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Abstract. Let G be a simple graph. The graph G is called a quasi unicyclic graph if there exists a

vertex x ∈ V (G) such that G−x is a connected graph with a unique cycle. Moreover, the first and the

second Zagreb indices of G denoted by M1(G) and M2(G), are the sum of deg2(u) overall vertices u

in G and the sum of deg(u) deg(v) of all edges uv of G, respectively. The first and the second Zagreb

indices are defined relative to the degree of vertices. In this paper, sharp upper and lower bounds for

the first and the second Zagreb indices of quasi unicyclic graphs are given.

1. Basic Definitions

The first and the second Zagreb indices are among the oldest topological indices defined in 1972 by

Gutman and Trinajstić [9]. These numbers have been used to study the molecular complexity, chirality

and some other chemical quantities. The first Zagreb index is defined as the sum of the squares of

the degrees of the vertices, i.e. M1 (G) =
∑

u∈V (G) deg
2(u) and the second Zagreb index is the sum

of deg(u)deg(v) overall edges uv of G. This means that M2 (G) =
∑

uv∈E(G) deg(u)deg(v). The first

and the second Zagreb indices are defined relative to the degree of vertices, which we summarize them

without referring to the degree of vertices.
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Suppose G is a simple graph and ∆(G) and δ(G) denote the maximum and minimum degrees of

vertices in G. For each u∈V (G), the set of all neighbors of the vertex u is denoted by NG(u). For a

subset W of the vertex set V (G), let G−W be the subgraph of G obtained by deleting the vertices of

W and the edges incident with them. Similarly, for a subset E of the edge set E(G), G−E denotes

the subgraph of G obtained by deleting the edges of E(G). If W={v} and E={xy}, the subgraphs

G−W and G−E will be simply written as G−v and G−xy, respectively. For any two non-adjacent

vertices x and y of G, we let G+xy be the graph obtained from G by adding an edge xy, and also for

any two adjacent vertices u and v of G, we let G−uv be the graph obtained from G by deleting an

edge uv.

The cycle Cn for n≥3, is a path of n edges and n vertices where starting and ending at the same

vertex. The wheel graph Wn for n≥4, is a graph formed by connecting a single universal vertex x to

all vertices of a cycle graph Cn−1. The complete graph Kn for n≥2, is a graph in which each pair u

and v of vertices are adjacent and finally the star graph Sn is a tree with exactly n vertices such that

there is one vertex of degree n− 1 and other vertices have degree one.

A graph G is called unicyclic graph, if it is connected and has a unique cycle. If the graph G has the

property that G−x induces a unicyclic graph for a suitable vertex x, then G is called a quasi unicyclic

graph. It is clear that the cycle Cn of length n ≥ 3 or even the cycle Cn together with some pendant

edges are unicyclic graphs. The complete graph K4 is not unicyclic, but it is a quasi unicyclic graph,

because if we remove a vertex from K4 then we will get a cycle C3 and so K4 is a quasi unicyclic

graph. Moreover, a wheel graph Wn is quasi unicyclic, since by removing the center we will get a cycle

Cn. Throughout this paper, the set of all unicyclic and quasi unicyclic graphs with n vertices will be

denoted by U(n) and QU(n), respectively.

2. History

In this section, we review the important properties of the Zagreb group indices. We refer to Gutman

and Das [8] for a survey on important results on the first Zagreb index until 2004. We encourage to

the interested readers to consult [2, 12] for more information on distribution of Zagreb group indices

on some binary graph operations.

Suppose G is a simple graph with exactly n vertices and m edges. The first important property

of Zagreb group indices is related to an inequality named “Zagreb indices inequality (ZII property)”.

Hansen and Vukic̆ević [10] proved that all graphs with this condition that ∆(G) ≤ 4 satisfy ZII

property. These authors observed that the union of a complete graph of order 3 and the star graph S6

is a counterexample for this inequality when the graph is disconnected. Also, for connected graphs they

constructed a counterexample of order 48. Vukic̆ević and Graovac [16] proved that the ZII property

holds for trees and Caporossi et al. [3] verified the ZII property for unicyclic graphs. We refer to [1] for

a simple proof of ZII property when the graph is a tree or a unicyclic graph. Das [6] investigated this
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property under some unary graph operations and Horoldagva and Das [11] continued this approach

by investigating some binary graph operations.

Das and Gutman [4] provided some identities for Zagreb indices by which the authors obtained

some bounds for the second Zagreb index and in [5], the author established some bound for the first

Zagreb index. Deng [7] presented a unified approach to the largest and smallest Zagreb indices for

trees, unicyclic and bicyclic graphs by introducing some transformations. He also characterized the

graphs with the largest and smallest Zagreb indices. Li et al. [13] determined sharp bounds for the

first and second Zagreb indices of n−vertex cacti with k pendant vertices. As a consequence, they also

obtained the n−vertex cacti with a perfect matching having maximal Zagreb indices. Li and Zhao [14]

investigated the Zagreb indices of bicyclic graphs with a given matching number and provided some

sharp upper bounds for the first and second Zagreb indices of these graphs in terms of the order and

given size of matchings. Xu [17] characterized the connected n−vertex graphs with clique number k

with respect to Zagreb indices and determined the values of the corresponding indices. Yarahmadi et

al. [18] computed the Zagreb indices of polyomino chains. Zhao and Li [19] determined sharp bounds

for both of Zagreb indices in the class of all n−vertex bicyclic graphs with k pendant vertices. Zhou

[20] provided upper bounds for the Zagreb indices of triangle-free graphs in terms of the number of

vertices and the number of edges and determined the graphs for which the bounds are attained. Zhou

and Stevanović [21] continued the mentioned work by providing upper bounds for the Zagreb indices

of quadrangle-free graphs. Zhou [22] found upper bounds for the Zagreb indices and the spectral

radius of series-parallel graphs in terms of the number of vertices and the number of edges. He also

determined the graphs for which the bounds are attained.

Qiao [15] gave sharp lower and upper bounds for the Zagreb group indices of n−vertex quasi-tree

graphs and the corresponding extremal graphs were characterized. The second Zagreb indices of

graphs with given degree sequences was discussed in [23]. In this paper, we continue this work for

quasi unicyclic graphs.

3. Quasi Unicyclic Graphs

The aim of this section is to present sharp upper and lower bounds for the first and the second

Zagreb indices of quasi unicyclic graphs. We start by the following simple lemma which plays an

important role in the proof of our main theorems.

Lemma 3.1. Let G be an n−vertex graph, xy ∈ E(G) and uv /∈ E(G). Then,

(i) M1(G) ≤ M1(G+ uv),

(ii) M1(G− xy) ≤ M1(G),

(iii) M2(G) ≤ M2(G+ uv),

(iv) M2(G− xy) ≤ M2(G).
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Proof. Since the proof of the Part (ii) is similar to the proof of the Part (i) and the proof of (iv) is

similar to the proof of (iii), it is enough to prove (i) and (iii).

(i). uv /∈ E(G). By connecting the vertices u and v, we can see that M1(G + uv) − M1(G) =

(deg u+1)2+(deg v+1)2−deg2 u−deg2 v = 2(1+deg u deg v) > 0. Hence,M1(G) ≤ M1(G+uv).

(iii). uv /∈ E(G), NG(v) = {x1, . . . , xs} and NG(v) = {y1, . . . , yr}. Therefore,M2(G+uv)−M2(G) =

(deg u+1)(deg v+1)+
∑r

i=1(deg u+1)(deg yi) +
∑s

i=1(deg v+1)(deg xi)−
∑r

i=1(deg u)(deg yi)−∑s
i=1(deg v)(deg xi) = (deg u+1)(deg v+1)+

∑r
i=1 deg yi+

∑s
i=1 deg xi > 0. As a consequence,

M2(G)≤M2(G+uv).

This proves the lemma. □

In the following lemma, we give a class of graphs which are not quasi unicyclic.

Lemma 3.2. Let G be an n−vertex graph such that n ≥ 5. If the number of vertices of degree n− 1

is greater than 2, then G is not a quasi unicyclic graph.

Proof. Since |V (G)| = n ≥ 5, there are 5 distinct vertices x1, x2, x3, x4 and x5 such that deg x1 =

deg x2 = deg x3 = n − 1. It is clear that x1, x2, x3 are adjacent to each other and so the subgraph

of G induced by the above five vertices is not quasi unicyclic, because the graph constructed from G

by removing any of these five vertices has at least two cycles. Hence G can not be a quasi unicyclic

graph. □

The following corollary is a direct consequence of Lemma 2.3.

Corollary 3.3. If G ∈ QU(n), then G has at most two vertices of degree n− 1.

Lemma 3.4. Let G ∈ QU(n), n ≥ 4 and m = |E(G)|. Then n ≤ m ≤ 2n− 2 and 1 ≤ δ(G) ≤ 3.

Proof. Suppose G ∈ QU(n) and n ≥ 4. Since G is connected and has a cycle, m ≥ n. By our

assumption, G has a suitable vertex x such that G−x ∈ U(n). Thus, |E(G−x)| = |V (G−x)| = n−1.

Since deg(x) ≤ n− 1, m = |E(G)| ≤ |E(G− x)|+ n− 1 = 2n− 2. Furthermore, if G ∈ QU(n) has a

pendant vertex, then δ(G) = 1. Suppose G has no pendant vertex. Then δ(G) ≥ 2 and for a suitable

vertex x, we have G − x ∈ U(n − 1) which implies that G − x has a vertex y of degree 2. If y is

adjacent to x, then the minimum degree of G can be at most 3. Hence 1 ≤ δ(G) ≤ 3, as desired. □

Apply Lemmas 3.2 and 3.4 to find lower and upper bounds for the Zagreb indices of an arbitrary

quasi unicycle graph. We first define a class Ω(n) of n−vertex quasi unicyclic graphs that plays an

important role in our results. Let Ω(n) be the set of all quasi unicyclic graphs with exactly n vertices

that contains two vertices of degree n− 1, two vertices of degree 3 and the rest of vertices have degree

2, see Figure 1.

http://dx.doi.org/10.22108/toc.2019.115147.1615

http://dx.doi.org/10.22108/toc.2019.115147.1615


Trans. Comb. 8 no. 3 (2019) 29-38 M. Aghel, A. Erfanian and A. R. Ashrafi 33

Figure 1. The Graph Structure of a Member of Ω(n).

Theorem 3.5. Let G ∈ QU(n) and n ≥ 4. Then M1(G) ≤ 2n2 + 4. The equality holds if and only if

G ∈ Ω(n).

Proof. Suppose G ∈ QU(n), n ≥ 4, and x is a vertex of G such that G− x ∈ U(n− 1). We have the

following two cases:

Case 1. G has no pendant vertex. By Lemma 3.4, δ(G) = 2 or 3. Suppose δ(G) = 2. We proceed

by induction on n. If n = 4, then it is clear that M1(G) ≤ 36 = 2n2 + 4, see Figure 2.

We now assume that n ≥ 5 and the result holds for n − 1. If deg(x) < n − 1, then we

construct a graph G′ from G by adding some new edges to G to obtain degG′(x) = n− 1. By

Lemma 3.1, M1(G) ≤ M1(G
′). Let u be a vertex adjacent to x and v such that deg(u) = 2,

deg(x) = n − 1 and 2 ≤ deg(v) ≤ n − 1. If we remove the vertex u, then by inductive

assumption M1(G
′ − u) ≤ 2(n− 1)2 + 4. Therefore,

M1(G
′)−M1(G

′ − u) = 4 + [(n− 1)2 − (n− 2)2] + [(deg(v))2 − (deg(v)− 1)2]

= 2 + 2[(n− 1) + deg(v)].

On the other hand, we have

M1(G) ≤ M1(G
′) = M1(G

′ − u) + 2 + 2[(n− 1) + deg(v)]

≤ 2(n− 1)2 + 4 + 2 + 2[(n− 1) + deg(v)]

≤ 2(n− 1)2 + 6 + 2(2n− 2) = 2n2 + 4.

If δ(G) = 3, then G is the wheel graph Wn and so M1(G) = M1(Wn) = n2 + 2n− 3 < 2n2 + 4

as required.

Case 2. G has a pendant vertex x. In this case, we can see that x is not adjacent to other pendant

vertices of G. Again we obtain a new graph G′ by connecting all pendant vertices to x and

Lemma 3.4, M1(G) ≤ M1(G
′). So, the proof is completed by using the previous case.

For the second part, we first note that if G ∈ Ω, then M1(G) =
∑

u∈V (G) deg
2 u = 2n2 + 4.

Conversely, if M1(G) =
∑

u∈V (G) deg
2 u = 2n2 + 4, then we can see that the vertex v has degree

n − 1. This shows that we have two vertices x and v of degree n − 1. Moreover, we have only two
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distinct vertices y, u /∈ {x, v} such that x and v are adjacent to y and u and deg y = deg u = 3. If

for instance y is adjacent to a vertex different from x and v then we will have a new cycle which is

a contradiction. Thus deg y = deg u = 3. For the rest of vertices as z /∈ {x, y, u, v}, we should have

deg z = 2. Otherwise, a new cycle will be appeared. Hence G ∈ Ω(n). □

Figure 2. The Zagreb Indices of Members on QU(4).

Let us now state another class of quasi unicyclic graphs. Define Γ(n) to be a quasi unicyclic graph

that contains a cycle of length n−1 and a pendant vertex that is attached to Cn−1, see Figure 3. The

following theorem gives a necessary and sufficient condition for a graph G to be isomorphic to Γ(n).

Theorem 3.6. Let G ∈ QU(n) and n ≥ 4. Then M1(G) ≥ 4n + 2 with equality if and only if

G ∼= Γ(n).

Proof. Suppose G ∈ QU(n), where n ≥ 4. Hence, there exists a vertex x ∈ V (G) such that G − x ∈
U(n). Two cases can be happened as follows:

Case 1. G has no pendant vertex. We can proceed by induction on n. Let n = 4, then we have three

kinds of quasi unicyclic graphs depicted in Figure 2. For the graph depicted on the left hand

side of Figure 2, we have M1 = 18 = 4(4) + 2 and the equality holds. For other two graphs,

we can see that M1 > 18, as desired. Suppose that n ≥ 5 and the result holds for n− 1.

Figure 3. The Graph Γ(n).

Proceed by induction, we assume that 2 ≤ deg x = r ≤ n− 1 and NG(x) = {x1, . . . , xr}. If
we remove all edges xx2, xx3,. . . ,xxr and obtain the new graph G′, then we can see that

M1(G) > M1(G− xx2) > M1(G− {xx2, xx3}) > · · · > M1(G− {xx2, · · · , xxr}) = M1(G
′).
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If we remove vertex x from G′, then by induction hypothesis, M1(G
′ − x) ≥ 4(n − 1) + 2.

Therefore,

M1(G
′)−M1(G

′ − x) = 1 + [deg2(x1)− (deg(x1)− 1)2]

= 2 deg(x1) ≥ 4.

Hence, M1(G
′) ≥ 4(n− 1) + 2 + 2deg(x1) ≥ 4n+ 2, as desired.

Case 2. G has pendant vertex u adjacent to v, where 2≤deg(v)≤n−1. By removing the vertex u we

achieved a new graph G
′′
that by induction hypothesis satisfies M1(G

′′
) > 4(n−1) + 2. So,

M1(G) =M1(G
′′
) + 1 + [deg2v − (deg(v)− 1)2]≥4(n−1) + 2 + 1 + 1 + 2deg(v)≥4n+2

and the proof is completed.

To prove the second part, we first assume thatG∈Γ . It is clear thatM1 (G)=
∑

u∈V (G) deg
2u= 4n+2.

Conversely one can easily see that the minimum value of M1(G) occurs when deg (x) = 1, Since

M1(G) = 4n+ 2, x must be adjacent to only one vertex of Cn−1, and the result follows. □

As similar as the method for giving lower and upper bounds of M1(G), we can state it for M2(G)

as the following theorem.

Theorem 3.7. Let G ∈ QU(n) and n ≥ 4. Then 4n+ 3 ≤ M2(G) ≤ 5n2 − 10n+ 14 with equality on

the left or right whenever G ∼= Γ(n) or G ∈ Ω(n), respectively.

Proof. Suppose G ∈ QU(n), n ≥ 4, and x is a vertex in G such that G − x ∈ U(n). We prove the

theorem in two parts. For the right hand side of the inequality, we may consider two cases as follows:

Case 1. G has no pendant vertex. By Lemma 3.4, δ(G)= 2 or 3. Suppose δ(G)= 2 and apply induction

on n. If n= 4, then equality holds, see Figure 2. We assume that n ≥ 5 and the result holds

for n− 1. If deg(x) <n−1, then there are vertices in the graph that are not adjacent to x. We

connect these vertices to x and obtain a new graph G′. By Lemma 3.2, M2(G)≤M2(G
′). Let

u be a vertex adjacent to x and v such that deg(u) = 2, deg(x) =n−1 and 2≤deg(v) =r≤n−1.

Suppose x and v have neighbors y1, . . . , yn−1 and y1, . . . , yr, respectively. If we remove the

vertex u, then by induction assumption, M2(G−u)≤5(n−1)2−10(n−1) + 14. Therefore,

M2(G
′)−M2(G

′ − u) = 2(n− 1) + 2r +
n−2∑
i=1

(n− 1) deg(yi) +
r−1∑
i=1

r deg(yi)

−
n−2∑
i=1

(n− 2) deg(yi)−
r−1∑
i=1

(r − 1) deg(yi)
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and so

M2(G
′) ≤ M2(G

′ − u) + (4n− 4− n− 1) + (4n− 4− n− 1) + 4n− 4

≤ 5(n− 1)2 − 10(n− 1) + 14 + 10n− 14

≤ 5n2 − 10n+ 14.

If δ(G)= 3, then G is wheel graph and so M2 (Wn)= 3n2+3n−6 < 5n2−10n+14, as required.

Case 2. G has a pendant vertex. If G has a pendant vertex x then we can see that x is not adjacent

to other pendant vertices and hence we can obtain a new graph G′ by connecting all pendant

vertices to x. Again by Lemma 3.2, M1(G) ≤ M1(G
′) and the proof can be completed by using

the Case 1.

To prove the second part, it’s clear that if G ∈ Ω(n), then M2(G) =
∑

uv∈E(G) deg udeg v =

5n2 − 10n + 14. Conversely, if M2(G) =
∑

uv∈E(G) deg u.deg v = 5n2 − 10n + 14, then we can see

that the vertex v should be of degree n − 1. Thus, we have two vertices x and v of degree n − 1.

Moreover, we have only two distinct vertices y, u /∈ {x, v} such that x and v are adjacent to y and

u and deg y = deg u = 3. If for instance y is adjacent to a vertex different to x and v then we will

have a new cycle which is a contradiction. Thus deg y = deg u = 3 and for the rest of vertices as

z /∈ {x, y, u, v}, we should have deg z = 2. Otherwise, a new cycle will be appeared which proves that

G ∈ Ω(n).

For the left hand side inequality, two cases can be happened as follows:

Case 1′. G has no pendant vertex. Again our proof can be proceed by induction on n. If n = 4, then

we have three kinds of quasi unicyclic graphs as in Figure 2. For the first graph on the left

hand side of Figure 2, we have M2 = 19 = 4(4) + 3 and the equality holds. For other two

graphs, we can see that M2 > 19, as desired. We now assume that n ≥ 5 and the result holds

for n − 1. To prove the result for n, let 2 ≤ deg x = r ≤ n − 1 and NG(x) = {x1, . . . , xr}. If

we remove the edges xx2, xx3, . . ., xxr then we obtain a new graph G′ such that

M2(G) > M2(G− xx2) > M2(G− {xx2, xx3}) > · · · > M2(G− {xx2, · · · , xxr}) = M2(G
′).

If we remove the vertex x from G′, then by induction hypothesis, we have M2(G
′ − x) ≥

4(n− 1) + 3. Therefore,

M2(G
′
)≥M2(G

′−x)+r+

r−1∑
i=1

(r−(r−1))d(yi)

≥4n−4 + 3 + 2 + 2 = 4n+3

that all vertices yi, 1 ≤ i ≤ r, are adjacent to x1.
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Case 2′. G has pendant vertex u adjacent to v, where 2≤deg v≤n−1. By removing vertex u we achieve

a new graph G
′′
such that M2(G

′′
) ≥ 4(n−1) + 3. Therefore,

M2(G) ≥ M2(G
′′) + r +

r−1∑
i=1

(r − (r − 1)) deg(yi)

≥ 4n− 1 + 2 +

r−1∑
i=1

deg(yi) ≥ 4n+ 3

that all vertices yi, 1 ≤ i ≤ r, are adjacent to v. Since the degree of at least one vertex yi is

greater than or equal to 2, r ≥ 2 which completes the proof of this case.

To prove the second part, we note that if G∼=Γ (n), then M2 (G)=
∑

u∈V (G) degu deg v= 4n+3.

Conversely, one can easily see that the minimum value of M2(G) occurs when deg (x) = 1. Since

M2(G) = 4n+ 3, x has to be adjacent to only one vertex of Cn−1, and the result follows. □
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