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Abstract— The scheduling for mixed criticality systems, where 
multiple functionalities with different criticality levels are 
integrated into a shared hardware platform, is an important 
research area. Reconfigurable platforms, which combine the 
advantages of software flexibility and performance efficiencies, 
are recognized as a suitable processing platform for real-time 
embedded systems. In this paper, we consider the scheduling of 
mixed criticality systems with two criticality levels on 
reconfigurable platforms. Partitioned fixed-priority preemptive 
scheduling is used to schedule tasks. Since the context switch 
overhead in reconfigurable platforms is not as small as that of 
multiprocessors, it has been taken into account in our 
schedulability analysis. Furthermore, a context-switch-aware 
partitioning algorithm is presented to improve the schedulability 
of tasks in platforms that context switch cost cannot be neglected. 
The experiments results show that our proposed partitioning 
algorithm gives higher schedulability ratios when compared to the 
classical partitioning algorithms. 

Keywords—reconfigurable platforms; real-time systems; mixed 
criticality systems; partitioned scheduling; fixed priority scheduling  

I.  INTRODUCTION 
Components with multiple levels of criticality can be 

integrated onto a common computing platform to satisfy the 
non-functional requirements of real-time embedded systems 
(including power, space, weight and cost) [1]. Criticality is the 
assurance level required by a component in the system.  For 
instance, there are 5 criticality levels in the avionics certification 
standard DO-178B/C, categorized according to the 
consequences of failures in the system [2]. Similarly, four 
criticality levels are defined in ISO 26262 standard for the 
automotive area [3]. Systems composed of  components with at 
least two criticality levels are called mixed criticality systems 
(MCS).  

Reconfigurable platforms are recognized as a suitable 
processing platform for real-time embedded systems [4]. 
Reconfigurable devices combine the advantages of software 
flexibility and performance efficiencies and are used in many 
classes of embedded systems including avionics and aerospace 
systems [5]. Moreover, dynamic partial reconfiguration is 
supported by modern reconfigurable devices with low 
reconfiguration overheads which makes preemptive task 

execution possible on reconfigurable platforms [6]. Despite its 
necessity, there exist only few studies that have addressed 
scheduling on MCS which target reconfigurable platforms. A 
scrubbing technique for FPGA platform is presented in [7] 
which accounts for the criticality level of the tasks. Scheduling 
of mixed criticality tasks with the aim of protecting the 
reconfigurable platforms against Hardware Trojan attacks is 
addressed in [8]. In this paper, we aim at addressing scheduling 
of MCS on reconfigurable platforms. 

Numerous scheduling algorithms have been proposed for 
mixed critical systems since vestal’s seminal [9]. Much of 
existing literature on mixed-criticality systems targets uni-
processor and multiprocessor platforms. The algorithms 
presented for single processor MCS scheduling can be 
categorized into : EDF base scheduling algorithms [10], [11], 
[12], [13], [14], [15], [16] and fixed priority based scheduling 
algorithms [17], [18], [19], [20], [21], [22], [23]. Multiprocessor 
MCS scheduling algorithms can be categorized into two main 
classes: partitioned scheduling and global scheduling. In global 
scheduling approach, migration of tasks between processors is 
possible, while migration is not permitted in partitioned 
scheduling algorithms and tasks are partitioned between 
processors. Although global scheduling may provide higher 
utilization in some cases but partitioned scheduling has received 
more attention. Two important advantages of partitioned 
scheduling are that the migration overhead is removed and the 
single processor scheduling algorithms can be applied to 
schedule the subset of tasks allocated to a processor [24].  A 
good survey that covers research into MCS is presented in [1]. 
Multiprocessors typically exhibit low context switch overhead, 
hence scheduling algorithms targeted towards these platforms 
neglect the preemption overhead. However, context switch 
overhead in FPGA is not as small as that of multiprocessors [6]. 
hence, the scheduling strategy must account for context switch 
overhead. 

In this paper, we concentrate on scheduling mixed criticality 
systems on reconfigurable platforms. Partitioned fixed-priority 
preemptive scheduling is employed to schedule tasks. As 
described earlier, context switch cost cannot be neglected in 
reconfigurable platforms. Therefore, in our schedulability 
analysis, context switch is taken into account. Furthermore, a 
context-switch-aware partitioning algorithm is proposed to 
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improve the schedulability of tasks. The proposed partitioning 
algorithms tries to decrease the total number of context switches. 
The new partitioning algorithm presented in this work, can be 
applied in multiprocessor platforms too. 

The main contributions of this papers: 

• Presenting a partitioning-based scheduling of mixed-
criticality systems for reconfigurable platforms 

• propose a context-switch-aware partitioning heuristic 
to improve the schedulability of tasks in platforms that 
context switch cost cannot be neglected.  

The remainder of paper is organized as follows. Section II 
describes the system model. Section III describes our context 
switch aware partitioning and schedulability analyses. 
Experiments and results are discussed in section IV and section 
V concludes the paper. 

II. SYSTEM MODEL AND ASSUMPTIONS 
The first part of this section describes the model and 

assumptions related to the reconfigurable platform and the 
second part explains the task model used in this research. 

A. Reconfigurable Platform Model 
The reconfiguration platform model in this research includes 

a reconfigurable FPGA device which supports dynamic partial 
reconfiguration. The architecture of FPGA is assumed to be 
similar to Xilinx Virtex family which is based on Configurable 
logic Blocks (CLBs). These FPGAs contain Hard Blocks such 
as multipliers, IOBs and BRAMs, placed symmetrically on the 
FPGA surface. It is assumed that FPGA is accompanied by a 
separate memory which is used to store the task bitstream 
images.    

The reconfigurable surface is split into m equal-sized regions 
𝜌𝜌 = {𝜌𝜌1.𝜌𝜌2 … 𝜌𝜌𝑚𝑚} where each Region can accommodate one 
task at a time. It is assumed that each task can be executed in any 
of regions regardless of the resources needed by the task. 
Individual Regions can be asynchronously reconfigured. An 
analysis is presented in [6] which tries to give a measure of 
context switch overhead in dynamic partial reconfigurable 
FPGA. The context switch overhead of a job is calculated based 
on its size, data bus width of the FPGA controller and the 
configuration clock frequency of the FPGA controller. The 
details of this analysis is beyond the scope of this paper. In the 
rest of paper, the cost of context switch is assumed to be constant 
and is shown by 𝐶𝐶𝑠𝑠. 

B. Mixed Criticality Model 
In this paper, we use a mixed-criticality model which is 

generally applicable and used by many researches in mixed-
criticality domain [1]. Most of papers have focused on dual-
criticality system, where the criticality levels are denoted as Low 
and High, therefore a dual-criticality system is considered in this 
paper. The system is represented by a set of sporadic tasks 𝜏𝜏 =
{𝜏𝜏1. 𝜏𝜏2. … . 𝜏𝜏𝑛𝑛 } where each task  𝜏𝜏𝑖𝑖 is a 5-tuple 
(𝑇𝑇𝑖𝑖 .𝐷𝐷𝑖𝑖 . 𝐿𝐿𝑖𝑖 .𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿).𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) ) , where  

• 𝑇𝑇𝑖𝑖 is the task period 
• 𝐷𝐷𝑖𝑖 is the relative deadline of the task 

•  𝐿𝐿𝑖𝑖 ∈ {𝐿𝐿𝐿𝐿𝐿𝐿 .𝐻𝐻𝑖𝑖𝐻𝐻ℎ} is the criticality level of the task, 
where Low indicates low criticality level and High 
indicates high criticality level 

• 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) represents worst-case execution time 
(WCET) of the task  𝜏𝜏𝑖𝑖 at Low criticality mode 

• 𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) represents the WCET of the task  𝜏𝜏𝑖𝑖 at 
High criticality mode  
 

Tasks are assumed to have constrained deadline, i.e., 𝐷𝐷𝑖𝑖  ≤
 𝑇𝑇𝑖𝑖 . All tasks satisfy the condition  0 <  𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) ≤  𝐷𝐷𝑖𝑖  ≤  𝑇𝑇𝑖𝑖. 
Each High-criticality task satisfies the condition  0 < (𝐿𝐿𝐿𝐿𝐿𝐿) <
𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) ≤  𝐷𝐷𝑖𝑖  ≤  𝑇𝑇𝑖𝑖 . A few additional notations are defined: 

• Task  𝜏𝜏𝑖𝑖 utilization in low mode:   𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) = 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)
𝑇𝑇𝑖𝑖 

 

• Task  𝜏𝜏𝑖𝑖 utilization in high mode: 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) = 𝐶𝐶𝑖𝑖(High)
𝑇𝑇𝑖𝑖 

 

• Low mode system utilization: 

𝑈𝑈𝐿𝐿𝐿𝐿𝐿𝐿(𝜏𝜏) =  ∑  𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)𝜏𝜏𝑖𝑖∈𝜏𝜏                        (1) 
 

• High mode system utilization:  

𝑈𝑈𝐻𝐻𝑖𝑖𝐻𝐻ℎ(𝜏𝜏) =  ∑  𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)𝜏𝜏𝑖𝑖∈𝜏𝜏                        (2) 

• Task  𝜏𝜏𝑖𝑖 Worst-case response time in low mode:  
𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) 

• Task  𝜏𝜏𝑖𝑖 Worst-case response time in high mode: 
 𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) 

III. SCHEDULING ALGORITHM 
A partition-based approach is used to allocate tasks to 

regions and then fixed-priority preemptive scheduling is 
employed on each region. Therefore, scheduling algorithm has 
two phases: task allocation and priority assignment [24]. During 
the task allocation phase, the task set 𝜏𝜏 = {𝜏𝜏1. 𝜏𝜏2. … . 𝜏𝜏𝑛𝑛 } is 
partitioned on the FPGA regions 𝜌𝜌 = {𝜌𝜌1.𝜌𝜌2 … 𝜌𝜌𝑚𝑚}. Assume 
that Γ𝑖𝑖  denotes the subset of tasks allocated to 𝜌𝜌𝑖𝑖 for i ∈ { 1,2, 
… , m}, the priority assignment algorithms assigns a priority 
level to each task in 𝜏𝜏𝑗𝑗𝜖𝜖Γ𝑖𝑖 . 

A. Priority Assignment  
Three fixed priority schemes have been used in researches: 
Adaptive mixed criticality(AMC), static mixed criticality(SMC) 
and partitioned criticality(PC) [18]. AMC has been shown to 
outperform other fixed priority schemes [1], therefore AMC is 
selected as the priority fixed priority scheme for this research. 
AMC drops all low criticality jobs if any task executes for more 
than it Low-criticality WCET (𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)). 
 

The schedulability analysis for AMC is based on Response-
Time Analysis. AMC-rtb and AMC-max are two different 
methods that are presented for response time analysis of AMC 
scheme [18]. These two methods cannot be directly used in our 
analysis since they ignore the context switch cost. Therefore, we 
extend the response time analysis to account for the context 
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switch cost as done by [17].  Recall that the cost of context 
switch is assumed to be constant and is shown by 𝐶𝐶𝑠𝑠. 

 A few additional notations are defined to be used in the 
response time analysis: 

• hpt(i) is the set of tasks with priority higher than the 
priority of task  𝜏𝜏𝑖𝑖 

• hptH(i) is the set of high criticality tasks with priority 
higher than the priority of  task  𝜏𝜏𝑖𝑖 

• hptL(i) is the set of low criticality tasks with priority 
higher than the priority of task  𝜏𝜏𝑖𝑖 

 

The response time of task 𝜏𝜏𝑖𝑖 in the Low-criticality mode is 
computed by the following equation: 

 𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) =  𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠 +  
                      ∑ �𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠�𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝(𝑖𝑖)  

 

(3) 

Similarly, the following equation computes the worst-case 
response time for High-criticality tasks. This equation covers 
High-criticality mode and transition to it. 

𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) =  𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) + 𝐶𝐶𝑠𝑠 +  

� �
𝑅𝑅𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) + 𝐶𝐶𝑠𝑠�

𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝𝐻𝐻(𝑖𝑖)
+ 

� �
𝑅𝑅𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)

𝑇𝑇𝑗𝑗
� �𝐶𝐶𝑗𝑗(𝐿𝐿𝐿𝐿𝐿𝐿) + 𝐶𝐶𝑠𝑠�

𝑗𝑗∈ℎ𝑝𝑝𝑝𝑝𝐿𝐿(𝑖𝑖)

 

 
 
 
(4) 

Audsley’s Optimal Priority Assignment (OPA) algorithm 
[23] is shown to be optimal for AMC with no context switch cost 
[17]. Fortunately, Audsley’s OPA algorithm is optimal for AMC 
with constant context switch cost [12]. Therefore, we use 
audsley’s algorithm for priority assignments. 

B. Task Allocation 
Task allocation is similar to Bin-Packing Problem which is 
known to be NP-Hard. The classical heuristics can be used 
to partition tasks on the FPGA regions include: 

• First Fit (FF): the task is assigned to the first region on 
which it can be successfully scheduled. 

• Best Fit (BF): Each task is assigned to the region with 
the largest utilization value among all those regions on 
which it can be scheduled successfully. 

• Worst Fit (WF): Each task is assigned to the region 
with the smallest utilization value among all those 
regions on which it can be scheduled successfully. 

It has been shown that ordering tasks according to decreasing 
utilization or decreasing criticality at the beginning of the 
partitioning algorithm, generally improves the performance 
[24]. Hybrid partitioned scheme can improve the schedulability, 
for instance, it has been shown that using WF for allocating high 
critical tasks and FF for allocating low critical tasks improves 
the system schedulability [24], [26].   

C. Motivation example 
 A sample task set is shown in Table I. It consists of 5 tasks that 
are assumed to be partitioned on two regions, 𝜌𝜌1 and 𝜌𝜌1. Context 
switch cost is assumed to be 2ms. 
   TABLE I.         Sample Task Set 

Task 𝑻𝑻𝒊𝒊 𝑫𝑫𝒊𝒊 𝑪𝑪𝒊𝒊(𝑳𝑳𝑳𝑳) 𝑪𝑪𝒊𝒊(𝑯𝑯𝑯𝑯) criticality 

 𝝉𝝉𝟏𝟏 6ms 4 ms 2 ms 3 ms High 

 𝝉𝝉𝟐𝟐 100 ms 90 ms 30 ms ------ Low 

 𝝉𝝉𝟑𝟑 100 ms 100 ms 10 ms ------ Low 

 𝝉𝝉𝟒𝟒 100 ms 100 ms 50 ms 60 ms High 

 𝝉𝝉𝟓𝟓 100 ms 100 ms 20 ms ------ Low 
 

 First, consider first-fit (FF) heuristic.    

•  𝜏𝜏𝟏𝟏 is allocated to 𝜌𝜌1. 

•   𝜏𝜏2 cannot be allocated to 𝜌𝜌1 , since Audsley’s 
algorithm cannot find any priority ordering that both 
 𝜏𝜏1 and  𝜏𝜏2 meet their deadlines. Response time analysis 
approves this. Assuming priority ordering { 𝜏𝜏𝟏𝟏,  𝜏𝜏𝟐𝟐}, 
then we have  𝑅𝑅2(Low) = 100  and Assuming priority 
ordering { 𝜏𝜏2.  𝜏𝜏𝟏𝟏}, then we have  𝑅𝑅1(Low) = 36.  In the 
first case,  𝑅𝑅2 cannot meet its deadline and in the 
second case   𝑅𝑅1 cannot meet its deadline. Therefore  
 𝜏𝜏2 is allocated to 𝜌𝜌2.  Response Time analysis 
Equations can be solved using fixed point iterations 
with an appropriate initial value such as 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿) +  𝐶𝐶𝑠𝑠  
or 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿) [17].  

•  𝜏𝜏3 can be allocated to both 𝜌𝜌1, 𝜌𝜌2. Partitioning 
algorithm decides where to place  𝜏𝜏3. FF places  𝜏𝜏3 on 
𝜌𝜌1 since it selects the first region that the task can be 
allocated to.  

•   𝜏𝜏4 does not fit on  𝜌𝜌1 since  𝜏𝜏𝟏𝟏 and  𝜏𝜏3 are already 
allocated to this region and audsley’s algorithm cannot 
find a priority ordering for { 𝜏𝜏𝟏𝟏.  𝜏𝜏𝟑𝟑.  𝜏𝜏𝟒𝟒}  that all these 
three tasks meet their deadlines. This can be approved 
by response time analysis. Therefore,  𝜏𝜏𝟒𝟒 is placed on 
𝜌𝜌2. Assuming priority ordering { 𝜏𝜏𝟒𝟒,  𝜏𝜏𝟐𝟐}, We have 
𝑅𝑅2(Low)=84,  𝑅𝑅4(Low)=52 and  𝑅𝑅4(High)=62. 
Therefore, both tasks can meet their deadlines. 

•  𝜏𝜏5 cannot be not be allocated to 𝜌𝜌1 or 𝜌𝜌2 since   
audsley’s algorithm cannot find any priority ordering 
for the regions that all tasks allocated to that region 
meet their deadlines.   

FF partitioning heuristic failed for the task set of table I.  
Considering Best Fit (BF) as the partitioning algorithm leads to 
the same result and the task set cannot be scheduled. BF 
places 𝜏𝜏𝟏𝟏 and  𝜏𝜏𝟐𝟐  on 𝜌𝜌1 and 𝜌𝜌2 respectively.  𝜏𝜏3 is allocated to 
𝜌𝜌1 since 𝜌𝜌1  has a larger utilization value than 𝜌𝜌2.  𝜏𝜏4 is allocated 
to 𝜌𝜌2 since audsley’s algorithm cannot find a priority ordering 
for { 𝜏𝜏𝟏𝟏.  𝜏𝜏𝟑𝟑.  𝜏𝜏𝟒𝟒} that all these three tasks meet their deadlines. 𝜏𝜏5 
cannot be allocated to 𝜌𝜌1 or 𝜌𝜌2. 

 Now consider a partitioning algorithm which accounts for 
context switch cost. i.e., a partitioning algorithm which allocates 
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tasks to the region with minimum number of context switches. 
An upper bound for the number of context switches that can 
occur in a region can be calculated using task’s response times. 
This will be detailed in the following subsection. Returning to 
the example task set, both FF and BF allocate  𝜏𝜏3 to 𝜌𝜌1 but 
considering minimum number of context switch heuristic:  

•  𝜏𝜏𝟏𝟏 and  𝜏𝜏𝟐𝟐  are allocated to 𝜌𝜌1 and 𝜌𝜌2 respectively 

•   𝜏𝜏3 is allocated to  𝜌𝜌2 since the maximum number of 
context switches in 𝜌𝜌2, after allocating   𝜏𝜏3,  is less than 
that of 𝜌𝜌1 .  Recall that BF and FF placed  𝜏𝜏3 on 𝜌𝜌1. 

•  𝜏𝜏𝟒𝟒 cannot be allocated to 𝜌𝜌1 since audsley’s algorithm 
cannot find a priority ordering for { 𝜏𝜏𝟏𝟏.  𝜏𝜏𝟒𝟒}  that both 
tasks meet their deadlines.  𝜏𝜏𝟒𝟒 Can be allocated to 𝜌𝜌2 . 
Assuming priority ordering { 𝜏𝜏𝟒𝟒,  𝜏𝜏𝟐𝟐.  𝜏𝜏𝟑𝟑}, We have 
 𝑅𝑅2(Low) = 84,  𝑅𝑅3(Low) =  96.𝑅𝑅4(Low)  = 52 and 
 𝑅𝑅4(High)=62. Therefore, all tasks can meet their 
deadlines. 

•  𝜏𝜏5 cannot be allocated to 𝜌𝜌2 but it can be allocated to 
𝜌𝜌1 and response time analysis approves that all tasks 
meet their deadlines. Assuming priority ordering 
{ 𝜏𝜏𝟏𝟏,  𝜏𝜏𝟓𝟓}, We have  𝑅𝑅1(Low) = 4,  𝑅𝑅1(High) = 5 and 
 𝑅𝑅5(Low) = 66. Therefore, both tasks can meet their 
deadlines. 

FF and BF heuristics could not schedule the example task set 
but the suggested heuristic that accounts for the number of 
context switch occurred in each region, could schedule the task 
set.  

D. Context-Switch-Aware Partitioning algorithm 
 We propose a context-switch-aware (CSA) partitioning 
algorithm that takes into account the number of context switches 
in regions while selecting the appropriate region for the task. A 
few additional notations are defined and used in the proposed 
algorithm: 

• hptH(i,j) denotes the set of High-critical tasks allocated 
to region  𝜌𝜌𝑗𝑗 with higher priority than  𝜏𝜏𝑖𝑖  

• hptL(i,j) denotes the set of Low-critical tasks allocated 
to region 𝜌𝜌𝑗𝑗 with higher priority than  𝜏𝜏𝑖𝑖  

• Task  𝜏𝜏𝑖𝑖 Nominal utilization : 𝑁𝑁𝑈𝑈𝑖𝑖 

       𝑁𝑁𝑈𝑈𝑖𝑖 = �𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)                𝑖𝑖𝑖𝑖  𝜏𝜏𝑖𝑖 𝑖𝑖𝑠𝑠  𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 
𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)             𝑖𝑖𝑖𝑖  𝜏𝜏𝑖𝑖 𝑖𝑖𝑠𝑠  𝐻𝐻𝑖𝑖𝐻𝐻ℎ 𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐      (5) 

• Region 𝜌𝜌𝑖𝑖 utilization : 𝑅𝑅𝑈𝑈𝑖𝑖 

                     𝑅𝑅𝑈𝑈𝑖𝑖 =  ∑ 𝑁𝑁𝑈𝑈𝑗𝑗𝑗𝑗 𝜖𝜖 Γ𝑖𝑖                                   (6) 

Region 𝜌𝜌𝑖𝑖 utilization, as defined by equation (6),  is the 
sum of nominal utilization of the  tasks allocated to that 
region. 

• Cmax𝑖𝑖 denotes the maximum number of context 
Switches that may occur in a single execution of a job 
of the task.  It can be calculated using the following 
formula, assuming that  𝜏𝜏𝑖𝑖 is allocated to 𝜌𝜌𝑘𝑘 : 

 
• Maximum number of context Switches in Region  𝜌𝜌𝑖𝑖 :           

                      𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 =  ∑ 𝐶𝐶𝑅𝑅𝑐𝑐𝑅𝑅𝑗𝑗 𝜏𝜏𝑖𝑖𝜖𝜖Γ𝑖𝑖                        (8) 

• Normalized number of context switches in Region 𝜌𝜌𝑖𝑖 :  

               N𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 ∗  𝑅𝑅𝑈𝑈𝑖𝑖                           (9) 

 CSA partitioning algorithm allocates each task to the region 
𝜌𝜌𝑖𝑖 with the smallest normalized number of context switch 
(N𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖)  among all those regions on which it can be scheduled 
successfully. A similar partitioning algorithm can be defined 
which allocates each task to the region with the smallest 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑖𝑖 
value among all those regions on which it can be scheduled 
successfully. The performance of this partitioning algorithm, 
which is named CSARmax, will be compared to CSA 
partitioning in the next section.  

IV. EVALUATING THE CSA PARTITIONING ALGORITHM 
The performance of proposed CSA partitioning algorithm is 

evaluated by conducting experiments with random mixed-
critical task sets and the schedulability ratio of the proposed 
CSA partitioning algorithm  is compared with other partitioning 
heuristics. 

A. Experimental Setup  
 Random task sets are generated using an approach 
which is similar to the approach presented in [24]. The 
following parameters are used in the generator : 𝑃𝑃𝐻𝐻𝑖𝑖𝐻𝐻ℎ 
denotes the ratio of High-critical tasks, TMax and TMin 
denote the maximum and minimum period respectively and 
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 denotes the sum of nominal utilizations of all tasks. 

                     𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 =  ∑ 𝑁𝑁𝑈𝑈𝑖𝑖 𝜏𝜏𝑖𝑖𝜖𝜖𝜏𝜏                       (10) 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 is used to control the load of system. generating a task set 
for a given 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 contains the following steps. 

• 𝑁𝑁𝑈𝑈𝑖𝑖 values are generated using UUnifast-Discard 
algorithm [27], [28]. 

• For high-criticality tasks, 𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿) values are uniformly 
generated in the interval [0.5* 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ) , 𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)] 

• Task periods (𝑇𝑇𝑖𝑖) are uniformly generated in the interval 
[10,1000]. 

• WCET of each task is computed as follows: 𝐶𝐶𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)= 
𝑈𝑈𝑖𝑖(𝐿𝐿𝐿𝐿𝐿𝐿)*𝑇𝑇𝑖𝑖, and  𝐶𝐶𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)=  𝑈𝑈𝑖𝑖(𝐻𝐻𝑖𝑖𝐻𝐻ℎ)*𝑇𝑇𝑖𝑖 

• Task deadlines (𝐷𝐷𝑖𝑖) are generated using a log-uniform 
distribution between 𝐶𝐶𝑖𝑖(𝐿𝐿𝑖𝑖) and 𝑇𝑇𝑖𝑖 biased toward higher 
values. 
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B. Experimental Results 
Two partitioning algorithm were proposed in the previous 
section: CSA and CSARmax. It has been shown that ordering 
tasks according to decreasing utilization, improves the 
performance [24], Therefore, CSA-DU and CSARmax-DU 
partition algorithms are presented. CSA-DU and CSARmax-DU 
are the same as CSA and CSARmax partitioning algorithm, 
respectively, except that tasks are ordered according to 
decreasing utilization at the beginning of the algorithms. The 
performance of these algorithms are compared in Fig. 1. This 
figure shows the schedulability ratio for task sets with 20 tasks 
as a function of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚.  for each 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 value, 5000 task sets were 
generated and the schedulability of each task set was examined 
by four partitioning algorithm: CSA, CSA-DU, CSARmax and 
CSARmax-DU. The following configuration is used for 
experiments in Fig. 1 : 𝑃𝑃𝐻𝐻𝑖𝑖𝐻𝐻ℎ= 0.5 (Half of the  tasks are high 
critical), m = 4 ( the reconfigurable surface  is divided into four 
regions), 𝐶𝐶𝑠𝑠 = 3ms. The results approve that ordering tasks 
according to decreasing utilization, improves the performance. 
In general, the performance of CSA-DU is better than other 
algorithms.  

 To evaluate the performance of proposed CSA algorithm, the 
acceptance ratio of the proposed CSA-DU partitioning 
algorithm is compared to other partitioning heuristics presented 
in previous researches. Recall that audsley’s OPA algorithm is 
used for priority assignments. Fig. 2 presents the acceptance 
ratio of the proposed CSA-DU partitioning algorithm in 
comparison with the following heuristics: 

• FF-DU (First Fit with Decreasing Utilization)  

• BF-DU (Best Fit with Decreasing Utilization) 

• WF-DU/FF-DU: this heuristic employs WF for 
allocating high critical tasks and FF for allocating low 
critical tasks [26] 

• FF-DC: this heuristic first orders the tasks by their 
criticality level and then, for each criticality level, 
orders the tasks by decreasing nominal utilization [24] 

 Fig. 2 Shows that for low 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 values  (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚< 2.3), all 
partitioning algorithms give the same performance and all ask 
sets are schedulable.  Among all partitioning algorithms, 

 
Fig. 1. Performance of CSA in comparison with CSARmax 

 
Fig. 2. Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 3) 

 
Fig. 3.       Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 1) 

 

Fig. 4.      Performance of CSA-DU partitioning algorithm (𝐶𝐶𝑠𝑠 = 5) 

CSA-DU has a better performance overall. FF-DU and BF-DU 
give the same performance. For large utilization values (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 > 
3.5) no task set is schedulable.   

In the next experiment, the 𝐶𝐶𝑠𝑠 was changed to evaluate the 
performance for all heuristics with different context switch 
costs. The results are presented in Fig. 3 and Fig. 4. The results 
show that CSA-DU performs better when context switch cost is 
increased.  

In the last experiment, m was set to 8 to evaluate the 
performance for all heuristics with different number of regions. 
The result is shown in Fig. 5.  
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Fig. 5.      Performance of CSA-DU partitioning algorithm  (𝐶𝐶𝑠𝑠 = 3. m = 8) 

V. CONCLUSION  
 Partitioned scheduling of fixed-priority mixed-criticality 
task sets on reconfigurable platforms was studied in this paper. 
We divided the reconfigurable device surface into equal-size 
regions, and partitioned the tasks set on the regions. fixed-
priority scheduling is employed in each region, and audsley’s 
algorithm is used for schedulability test in each region. We 
proposed a novel partitioning heuristics aimed at improving 
schedulability by reducing the number of context switches. 
Experiments with randomly generated task sets showed 
improvement over existing heuristics. The proposed heuristics 
can be applied in both reconfigurable and multiprocessor 
platforms. 
 In the future, our work will focus on: (i) partitioned dynamic-
priority scheduling of mixed-criticality systems on 
reconfigurable platforms; (ii) global mixed-criticality 
scheduling on reconfigurable platforms; (iii) integrating 
preemption threshold into mixed-criticality scheduling of 
reconfigurable platforms; (IV) MCSs scheduling on multi core 
reconfigurable platforms. 
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