
9th International Conference on Computer and Knowledge Engineering (ICCKE 2019), October 24-25 2019, Ferdowsi University of Mashhad

978-1-7281-5075-8/19/$31.00 ©2019 IEEE

Scheduling Mixed-criticality Systems on
Reconfigurable Platforms

Sadegh Sehhatbakhsh Yasser Sedaghat

Dependable Distributed Embedded Systems (DDEmS) Laboratory
Department of Computer Engineering Ferdowsi University of Mashhad, Mashhad, Iran

sa.sehatbakhsh@mail.um.ac.ir y_sedaghat@um.ac.ir

Abstract— The scheduling for mixed criticality systems, where
multiple functionalities with different criticality levels are
integrated into a shared hardware platform, is an important
research area. Reconfigurable platforms, which combine the
advantages of software flexibility and performance efficiencies,
are recognized as a suitable processing platform for real-time
embedded systems. In this paper, we consider the scheduling of
mixed criticality systems with two criticality levels on
reconfigurable platforms. Partitioned fixed-priority preemptive
scheduling is used to schedule tasks. Since the context switch
overhead in reconfigurable platforms is not as small as that of
multiprocessors, it has been taken into account in our
schedulability analysis. Furthermore, a context-switch-aware
partitioning algorithm is presented to improve the schedulability
of tasks in platforms that context switch cost cannot be neglected.
The experiments results show that our proposed partitioning
algorithm gives higher schedulability ratios when compared to the
classical partitioning algorithms.

Keywords—reconfigurable platforms; real-time systems; mixed
criticality systems; partitioned scheduling; fixed priority scheduling

I. INTRODUCTION
Components with multiple levels of criticality can be

integrated onto a common computing platform to satisfy the
non-functional requirements of real-time embedded systems
(including power, space, weight and cost) [1]. Criticality is the
assurance level required by a component in the system. For
instance, there are 5 criticality levels in the avionics certification
standard DO-178B/C, categorized according to the
consequences of failures in the system [2]. Similarly, four
criticality levels are defined in ISO 26262 standard for the
automotive area [3]. Systems composed of components with at
least two criticality levels are called mixed criticality systems
(MCS).

Reconfigurable platforms are recognized as a suitable
processing platform for real-time embedded systems [4].
Reconfigurable devices combine the advantages of software
flexibility and performance efficiencies and are used in many
classes of embedded systems including avionics and aerospace
systems [5]. Moreover, dynamic partial reconfiguration is
supported by modern reconfigurable devices with low
reconfiguration overheads which makes preemptive task

execution possible on reconfigurable platforms [6]. Despite its
necessity, there exist only few studies that have addressed
scheduling on MCS which target reconfigurable platforms. A
scrubbing technique for FPGA platform is presented in [7]
which accounts for the criticality level of the tasks. Scheduling
of mixed criticality tasks with the aim of protecting the
reconfigurable platforms against Hardware Trojan attacks is
addressed in [8]. In this paper, we aim at addressing scheduling
of MCS on reconfigurable platforms.

Numerous scheduling algorithms have been proposed for
mixed critical systems since vestal’s seminal [9]. Much of
existing literature on mixed-criticality systems targets uni-
processor and multiprocessor platforms. The algorithms
presented for single processor MCS scheduling can be
categorized into : EDF base scheduling algorithms [10], [11],
[12], [13], [14], [15], [16] and fixed priority based scheduling
algorithms [17], [18], [19], [20], [21], [22], [23]. Multiprocessor
MCS scheduling algorithms can be categorized into two main
classes: partitioned scheduling and global scheduling. In global
scheduling approach, migration of tasks between processors is
possible, while migration is not permitted in partitioned
scheduling algorithms and tasks are partitioned between
processors. Although global scheduling may provide higher
utilization in some cases but partitioned scheduling has received
more attention. Two important advantages of partitioned
scheduling are that the migration overhead is removed and the
single processor scheduling algorithms can be applied to
schedule the subset of tasks allocated to a processor [24]. A
good survey that covers research into MCS is presented in [1].
Multiprocessors typically exhibit low context switch overhead,
hence scheduling algorithms targeted towards these platforms
neglect the preemption overhead. However, context switch
overhead in FPGA is not as small as that of multiprocessors [6].
hence, the scheduling strategy must account for context switch
overhead.

In this paper, we concentrate on scheduling mixed criticality
systems on reconfigurable platforms. Partitioned fixed-priority
preemptive scheduling is employed to schedule tasks. As
described earlier, context switch cost cannot be neglected in
reconfigurable platforms. Therefore, in our schedulability
analysis, context switch is taken into account. Furthermore, a
context-switch-aware partitioning algorithm is proposed to

431

improve the schedulability of tasks. The proposed partitioning
algorithms tries to decrease the total number of context switches.
The new partitioning algorithm presented in this work, can be
applied in multiprocessor platforms too.

The main contributions of this papers:

• Presenting a partitioning-based scheduling of mixed-
criticality systems for reconfigurable platforms

• propose a context-switch-aware partitioning heuristic
to improve the schedulability of tasks in platforms that
context switch cost cannot be neglected.

The remainder of paper is organized as follows. Section II
describes the system model. Section III describes our context
switch aware partitioning and schedulability analyses.
Experiments and results are discussed in section IV and section
V concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS
The first part of this section describes the model and

assumptions related to the reconfigurable platform and the
second part explains the task model used in this research.

A. Reconfigurable Platform Model
The reconfiguration platform model in this research includes

a reconfigurable FPGA device which supports dynamic partial
reconfiguration. The architecture of FPGA is assumed to be
similar to Xilinx Virtex family which is based on Configurable
logic Blocks (CLBs). These FPGAs contain Hard Blocks such
as multipliers, IOBs and BRAMs, placed symmetrically on the
FPGA surface. It is assumed that FPGA is accompanied by a
separate memory which is used to store the task bitstream
images.

The reconfigurable surface is split into m equal-sized regions
𝜌𝜌 = {𝜌𝜌1.𝜌𝜌2 … 𝜌𝜌𝑚𝑚} where each Region can accommodate one
task at a time. It is assumed that each task can be executed in any
of regions regardless of the resources needed by the task.
Individual Regions can be asynchronously reconfigured. An
analysis is presented in [6] which tries to give a measure of
context switch overhead in dynamic partial reconfigurable
FPGA. The context switch overhead of a job is calculated based
on its size, data bus width of the FPGA controller and the
configuration clock frequency of the FPGA controller. The
details of this analysis is beyond the scope of this paper. In the
rest of paper, the cost of context switch is assumed to be constant
and is shown by 𝐶𝐶𝑠𝑠.

B. Mixed Criticality Model
In this paper, we use a mixed-criticality model which is

generally applicable and used by many researches in mixed-
criticality domain [1]. Most of papers have focused on dual-
criticality system, where the criticality levels are denoted as Low
and High, therefore a dual-criticality system is considered in this
paper. The system is represented by a set of sporadic tasks 𝜏𝜏 =
{𝜏𝜏1. 𝜏𝜏2. … . 𝜏𝜏𝑛𝑛 } where each task 𝜏𝜏𝑖𝑖 is a 5-tuple
(𝑇𝑇𝑖𝑖 .𝐷𝐷𝑖𝑖 . 𝐿𝐿𝑖𝑖 .𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿).𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)) , where

• 𝑇𝑇𝑖𝑖 is the task period
• 𝐷𝐷𝑖𝑖 is the relative deadline of the task

• 𝐿𝐿𝑖𝑖 ∈ {𝐿𝐿𝐿𝐿𝐿𝐿 .𝐻𝐻𝑖𝑖𝐻𝐻ℎ} is the criticality level of the task,
where Low indicates low criticality level and High
indicates high criticality level

• 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) represents worst-case execution time
(WCET) of the task 𝜏𝜏𝑖𝑖 at Low criticality mode

• 𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) represents the WCET of the task 𝜏𝜏𝑖𝑖 at
High criticality mode

Tasks are assumed to have constrained deadline, i.e., 𝐷𝐷𝑖𝑖 ≤
 𝑇𝑇𝑖𝑖 . All tasks satisfy the condition 0 < 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) ≤ 𝐷𝐷𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖.
Each High-criticality task satisfies the condition 0 < (𝐿𝐿𝐿𝐿𝐿𝐿) <
𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) ≤ 𝐷𝐷𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖 . A few additional notations are defined:

• Task 𝜏𝜏𝑖𝑖 utilization in low mode: 𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) = 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)
𝑇𝑇𝑖𝑖

• Task 𝜏𝜏𝑖𝑖 utilization in high mode: 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) = 𝐶𝐶𝑖𝑖(High)
𝑇𝑇𝑖𝑖

• Low mode system utilization:

𝑈𝑈𝐿𝐿𝐿𝐿𝐿𝐿(𝜏𝜏) = ∑ 𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)𝜏𝜏𝑖𝑖∈𝜏𝜏 (1)

• High mode system utilization:

𝑈𝑈𝐻𝐻𝑖𝑖𝐻𝐻ℎ(𝜏𝜏) = ∑ 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)𝜏𝜏𝑖𝑖∈𝜏𝜏 (2)

• Task 𝜏𝜏𝑖𝑖 Worst-case response time in low mode:
𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)

• Task 𝜏𝜏𝑖𝑖 Worst-case response time in high mode:
 𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)

III. SCHEDULING ALGORITHM
A partition-based approach is used to allocate tasks to

regions and then fixed-priority preemptive scheduling is
employed on each region. Therefore, scheduling algorithm has
two phases: task allocation and priority assignment [24]. During
the task allocation phase, the task set 𝜏𝜏 = {𝜏𝜏1. 𝜏𝜏2. … . 𝜏𝜏𝑛𝑛 } is
partitioned on the FPGA regions 𝜌𝜌 = {𝜌𝜌1.𝜌𝜌2 … 𝜌𝜌𝑚𝑚}. Assume
that Γ𝑖𝑖 denotes the subset of tasks allocated to 𝜌𝜌𝑖𝑖 for i ∈ { 1,2,
… , m}, the priority assignment algorithms assigns a priority
level to each task in 𝜏𝜏𝑗𝑗𝜖𝜖Γ𝑖𝑖 .

A. Priority Assignment
Three fixed priority schemes have been used in researches:
Adaptive mixed criticality(AMC), static mixed criticality(SMC)
and partitioned criticality(PC) [18]. AMC has been shown to
outperform other fixed priority schemes [1], therefore AMC is
selected as the priority fixed priority scheme for this research.
AMC drops all low criticality jobs if any task executes for more
than it Low-criticality WCET (𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)).

The schedulability analysis for AMC is based on Response-
Time Analysis. AMC-rtb and AMC-max are two different
methods that are presented for response time analysis of AMC
scheme [18]. These two methods cannot be directly used in our
analysis since they ignore the context switch cost. Therefore, we
extend the response time analysis to account for the context

432

switch cost as done by [17]. Recall that the cost of context
switch is assumed to be constant and is shown by 𝐶𝐶𝑠𝑠.

 A few additional notations are defined to be used in the
response time analysis:

• hpt(i) is the set of tasks with priority higher than the
priority of task 𝜏𝜏𝑖𝑖

• hptH(i) is the set of high criticality tasks with priority
higher than the priority of task 𝜏𝜏𝑖𝑖

• hptL(i) is the set of low criticality tasks with priority
higher than the priority of task 𝜏𝜏𝑖𝑖

The response time of task 𝜏𝜏𝑖𝑖 in the Low-criticality mode is
computed by the following equation:

 𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) = 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠 +
 ∑ �𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠�𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝(𝑖𝑖)

(3)

Similarly, the following equation computes the worst-case
response time for High-criticality tasks. This equation covers
High-criticality mode and transition to it.

𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) = 𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) + 𝐶𝐶𝑠𝑠 +

� �
𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) + 𝐶𝐶𝑠𝑠�

𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝𝐻𝐻(𝑖𝑖)
+

� �
𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠�

𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝𝐿𝐿(𝑖𝑖)

(4)

Audsley’s Optimal Priority Assignment (OPA) algorithm
[23] is shown to be optimal for AMC with no context switch cost
[17]. Fortunately, Audsley’s OPA algorithm is optimal for AMC
with constant context switch cost [12]. Therefore, we use
audsley’s algorithm for priority assignments.

B. Task Allocation
Task allocation is similar to Bin-Packing Problem which is
known to be NP-Hard. The classical heuristics can be used
to partition tasks on the FPGA regions include:

• First Fit (FF): the task is assigned to the first region on
which it can be successfully scheduled.

• Best Fit (BF): Each task is assigned to the region with
the largest utilization value among all those regions on
which it can be scheduled successfully.

• Worst Fit (WF): Each task is assigned to the region
with the smallest utilization value among all those
regions on which it can be scheduled successfully.

It has been shown that ordering tasks according to decreasing
utilization or decreasing criticality at the beginning of the
partitioning algorithm, generally improves the performance
[24]. Hybrid partitioned scheme can improve the schedulability,
for instance, it has been shown that using WF for allocating high
critical tasks and FF for allocating low critical tasks improves
the system schedulability [24], [26].

C. Motivation example
 A sample task set is shown in Table I. It consists of 5 tasks that
are assumed to be partitioned on two regions, 𝜌𝜌1 and 𝜌𝜌1. Context
switch cost is assumed to be 2ms.
 TABLE I. Sample Task Set

Task 𝑻𝑻𝒊𝒊 𝑫𝑫𝒊𝒊 𝑪𝑪𝒊𝒊(𝑳𝑳𝑳𝑳) 𝑪𝑪𝒊𝒊(𝑯𝑯𝑯𝑯) criticality

 𝝉𝝉𝟏𝟏 6ms 4 ms 2 ms 3 ms High

 𝝉𝝉𝟐𝟐 100 ms 90 ms 30 ms ------ Low

 𝝉𝝉𝟑𝟑 100 ms 100 ms 10 ms ------ Low

 𝝉𝝉𝟒𝟒 100 ms 100 ms 50 ms 60 ms High

 𝝉𝝉𝟓𝟓 100 ms 100 ms 20 ms ------ Low

 First, consider first-fit (FF) heuristic.

• 𝜏𝜏𝟏𝟏 is allocated to 𝜌𝜌1.

• 𝜏𝜏2 cannot be allocated to 𝜌𝜌1 , since Audsley’s
algorithm cannot find any priority ordering that both
 𝜏𝜏1 and 𝜏𝜏2 meet their deadlines. Response time analysis
approves this. Assuming priority ordering { 𝜏𝜏𝟏𝟏, 𝜏𝜏𝟐𝟐},
then we have 𝑅𝑅2(Low) = 100 and Assuming priority
ordering { 𝜏𝜏2. 𝜏𝜏𝟏𝟏}, then we have 𝑅𝑅1(Low) = 36. In the
first case, 𝑅𝑅2 cannot meet its deadline and in the
second case 𝑅𝑅1 cannot meet its deadline. Therefore
 𝜏𝜏2 is allocated to 𝜌𝜌2. Response Time analysis
Equations can be solved using fixed point iterations
with an appropriate initial value such as 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠
or 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿) [17].

• 𝜏𝜏3 can be allocated to both 𝜌𝜌1, 𝜌𝜌2. Partitioning
algorithm decides where to place 𝜏𝜏3. FF places 𝜏𝜏3 on
𝜌𝜌1 since it selects the first region that the task can be
allocated to.

• 𝜏𝜏4 does not fit on 𝜌𝜌1 since 𝜏𝜏𝟏𝟏 and 𝜏𝜏3 are already
allocated to this region and audsley’s algorithm cannot
find a priority ordering for { 𝜏𝜏𝟏𝟏. 𝜏𝜏𝟑𝟑. 𝜏𝜏𝟒𝟒} that all these
three tasks meet their deadlines. This can be approved
by response time analysis. Therefore, 𝜏𝜏𝟒𝟒 is placed on
𝜌𝜌2. Assuming priority ordering { 𝜏𝜏𝟒𝟒, 𝜏𝜏𝟐𝟐}, We have
𝑅𝑅2(Low)=84, 𝑅𝑅4(Low)=52 and 𝑅𝑅4(High)=62.
Therefore, both tasks can meet their deadlines.

• 𝜏𝜏5 cannot be not be allocated to 𝜌𝜌1 or 𝜌𝜌2 since
audsley’s algorithm cannot find any priority ordering
for the regions that all tasks allocated to that region
meet their deadlines.

FF partitioning heuristic failed for the task set of table I.
Considering Best Fit (BF) as the partitioning algorithm leads to
the same result and the task set cannot be scheduled. BF
places 𝜏𝜏𝟏𝟏 and 𝜏𝜏𝟐𝟐 on 𝜌𝜌1 and 𝜌𝜌2 respectively. 𝜏𝜏3 is allocated to
𝜌𝜌1 since 𝜌𝜌1 has a larger utilization value than 𝜌𝜌2. 𝜏𝜏4 is allocated
to 𝜌𝜌2 since audsley’s algorithm cannot find a priority ordering
for { 𝜏𝜏𝟏𝟏. 𝜏𝜏𝟑𝟑. 𝜏𝜏𝟒𝟒} that all these three tasks meet their deadlines. 𝜏𝜏5
cannot be allocated to 𝜌𝜌1 or 𝜌𝜌2.

 Now consider a partitioning algorithm which accounts for
context switch cost. i.e., a partitioning algorithm which allocates

433

tasks to the region with minimum number of context switches.
An upper bound for the number of context switches that can
occur in a region can be calculated using task’s response times.
This will be detailed in the following subsection. Returning to
the example task set, both FF and BF allocate 𝜏𝜏3 to 𝜌𝜌1 but
considering minimum number of context switch heuristic:

• 𝜏𝜏𝟏𝟏 and 𝜏𝜏𝟐𝟐 are allocated to 𝜌𝜌1 and 𝜌𝜌2 respectively

• 𝜏𝜏3 is allocated to 𝜌𝜌2 since the maximum number of
context switches in 𝜌𝜌2, after allocating 𝜏𝜏3, is less than
that of 𝜌𝜌1 . Recall that BF and FF placed 𝜏𝜏3 on 𝜌𝜌1.

• 𝜏𝜏𝟒𝟒 cannot be allocated to 𝜌𝜌1 since audsley’s algorithm
cannot find a priority ordering for { 𝜏𝜏𝟏𝟏. 𝜏𝜏𝟒𝟒} that both
tasks meet their deadlines. 𝜏𝜏𝟒𝟒 Can be allocated to 𝜌𝜌2 .
Assuming priority ordering { 𝜏𝜏𝟒𝟒, 𝜏𝜏𝟐𝟐. 𝜏𝜏𝟑𝟑}, We have
 𝑅𝑅2(Low) = 84, 𝑅𝑅3(Low) = 96.𝑅𝑅4(Low) = 52 and
 𝑅𝑅4(High)=62. Therefore, all tasks can meet their
deadlines.

• 𝜏𝜏5 cannot be allocated to 𝜌𝜌2 but it can be allocated to
𝜌𝜌1 and response time analysis approves that all tasks
meet their deadlines. Assuming priority ordering
{ 𝜏𝜏𝟏𝟏, 𝜏𝜏𝟓𝟓}, We have 𝑅𝑅1(Low) = 4, 𝑅𝑅1(High) = 5 and
 𝑅𝑅5(Low) = 66. Therefore, both tasks can meet their
deadlines.

FF and BF heuristics could not schedule the example task set
but the suggested heuristic that accounts for the number of
context switch occurred in each region, could schedule the task
set.

D. Context-Switch-Aware Partitioning algorithm
 We propose a context-switch-aware (CSA) partitioning
algorithm that takes into account the number of context switches
in regions while selecting the appropriate region for the task. A
few additional notations are defined and used in the proposed
algorithm:

• hptH(i,j) denotes the set of High-critical tasks allocated
to region 𝜌𝜌𝑗𝑗 with higher priority than 𝜏𝜏𝑖𝑖

• hptL(i,j) denotes the set of Low-critical tasks allocated
to region 𝜌𝜌𝑗𝑗 with higher priority than 𝜏𝜏𝑖𝑖

• Task 𝜏𝜏𝑖𝑖 Nominal utilization : 𝑁𝑁𝑈𝑈𝑖𝑖

 𝑁𝑁𝑈𝑈𝑖𝑖 = �𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) 𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖 𝑖𝑖𝑠𝑠 𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) 𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖 𝑖𝑖𝑠𝑠 𝐻𝐻𝑖𝑖𝐻𝐻ℎ 𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 (5)

• Region 𝜌𝜌𝑖𝑖 utilization : 𝑅𝑅𝑈𝑈𝑖𝑖

 𝑅𝑅𝑈𝑈𝑖𝑖 = ∑ 𝑁𝑁𝑈𝑈𝑗𝑗𝑗𝑗 𝜖𝜖 Γ𝑖𝑖 (6)

Region 𝜌𝜌𝑖𝑖 utilization, as defined by equation (6), is the
sum of nominal utilization of the tasks allocated to that
region.

• Cmax𝑖𝑖 denotes the maximum number of context
Switches that may occur in a single execution of a job
of the task. It can be calculated using the following
formula, assuming that 𝜏𝜏𝑖𝑖 is allocated to 𝜌𝜌𝑘𝑘 :

• Maximum number of context Switches in Region 𝜌𝜌𝑖𝑖 :

 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 = ∑ 𝐶𝐶𝑅𝑅𝑐𝑐𝑅𝑅𝑗𝑗 𝜏𝜏𝑖𝑖𝜖𝜖Γ𝑖𝑖 (8)

• Normalized number of context switches in Region 𝜌𝜌𝑖𝑖 :

 N𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 ∗ 𝑅𝑅𝑈𝑈𝑖𝑖 (9)

 CSA partitioning algorithm allocates each task to the region
𝜌𝜌𝑖𝑖 with the smallest normalized number of context switch
(N𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖) among all those regions on which it can be scheduled
successfully. A similar partitioning algorithm can be defined
which allocates each task to the region with the smallest 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖
value among all those regions on which it can be scheduled
successfully. The performance of this partitioning algorithm,
which is named CSARmax, will be compared to CSA
partitioning in the next section.

IV. EVALUATING THE CSA PARTITIONING ALGORITHM
The performance of proposed CSA partitioning algorithm is

evaluated by conducting experiments with random mixed-
critical task sets and the schedulability ratio of the proposed
CSA partitioning algorithm is compared with other partitioning
heuristics.

A. Experimental Setup
 Random task sets are generated using an approach
which is similar to the approach presented in [24]. The
following parameters are used in the generator : 𝑃𝑃𝐻𝐻𝑖𝑖𝐻𝐻ℎ
denotes the ratio of High-critical tasks, TMax and TMin
denote the maximum and minimum period respectively and
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 denotes the sum of nominal utilizations of all tasks.

 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑁𝑁𝑈𝑈𝑖𝑖 𝜏𝜏𝑖𝑖𝜖𝜖𝜏𝜏 (10)

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 is used to control the load of system. generating a task set
for a given 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 contains the following steps.

• 𝑁𝑁𝑈𝑈𝑖𝑖 values are generated using UUnifast-Discard
algorithm [27], [28].

• For high-criticality tasks, 𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) values are uniformly
generated in the interval [0.5* 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) , 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)]

• Task periods (𝑇𝑇𝑖𝑖) are uniformly generated in the interval
[10,1000].

• WCET of each task is computed as follows: 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)=
𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)*𝑇𝑇𝑖𝑖, and 𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)= 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)*𝑇𝑇𝑖𝑖

• Task deadlines (𝐷𝐷𝑖𝑖) are generated using a log-uniform
distribution between 𝐶𝐶𝑖𝑖(𝐿𝐿𝑖𝑖) and 𝑇𝑇𝑖𝑖 biased toward higher
values.

434

B. Experimental Results
Two partitioning algorithm were proposed in the previous
section: CSA and CSARmax. It has been shown that ordering
tasks according to decreasing utilization, improves the
performance [24], Therefore, CSA-DU and CSARmax-DU
partition algorithms are presented. CSA-DU and CSARmax-DU
are the same as CSA and CSARmax partitioning algorithm,
respectively, except that tasks are ordered according to
decreasing utilization at the beginning of the algorithms. The
performance of these algorithms are compared in Fig. 1. This
figure shows the schedulability ratio for task sets with 20 tasks
as a function of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚. for each 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 value, 5000 task sets were
generated and the schedulability of each task set was examined
by four partitioning algorithm: CSA, CSA-DU, CSARmax and
CSARmax-DU. The following configuration is used for
experiments in Fig. 1 : 𝑃𝑃𝐻𝐻𝑖𝑖𝐻𝐻ℎ= 0.5 (Half of the tasks are high
critical), m = 4 (the reconfigurable surface is divided into four
regions), 𝐶𝐶𝑠𝑠 = 3ms. The results approve that ordering tasks
according to decreasing utilization, improves the performance.
In general, the performance of CSA-DU is better than other
algorithms.

 To evaluate the performance of proposed CSA algorithm, the
acceptance ratio of the proposed CSA-DU partitioning
algorithm is compared to other partitioning heuristics presented
in previous researches. Recall that audsley’s OPA algorithm is
used for priority assignments. Fig. 2 presents the acceptance
ratio of the proposed CSA-DU partitioning algorithm in
comparison with the following heuristics:

• FF-DU (First Fit with Decreasing Utilization)

• BF-DU (Best Fit with Decreasing Utilization)

• WF-DU/FF-DU: this heuristic employs WF for
allocating high critical tasks and FF for allocating low
critical tasks [26]

• FF-DC: this heuristic first orders the tasks by their
criticality level and then, for each criticality level,
orders the tasks by decreasing nominal utilization [24]

 Fig. 2 Shows that for low 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 values (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚< 2.3), all
partitioning algorithms give the same performance and all ask
sets are schedulable. Among all partitioning algorithms,

Fig. 1. Performance of CSA in comparison with CSARmax

Fig. 2. Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 3)

Fig. 3. Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 1)

Fig. 4. Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 5)

CSA-DU has a better performance overall. FF-DU and BF-DU
give the same performance. For large utilization values (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 >
3.5) no task set is schedulable.

In the next experiment, the 𝐶𝐶𝑠𝑠 was changed to evaluate the
performance for all heuristics with different context switch
costs. The results are presented in Fig. 3 and Fig. 4. The results
show that CSA-DU performs better when context switch cost is
increased.

In the last experiment, m was set to 8 to evaluate the
performance for all heuristics with different number of regions.
The result is shown in Fig. 5.

435

Fig. 5. Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 3. m = 8)

V. CONCLUSION
 Partitioned scheduling of fixed-priority mixed-criticality
task sets on reconfigurable platforms was studied in this paper.
We divided the reconfigurable device surface into equal-size
regions, and partitioned the tasks set on the regions. fixed-
priority scheduling is employed in each region, and audsley’s
algorithm is used for schedulability test in each region. We
proposed a novel partitioning heuristics aimed at improving
schedulability by reducing the number of context switches.
Experiments with randomly generated task sets showed
improvement over existing heuristics. The proposed heuristics
can be applied in both reconfigurable and multiprocessor
platforms.
 In the future, our work will focus on: (i) partitioned dynamic-
priority scheduling of mixed-criticality systems on
reconfigurable platforms; (ii) global mixed-criticality
scheduling on reconfigurable platforms; (iii) integrating
preemption threshold into mixed-criticality scheduling of
reconfigurable platforms; (IV) MCSs scheduling on multi core
reconfigurable platforms.

REFERENCES
[1] A. Burns , R. I. Davis, “A Survey of Research into Mixed Criticality

Systems,” ACM Computing Surveys (CSUR), v.50 n.6, p.1-37, January
2018.

[2] RTCA Inc. DO-178C: Software considerations in airborne systems and
equipment certification, 2011.

[3] International Organization for Standardization. Road vehicles – Func-
tional safety, ISO 26262, 2011.

[4] R. B. Atitallah, V. Viswanathan, N. Belanger, J. Dekeyser, “FPGA-
Centric. Design Process for Avionic Simulation and Test,” IEEE
Transactions on Aerospace and Electronic Systems (Volume: 54 , Issue:
3), 2018.

[5] R. Ramezani, Y. Sedaghat, and J. A. Clemente. “Reliability Improvement
of Hardware Task Graphs via Configuration Early Fetch,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems (Volume:
25 , 4), 2017.

[6] S. Saha, A. Sarkar, A. Chakrabarti, R. Ghosh, "Co-Scheduling Persistent
Periodic and Dynamic Aperiodic Real-Time Tasks on Reconfigurable
Platforms,” IEEE Transactions on Multi-Scale Computing Systems, vol.
4, no. 1, pp. 41-54, 2018.

[7] R. Santos, S. Venkataraman, A. Das, A. Kumar, "Criticality-aware
scrubbing mechanism for SRAM-based FPGAs,” 24th International
Conference on Field Programmable Logic and Applications (FPL), pp. 1-
8, September 2014.

[8] K. Guha, A. Majumder, D. Saha, A. Chakrabarti, “Reliability Driven
Mixed Critical Tasks Processing on FPGAs Against Hardware Trojan
Attacks,” 21st Euromicro Conference on Digital System Design, 2018.

[9] S. Vestal. "Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance," Proceedings of the 28th
IEEE International Real-Time Systems Symposium, pp. 239-243, 2007.

[10] J.-J. Han, X. Tao, D. Zhu, and H. Aydin, “Criticality-aware partitioning
for multicore mixed-criticality systems,” in Proc. 45th Int. Conf. Parallel
Process., Philadelphia, PA, USA, pp. 227–235, 2016.

[11] S. K. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” In Proc. ECRTS. 147–155, 2008.

[12] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulability
analysis for certifiable dual-criticality systems,” In Proc. ACM EMSOFT.
253–262, 2011.

[13] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van
der Ster, and L. Stougie. “Mixed-criticality scheduling of sporadic task
systems,” In Proc. 19th Annual European Symposium on Algorithms
(ESA 2011), Lecture Notes in Computer Science, Vol. 6942. 555–56,
2018.

[14] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela, S.
Van Der Ster, and L. Stougie, “Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems,” Journal of the ACM (JACM),
2015.

[15] G. Lipari and G. Buttazzo, “Resource reservation for mixed criticality
systems,” In Proc.Workshop on Real-Time Systems: The past, the
present, and the future 60–74, 2013.

[16] T. Zhang, N. Guan, Q. Deng, and W. Yi. “On the analysis of edf-vd
scheduled mixed-criticality real-time systems,” In Proc. of the 9th IEEE
International Symposium on Industrial Embedded Systems, 2014.

[17] R. I. Davis, S. Altmeyer, A. Burns. “Mixed Criticality Systems with
Varying Context Switch Costs,” IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2018.

[18] S. K. Baruah, A. Burns, and R. I. Davis. “Response-time analysis for
mixed criticality systems,” In RTSS, pages 34-43, 2011.

[19] S. Baruah and S. Vestal. “Schedulability Analysis of Sporadic Tasks
with Multiple Criticality Specifications,” In Proceedings of the Euromicro
Conference on Real-Time Systems, pages 147–155, 2008.

[20] A. Burns and R. I. Davis. “Adaptive mixed criticality scheduling with
deferred preemption,” In Real-Time Systems Symposium (RTSS), pages
21–30. IEEE, 2014.

[21] Y. Chen, K.G. Shin, and H. Xiong. “Generalizing fixed-priority
scheduling for better schedulability in mixed-criticality systems,”
Information Processing Letters, 116(8):508–512, 2016.

[22] F. Dorin, P. Richard, M. Richard, and J. Goossens. “Schedulability and
sensitivity analysis of multiple criticality tasks with fixed-priorities,”
Real-Time Systems Journal, 46(3):305–331, 2010.

[23] F. Santy, L. George, P. Thierry, and J. Goossens. “Relaxing
mixedcriticality scheduling strictness for task sets scheduled with FP,” In
 Proceedings of the Euromicro Conference on Real-Time Systems, pages
155–165, 2012.

[24] O. R. Kelly, H. Aydin, B. Zhao, "On partitioned scheduling of fixed-
priority mixed-criticality task sets,” Proc. 10th IEEE Conf on Trust
Security and Privacy in Computing and Communications, 2011

[25] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
1993. “Applying new scheduling theory to static. priority preemptive
scheduling,” Software Engineering Journal 8, 5 (1993), 284–292.

[26] P. Rodriguez, L. George, Y. Abdeddaım, and J. Goossens. “Multi-criteria
evaluation of partitioned edf-vd for mixedcriticality systems upon
identical processors,” In Proc. of the Workshop on Mixed Criticality
Systems, 2013.

[27] E. Bini and G. Buttazzo. “Measuring the performance of schedulability
tests,” Real-Time Systems, 30:129–154, May 2005.

[28] R. Davis and A. Burns. ,”Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems Journal, pages 1–40, 2010.

436

