.64 0.59 0.68 0.67

UCLA 0.61 0.46 0.79 0.65

UM 0.67 0.89 0.47 0.60

USM 0.70 0.65 0.80 0.65

YALE 0.66 0.53 0.79 0.70

Mean 0.62 0.57 0.67 0.62

The future recommendations for our proposed model are
given below: 1. We have used few images in each class. There
is a need to use more data to build a more robust model.
2. The time complexity of the model should be decreased
when the whole dataset of all subjects are fed into it. 3.
The impact of two features (sex and average age) need to be
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considered in this study. 4. The performance may improve with
balanced data.
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