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Nonlinear oscillations of graphene resonators are unavoidable due to enhancing the mass
sensitivity of graphene-based mass sensors and the nonlinear behavior of the systems pro-
vides the route to chaos. In this paper, the nonlinear and chaotic behavior of the graphene-
based mass sensor is investigated. The nano-mechanical sensor includes an electrostati-
cally actuated fully clamped single-graphene sheet as a nano-resonator with an attached
concentrated mass. By neglecting the rotary inertia, the equation of motion of the nano-
resonator and the attached mass is derived using the nonlocal strain gradient theory of
elasticity. The nano-resonator is modeled as a Kirchhoff nano-plate with the von Karman-
type geometric nonlinearity. Applying the Galerkin decomposition method to the partial
differential equation of motion leads to the ordinary differential equation. Based on the
Melnikov’s integral method two analytical criteria are derived which provide necessary

conditions that determine the chaotic region of the system. The chaotic dynamics of the
system are also scrutinized and verified through plotting the Lyapunov exponent diagram,
phase plane trajectories and Poincaré maps.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, nanotechnology plays a significant role in our everyday life due to the outstanding properties of nano-
structures and nanomaterials and much effort has been devoted to employ them in the synthesis of micro- and nano-scale
systems. Micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS) such as micro- and nano-
scale switches, actuators and sensors are the main part of advances of nanotechnology that address the urgent issues in the
modern industry.

Sensors play a vital role in many industrial and medical devices. Due to the pervasive demand for efficient and accu-
rate sensors, many studies are underway on the design and development of more efficient sensors with different size and
accuracy. Nano-scale sensors that have better performance, lower energy consumption and higher accuracy are called nano-
Sensors.

A significant group of nano-sensors is mass nano-sensors that can be used to weigh small particles, bacteria and viruses.
The main part of the mass nano-sensors is a nano-resonator that vibrates at its resonant frequency. One-dimensional res-
onators are a vibrating nano-beam, for example, a carbon nanotube and two-dimensional resonators containing a vibrating
nano-plate, like a graphene sheet. The resonant frequency of the nano-resonator is changed when a tiny particle is attached
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to it. By determining the shift in the resonance frequency of the new system, the tiny particle is weighted. Accurate mass
nano-sensors have been designed and constructed which can weigh the particles that are around the mass of neutron and
proton [1-3].

Since the discovery and introduction of graphene sheets in 2004 [4], this “miracle material” [5] has absorbed tremendous
attention among the scientific and technological communities due to their superior electrical and mechanical properties and
high-frequency which range up to the order of THz. The monolayer graphene sheet is a two-dimension crystal of covalently
bonded carbon atoms with a theoretical thickness of 0.34 nm. Owing to exceptional properties of graphene, its applications
even extend beyond that of the carbon nanotubes. Furthermore, graphene sheets can compensate for the defects of carbon
nanotubes in geometry and orientation [6]. This unique characteristic has profound implications and has opened a new field
which promises ultra-sensitive resonators. By following these features, Sakhaee-Pour et al. [7] proposed and investigated
the potential applications of graphene sheets as a nano-resonator in miniature mass detectors. Hence, graphene becomes a
potential candidate for fabricating graphene-based mass nano-sensors and motivate researchers to study on its vibrational
properties.

Low-dimensional mechanical resonators are promising structures for nano-sensors. Considerable effort has been imple-
mented for studying the dynamics of mechanical nano-resonators, such as carbon nanotubes and graphene. Li and Chou
[8] predicted the fundamental frequencies of carbon nanotubes as nano-mechanical resonators using an atomistic modeling
technique. They also investigated the effects of tube length, diameter and boundary conditions on the fundamental frequency
of carbon nanotube resonator. Chen et al. [9] fabricated monolayer graphene resonator and study its response to changes in
temperature and mass. They observed that the resonator show resonance in the megahertz range. Sadeghi and Naghdabadi
[10] developed a hybrid atomistic-structural element for modeling the nonlinear behavior of graphene resonators. They also
studied the effects of vibration amplitude and geometry of the graphene sheet on the fundamental frequency. Mianroodi
et al. [11] used a membrane model to investigate the nonlinear vibration of single layer graphene sheet resonator. They
concluded that by increasing the initial velocity and pretension, the nonlinear fundamental frequency of graphene resonator
increased. Ouakad and Younis [12] used a two-dimensional nonlinear curved beam model to simulate the motions of a
curved carbon nanotube resonator. They studied the influences of the level of slackness and the DC electrostatic load on
the variation of natural frequencies and mode shapes of the resonator. Kang et al. [13] used molecular dynamics modeling
and simulations to study the effect the tension variation on vibration of a tunable graphene-resonator which is suitable for
use in nano-sensors. Eriksson et al. [14] used continuum elasticity theory to study circular nano-mechanical graphene res-
onators. They further obtained an analytic expressions for the eigen frequencies as functions of system parameters by solving
the Airy stress problem. Lee et al. [15] exploited atomic finite element simulation to investigate the natural frequency and
sensitivity of a graphene resonator with different boundary conditions utilizing the commercial code ANSYS. Their results
show that the highest sensitivity is belong to fully clamped boundary condition of the graphene resonator. Caruntu and Luo
[16] studied the nonlinear vibration of electrostatically actuated carbon nanotube resonator considering the damping and
van der Waals forces. They utilized the multiple scales and reduced order model to investigate the damping, voltage and
van der Waals effects on system behavior. Jiang et al. [17] utilized finite element modeling and simulation to study a pres-
sure sensor with graphene nano-mechanical resonator. They calculated the resonance frequency of resonator as function of
external pressure and found that the pressure sensitivity of the resonator can reach 26,838 Hz/kPa. Weber et al. [18] cou-
pled multilayer graphene resonators to superconducting cavities to achieve a displacement sensitivity of 1.3 fm/Hz!/2. This
low-dimensional resonator is a promising device for mass and force sensing experiments.

Various methods have been employed by researchers for modeling the mechanical properties of CNT and graphene such
as molecular dynamics simulation, energy equivalent model, nonlocal theory of elasticity and nonlocal strain gradient theory
of elasticity. Kang et al. [19] studied the vibrational properties of graphene resonator undergoing tensile loading via classical
molecular dynamics simulations and estimated the resonance frequency versus tension. Shen et al. [20] utilized molecular
dynamics simulation to investigate the effect of temperature on nonlinear vibration response of bilayer graphene sheets.
Eltaher et al. [21] used an energy equivalent model to study the postbuckling stability of carbon nanotube surrounded
by nonlinear elastic foundation. Wu et al. [22] utilized an energy-equivalent model to calculate the Young’s modulus and
shear modulus for both armchair and zigzag carbon nanotubes. Eltaher et al. [23] exploited an energy equivalent model to
investigate the influence of the length scale parameter and orientation on the Young and shear moduli and the vibration
behaviors of carbon nanotubes. Shen et al. [24] modeled a single layer graphene sheet as a nonlocal orthotropic plate to
study its nonlinear vibration in thermal environment. The predicted results are remarkably near those are obtained from
molecular dynamics simulations. Ansari et al. [25] analyzed the vibration of single-layered graphene sheets based on a
nonlocal continuum plate model. They also exploit the molecular dynamics simulations to derive the appropriate values for
the nonlocal parameter. Zhang et al. [26] studied the nonlinear vibration behavior of graphene sheets as a classical plate
based on the nonlocal elasticity theory. They also examined the influences of aspect ratio, side length, boundary conditions
and nonlocal parameters on the frequency-amplitude response of the system.

The nonlinear vibration of graphene sheets can be investigated on the basis of the non-classical theories of elasticity such
as the nonlocal theory of elasticity and nonlocal strain gradient theory of elasticity. The impacts of both stress nonlocality
and strain gradient size dependent effects are combined in the nonlocal strain gradient theory of elasticity. Hence, many
studies have been conducted to utilize the non-classical theories of elasticity for nonlinear modeling of graphene sheets.
Nematollahi et al. [27] analyzed the free vibration of graphene nano-plate based on the nonlocal strain gradient theory and
classical plate theory. They studied the influence of temperature and small-scale parameters on the natural frequency of the
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nano-plate. Ebrahimi and Barati [28] employed a nonlocal strain gradient plate model and investigated the effect of elastic
foundation, temperature and nonlocal and length scale parameters on damping vibration of viscoelastic graphene sheets
under hygro-thermal environments. Ebrahimi and Barati [29] also developed a nonlocal strain gradient model based on a
two-variable shear deformation plate for vibration analysis of graphene sheets and studied the same parameters. Sahmani
et al. [30] investigated the nonlinear response of functionally graded porous micro/nano-plates reinforced with graphene
employing the nonlocal strain gradient theory. They displayed that for large amplitude vibrations the effect of porosity dis-
persion pattern on the nonlinear frequency becomes more important. Shahsavari et al. [31] presented a higher-order non-
local strain-gradient model to analyze the damped vibration of the graphene sheet in the hygro-thermal environment. They
studied the roles of small-scale parameters, viscous and damping coefficients, elastic foundation and hygrothermal environ-
ment on the vibrational responses of graphene sheets based on higher-order nonlocal strain gradient theory in conjunction
with the Kirchhoff plate theory.

Due to the superb mechanical and vibrational properties of graphene, it can be used as a two dimensional resonator in
mass nano-sensors. Sakhaee-Pour et al. [7] implemented molecular structural mechanics to study the vibrational behavior
of graphene sheets. They calculated the fundamental frequencies of the graphene sheet with an attached mass to examine
the possibility of using single-layered graphene sheets as mass sensors whose sensitivity is of the order of 1076 fg (fem-
tograms). Chen et al. [9] demonstrated the fabrication and electrical readout of the graphene sheet as a resonator and study
its response due to the attached mass. Arash et al. [32] performed molecular dynamics simulations to study application
of graphene sheets for the detection of gas atoms as mass sensors via the frequency shift of the system. They found that
the resolution of a 10 nm square graphene sheet nano-resonator can achieve an order of 10~ fg and the mass sensitiv-
ity is inversely proportional to the sizes of the graphene sheet. Jiang et al. [33] conducted molecular dynamics simulations
to study the resonant frequency and mass sensitivity of graphene nano-resonators. They found that mass sensitivity can
be enhanced simply by actuating nonlinear oscillations of graphene sheets instead of applying initial tensile strain to the
resonators. Dai et al. [34] studied the nonlinear vibration of a graphene nano-resonator via the classical continuum elastic
model. They found that the mass sensitivity of a graphene nano-resonator can be improved by inducing nonlinear vibration
to it. Shen et al. [35] based on the nonlocal Kirchhoff plate theory studied the potential of the graphene sheet as a mass
sensor. They found that the frequencies reduce to the results of the classical model by eliminating the nonlocal parameter.
Their obtained results show that the increase in attached mass and approaching its position to the plate center, increase
frequency shift and decreases the natural frequency. Lei et al. [6] examined the potential of a graphene-based mass sensor.
They investigated the relationship between the attached nanoparticle and the frequency shift based on a continuum elastic
model. Lee et al. [36] derived the frequency equation of the graphene with an attached mass based on nonlocal elasticity
theory for simply supported rectangular graphene. Their results indicate that the frequency shift of the resonator increases
when the nonlocal parameter is increased and the largest frequency shift and highest sensitivity are attained for the square
geometrical resonator. Kwon et al. [37] employed molecular dynamics methods to estimate the shift in fundamental fre-
quency of graphene nano-resonator with the attached mass. Murmu and Adhikari [38] derived a closed-form equation for
the shift in frequency due to the added mass for rectangular graphene nano-resonators based on nonlocal elasticity. Wang
and Arash [39] extensively reviewed the application of carbon nanotubes and graphene sheets as nano-resonator sensors for
mass detection which provides an overview of the state of the art of recent research activities. Fazelzadeh and Ghavanloo
[40] analyzed the vibration of the graphene sheet which can be employed in a mass nano-sensor. The frequency shift of
the nano-sensor is also studied based on the nonlocal plate theory in thermal environment. Zhou et al. [41] explored the
potential of the circular graphene sheet as a mass nano-sensor and employed nonlocal Kirchhoff plate theory to study vi-
brational behavior of the system. Jalali and Naei [42] employed molecular dynamics and nonlocal elasticity to investigate
the application of graphene sheets as resonant sensors for the detection of nanoparticles. Karli¢ic et al. [43] investigated the
opportunity of graphene sheets to employ as a mass nano-sensor. They adopted the nonlocal Kirchhoff-Love plate theory to
model graphene nano-resonator as an orthotropic nano-plate which is affected by the in-plane magnetic field. Jiang et al.
[44] employed the nonlocal Kirchhoff plate theory to study the free vibration of a graphene sheet-based mass sensors and
investigated the effect of some parameters on the frequency shift. Eltaher and Agwa [45] used an energy equivalent model
to study the vibration characteristics of a pretension carbon nanotube resonator with an attached mass as a mass sensor.
They found that carbon nanotube resonator can weigh a tiny mass of about 10—1 zg. Ebrahimi and Barati [46] analyzed
the vibration of graphene-based mass sensors resting on Winkler-Pasternak foundation under hygro-thermal environments
via a two-variable shear deformation plate theory. They employed nonlocal strain gradient theory of elasticity to investigate
the influence of length scale parameter, number of nanoparticles, nanoparticle mass and nonlocal parameter on vibrational
behavior of the mass sensor.

Some studies have been devoted to study the nonlinear and chaotic behavior of graphene-based resonators due to the
wide applications of them in the synthesis of precise mass nano-sensors. DeMartini et al. [47] predicted the chaotic behavior
of micro-electromechanical oscillators which is governed by a version of the Mathieu equation. They performed numerical
simulations to show that chaos can occur in this system and employed Melnikov’s method to obtain an inequality for design
purposes. Joshi et al. [48] studied the nonlinear vibration of doubly clamped wavy carbon nanotube-based mass sensor,
wherein the carbon nanotube is excited harmonically near its primary resonance. They obtained fast Fourier transformation
diagrams, Poincarerhaps and time responses to analyze the dynamic behavior of the mass sensor. Joshi et al. [49] studied
the nonlinear and chaotic vibration of carbon nanotube-based mass sensors. Their numerical investigations show that the
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regions of chaotic and periodic behavior depend on the surface deviations and added mass. Jin et al. [50] investigated the
chaotic synchronization of two coupled identical micro-resonators which is used for mass detection.

As previously mentioned, many studies have been focused on the nonlinear behavior of graphene sheets, which can be
used as a two-dimensional nano-resonator in nano-sensors. Researchers have employed classical and non-classical theories
of elasticity for modeling of nano-resonators. It is evident that the most comprehensive continuum theory for modeling the
nano-structures is the nonlocal strain gradient theory of elasticity. These studies are mostly quantitative which lead to the
solution of the equation of motion and determining the vibrational properties of nano-resonators. But very few of these
studies have been devoted to qualitative behavior, namely, chaos prediction and nonlinear behavior investigation of NEMS.
Since the resonance frequency of the nano-structures is on the order of kHz or MHz, the chaotic dynamics of these systems
is potentially dangerous and the system may fail after a short time. Another important reason for examining the nonlinear
behavior of graphene nano-resonators is that the nonlinear oscillations lead to enhancing the mass sensitivity of graphene-
based mass sensors [33,34]. Therefore, the chaotic dynamics of the system must be predicted and controlled. In general,
little research has been devoted to study the chaotic behavior of NEMS and MEMS, additionally, none of the attempts have
employed nonlocal strain gradient theory for modeling the nano-systems. Finally, no research has been conducted so far on
employing Melnikov’s method to investigate the chaotic behavior of mass nano-sensors analytically.

This paper aims to study the qualitative behavior and chaotic dynamics of a graphene-based mass sensor. The sensor
consists of a graphene-based nano-resonator with the attached mass under electrostatic excitation. The graphene nano-
resonator is modeled as an isotropic Kirchhoff nano-plate with von Karman-type non-linear strain-displacement relations in
conjunction with nonlocal strain gradient theory of elasticity. Applying the Galerkin decomposition method to the equation
of motion of the system, the obtained partial differential equation is reduced to the ordinary differential equation. Then the
chaotic dynamics of mass nano-sensor is studied analytically employing the Melnikov’s method which leads to an inequality
as a parametric criterion that indicates the susceptible region of the system for chaos. Finally, abundant numerical simu-
lations such as the largest Lyapunov exponent, phase plane trajectory and Poincaré map are also performed to verify the
analytical results obtained from Melnikov’s method.

2. Nonlocal strain gradient theory

Since the behavior of nano-scale materials is different from their major counterparts, researchers are motivated to de-
velop the theory of elasticity for nano-scale modeling. Inspired by the works of Eringen [51,52] and Lam et al. [53], Lim
et al. [54] combined the nonlocal theory of elasticity and the strain gradient theory of elasticity to introduce the nonlocal
strain gradient theory of elasticity. Based on the nonlocal strain gradient theory [54], the strain energy (I1y) of an isotropic
elastic body can be written as

1
Iy (gij. €'ij, Qo; Eijms € ijm. X1) = igijcijm/vaoqx —x/}, eoa)e’ydVv’

2
+ lm78ij.mcijkt/va1(|x—x/|, e1a)e’ iy mdV’ (M
where ¢ and &' are the strain tensor at point x and its neighbor points X" within domain V, respectively and Gy, is the
tensor of elastic coefficients. ag(|x — x|, ega) and a;(Jx — X'|, e;a) are attenuation kernel functions related to the nonlocal
effect. eg and e; denote the nonlocal parameters to take into account the influence of stress nonlocality, a presents an
internal characteristic length and [, is the strain gradient length scale parameter.

Based on the nonlocal strain gradient theory of elasticity [54], the total stress of the nonlocal strain gradient theory can
be defined as

t=0-V.oc® (2)

where o is the classical stress tensor and o (1) is the higher-order stress tensor which correspond to the strain tensor & and
the strain gradient sensor Vg, respectively. That is,

o= / o (X', X, ea)C : &'dV’ (3)
\4

oM = ,? / (X x. ea)C : Ve'dV'’ (4)
\'4

where “:” denotes the double-dot product.
To avoid employing an integral equation, Lim et al. [54] developed a general differential constitutive equation known as

higher-order nonlocal strain gradient constitutive equation as
(1= w1 VH(A = o V)t = G (1 — 11 Ve — Gar (1 — o V3 V3ey (5)

where V2 = 32/3x° + 32/dy” is the Laplacian operator and for simplicity, it is considered that (eqa)? = yo, (e7a)2 = p; and
Im2 = A.
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Assuming that e = e; = e or g = 17 = |1, the general lower-order constitutive equation for nonlocal strain gradient is
obtained as [54]
(1= uVHL; =G (1 = AV ey
Let A=0, Eq. (6) is transformed into constitutive equation of nonlocal elasticity theory [51,52] as follows:

(1 - u V)t = Gjutn

(6)

(7)

and letting =0 in Eq. (6) leads to the constitutive equation of pure strain gradient elasticity theory of Aifantis [55] as
follows:

tij = Gju(1 — AV?)ey

In view of Eq. (6) the nonlocal strain gradient constitutive relation for an isotropic nano-plate can be expressed as

(8)

txx Qun Qi 0 ](ex
1-uV)ityt=(1-2V)| Q2 Q2 0 [le, 9)
txy 0 0 Qss | | &xy
where Q; are the plane-stress reduced stiffnesses
Qn E/(1- Vi)
Qu| _ ) E/(Q—v?)
Qu [ = | Ev/(—12) (o)
Qss E/(1+v)

where E is the Young’s modulus and v is the Poisson’s ratio.
3. Governing dynamical equations

In this study, a fully clamped graphene sheet with an attached mass is considered for modeling of the two dimensional
mass sensor (Fig. 1). It is assumed that the graphene sheet is a thin nano-plate and idealized as a classical Kirchhoff plate
model. The components of displacement field for the graphene sheet within the basis of Kirchhoff plate theory can be
expressed as

Ue(x,y,2,t) = _z%
uy(x,y,z,t) = _ZBW(giilyvf)

u(x,y,z,t) = wx,y,t) (11)

where w(x, t) is the transverse displacement of any point on the mid-plane. The geometric nonlinearity imposed by large
deflection of the graphene sheet is modeled based on the von Karman theory. Therefore, the non-zero strains associated
with the above displacement field (Eq. (11)) take the following form

0%w

. 1/ 0w 2 z
=2\ ox )] “oxz
10w > Zazw
w=2\oy) o
10w [ ow Zazw
& =3\ 9x )\ By ) ~%axay

The governing equation of motion of the graphene sheet and the attached mass can be derived using the extended
Hamilton’s principle

(12)

5]
f (8TIy — SWs — 8K)dt = 0 (13)
t
where 6ITy, W and 8K are the variation of strain energy, virtual work due to applied loads and virtual kinetic energy of
the nano-sensor, respectively.
The details of the derivation of the equation of motion are presented in Appendix A. The final explicit expression of the
governing equation of motion directly in terms of the displacement can be stated as follows:

%w aw’ aw\’
M{(]_kvz)[Aﬂ(ax) +A12<ay) j“
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(a) Attached mass ()

Vac Sin wt

xdy
9%w ) w\’ aw\’
+ 57 [ 1-aV )|:A12 (W) +A22(8_y)
94w 94w 94w
+(1-AV?) [Bll B +2(Bi2 + 366)3)(2—8}12 + 3228—3/4]

+ (1 - MVZ)(FE - Cpaa—vtv>
5 92w
=(1-puV?) [Ph+m03D(X—X0)SD(V—J’o)]W (14)

In order to study the nonlinear dynamics of the graphene sheet and the attached mass regardless to its material
properties and geometric characteristic, the following dimensionless quantities are introduced to normalize the equations

of motion:

- X _ Y _ X - Yo - w - h [E _ Ly /p
X—LX»J’—LY, XO_LX’yO_Ly’ W_g’ t_LXLy pt, W= A Ea),

_ 12 T A - 1 —_LxLy 1—-v2 ‘_VAC
“ViL *TVLL T enn™ T ey e @ VT e

fi
. L1 —vH)V2IL

It is noted that the Dirac delta function obeys the scaling property, in which §p(a*x*) = ép(x*)/a* for a* > O . By em-
ploying the scaling property and substituting Eq. (33) into Eq. (32), the dimensionless form of the equation of motion can
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be obtained as

1 9%w e | An (W Ap 0w
maxz{“‘*”[w i) i\

2 92w e [(OW IW
ey (5 )|

1 92w s A (0WN Ay (oW’
+ =L -avy) 222 22 (22
L2 957 {( )|:Lx2 P L2\ 9y

1 (1 _5\'2@2)[31184\@ 2(B12 + Bss) *w B, 84W]

+ 2 LA 0% szLyz 9x2 97572 LT“ ay4
ER e[~z A OW
——(1-a?V?)| ek - Cp—=
+ gzszLyz( K )(5 E=>D 8t>
ER? 20 S o o oMW
= m@ -V ){[1 +m5D(X—X0)3D(V—YO)]8t-2} (16)

in which F is as follows:

5 (1+VsinaD)’

E 1wy (17)
and V2 is defined as

) 2 2

2ol 0 L (18)

“Loe Loy
Due to the small magnitude of AC voltage compared to the DC voltage [56-59], which leads to the small value of V =
Vac/Voe, Eq. (17) can be reduced to
- 1+2Vsinat
fp=—"5—
1-w)
Nonlinear term of Eq. (17) can be approximated through Taylor’s series expansion. Employing a fifth-order Taylor’s series

expansion with respect to w, the dimensionless electrostatic force F; is obtained as

Fe = (14 2w+ 3W? + 4w + 5w* + 6W°) (1 4 2V sin &f) (20)

(19)

Since the first-mode analysis of electrically actuated micro/nano-plates may be accurate [38,60,61], the dimensionless
deflection of the rectangular micro/nano-plate based on the one-mode solution is expressed as

WX 7,0) = V(X ). (F) (21)

where v(x,y) is the normalized eigenfunction that satisfies the boundary conditions of the fully clamped nano-resonator
and ¢ (f) is the generalized time coordinate. Here, v(x, y) for a fully clamped nano-plate is as follows [62]:

v(x,y) = (cos2mx — 1)(cos2my — 1) (22)

According to the Galerkin method, by substituting Eq. (21) into Eq. (16), then multiplying the obtained equation by
v(X,y) and integrating with respect to both x and y over the interval [0,1], one can obtain the following nonlinear ordinary
differential equation

b+ + o+ Pio + Bad? + B3¢ + Pagp* + Psop®
= (Co+ 1P + 29 + 30> + 40 + c5¢°) sin ot (23)

in which the coefficients «, §; and ¢; (i = 0, 1, 2 and 5) are given in Appendix A and a dot over a function in Eq. (23) denotes
differentiation with respect to .

4. Chaotic behavior analysis
4.1. Homoclinic and heteroclinic bifurcations

In order to investigate the chaotic behavior of mass nano-sensor, the first step is to rewrite Eq. (23) in the state space by
defining the auxiliary variable v as
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b=y
U = —ay — Bo — i — Pod? — B3> — Pad® — Bsp®
+ (Co+ 1P + 292 + 30> + 40 + c5¢°) sin(wF) (24)

Assuming that the second relation of Eq. (24) can be divided into two perturbed and unperturbed counterparts as fol-
lows:

o=y
Y = —Bo— 1§ — P2o? — B3¢ — Pad* — Bsp®
+e[—ay + (Co+ 19 + p? + 3¢° + Cap? + 5¢9°) sin ot | (25)
hence, the unperturbed system can be separated as follows:
p=v
U = —fo— 1 — B29p? — B3® — Pudp* — s (26)

The Hamiltonian of the unperturbed system (Eq. (26)) which represents the total energy of the system is also obtained
as

1
H$. ) =U($) + 592 (27)
where U(¢) is the associated potential function of this Hamiltonian system:
1 1 1 1 1
U(@) = Bodp + jﬁ1¢2 + §ﬂ2¢3 + 2,33454 + 5,34(155 + 6ﬂ5¢6 (28)
The first derivative of U(¢) with respect to ¢ is of the following form
du
LD — Pt i+ fot? + o + Pu + P’ (29)

Equating the right-hand of Eq. (29) to zero, leads to a quintic function which is proved in mathematics that has at most
five real roots. These roots are the extremums of the potential function (Eq. (28)). In this work, the comprehensive case with
five extremums will be studied. A simple case (with 8o = B8, = B4 = B5 = 0) is thoroughly studied in the literature (e.g.
[57,63]).

Figs. 2(a) and 3(a) show the Hamiltonian function (Eq. (27)) and the potential energy (thick black line) for two sets of
given values of B; (i = 0, 1, 2, ... 5). Fig. 2(a) shows a double-well and triple-hill potential function and Fig. 3(a) shows
a triple-well and double-hill potential function. Figs. 2(b) and 3(b) show the corresponding phase space contour plot for
Figs. 2(a) and 3(a), respectively. It can be inferred from Figs. 2(b) and 3(b) that the dynamical system of mass nano-sensor
is prone to the occurrence of homoclinic or heteroclinic bifurcations depending to the sign of parameters §8; (i = 0, 1, 2, ...
5). Homoclinic and heteroclinic bifurcations are indicative of the chaotic behavior of the system whose stable and unstable
manifolds intersect transversally.

4.2. Homoclinic and heteroclinic orbits

Homoclinic and heteroclinic orbits of the mass nano-sensor can be determined by solving Eq. (27) along with the fact
that these orbits pass through the saddle point:

b= i\/ 2[Hasae — (Botb + 318 + 3520 + 1t + £ Bag® + 5B | (30)

where Hgyqqp is the value of the Hamiltonian at its saddle point.

Solving the obtained differential equation (Eq. (30)) presents a great challenge which may lead to a complicated equation
which makes it impossible to solve the Melnikov’s integral. Therefore, the homoclinic and heteroclinic orbits of the well-
known Duffing equation are employed to approximate the homoclinic and heteroclinic orbits of the system, respectively
[56,58,64]. A most general form of the Duffing equation is

¢+ + pi1¢ + B3¢p* = Fy cos wpt (31)
the homoclinic orbit of the Duffing equation can be obtained by solving Eq. (30) with 89 = B2 = B4 = B5 = 0 as follows:

FHom (E) . (¢Hom (E), 1pHom (f)) (32)

where
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(@)

Fig. 2. (a) Sketch of the Hamiltonian surface H(¢,1) and the potential curve U(¢); (b) the corresponding phase space contour plot. The parameters are set
as Bo= Ba= Ba=0, f1=—11025, B3=2.74, Bs=—1.

- -2B _
Prom (£) = sech(/—Bit
ﬂ; ( ) (33)
Vo ([) = ﬁl\/gsech< _ﬁﬁ) tanh( _ﬁlf)
and the heteroclinic orbit of the Duffing equation can be determined as
1—‘Het (E) : (¢Het (f), wHet (E)) (34)
where
_ -B Bi-
bre(t) = ﬂ—; tanh <\/;t>
(35)

Ve )

,31 2 \/E—
—\/T/%sech < 3 t)

It is worth mentioning that the existence of two different solutions for Eq. (30) is because of the different values of
Hsgqqie for homoclinic and heteroclinic phenomena.
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Fig. 3. (a) Sketch of the Hamiltonian surface H(¢,}) and potential curve U(¢); (b) the corresponding phase space contour plot. The parameters are set as
Bo= Ba= B4=0, B1=11025, B3=—2.74, Bs=1.

4.3. Melnikov analysis

Melnikov’s integral method will be employed in this section for analyzing the chaotic nature of graphene-based mass
sensors. Homoclinic and heteroclinic bifurcations are global bifurcations that often occur due to the transverse intersection
of perturbed stable and unstable manifolds and can be accompanied by the onset of transition to chaos. Melnikov’s integral
method provides an analytical rule as a criterion for the transition to chaos by determining the distance between the stable
and unstable manifolds of the perturbed system [65-67]. In this work, two Melnikov analysis are implemented on the nano-
resonator equation Eq. (25)) distinctly employing the homoclinic and heteroclinic orbits of the Duffing oscillator (Eqs. (32)
and ((34), respectively).

Considering the state space equation of the perturbed system (Eq. (25)) and employing the equations of homoclinic or
heteroclinic orbits, the Melnikov function is expressed as [65-67]

M(Ey) = /_ " (B dE

o0

+ / G (Co +ap(@) + 2+ p ) +cap @ + cs¢><f)5) sind (F — fo)df (36)

in which ¢ is the cross-section time of the Poincaré map [68].
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The Melnikov function of homoclinic orbit can be determined by letting ¢ = ¢yom and ¥ = Yy, and substituting the
homoclinic orbit from Eq. (33) into Eq. (36) as follows:

1200817 B3 + % |:,/ _137'(? w[1583 (—4c3f1 + 6¢1 B3 + c300°)
—P3

4 C5(64 8,2 — 20810 + w“)]m( 2’;‘/‘;7) +3V/2B110B3 (~c21 +3cofs + 200?)
+ca(9B12 — 108102 + w4)]sec<27j/%>:| cos (a)fo) =0 (37)

The following criterion can be obtained as a necessary but not sufficient condition for the homoclinic chaos in graphene-
based mass sensor

[120011312/33]/{ \7% [,/ _ﬁ—ﬁ;] o [15B3(~4c3 1 + 60185 + C300%)
—P3

+ c5(6481% — 20B1w* + a)4)] csc (

1

+ca(9B12 — 108102 + a)4)] sec <27f/%> }

Similarly, letting ¢ = ¢ and ¥ = Yy, and after substitution of the heteroclinic orbit from Eq. (35) into Eq. (36), the
Melnikov function of heteroclinic orbit can be obtained as

600 B1% B3/ 25 Sinh( Tw )

27\7’2») +3y/281[1083 (=21 + 3¢o s + C20%)

<1 (38)

nw V2B
+w _/37’331[15,33 (_4C3ﬂ1 +6¢183 + cng) +05(46 17 — 20B10” + a)4)] cos (wfo)
3281 [1085 (=2 +3coBs + 20%) + C4(6 1% — 10810 + w*)]sin (wfo) =0 (39)

The trigonometric R method can be employed to find an inequality as a criterion. Therefore, the following criterion is
determined as a necessary condition for the heteroclinic chaos in graphene-based mass sensor

600 B1% B3/ _2’83sinh Tw 2/ " /—/6’1(15/33(—4@/31 +6C1,33+C3602)> ’
Tw V2B Bs \| +c5(46B1% — 208107 + w*)

+ [3 281 (1085 (=21 + 303 + C200°) + c4 (681 —10,31w2+w4))]2}

<1 (40)

5. Numerical simulations

Chaotic dynamics of the graphene-based mass sensor was studied analytically in the previous section. In this section,
some numerical verifications are performed to illustrate the chaotic behavior of the graphene-based mass sensor. To do so,
the Lyapunov exponent diagram, phase plane trajectory and the Poincaré map will be obtained based on Eq. (24).

The Lyapunov exponent is a typical indicator for chaos detection which can be calculated based on the algorithm which
is proposed in Ref. [69]. A positive Lyapunov exponent indicates the sensitivity of the system to the initial conditions which
is leading to the formation of a strange attractor in the system’s state space and signifies the chaotic behavior of the system.
The Lyapunov exponents of the variables ¢ and i for the given value of parameters are plotted in Figs. 4 and 5. The positive
Lyapunov exponents imply the chaotic behavior of the graphene-based mass sensor.

Phase plane trajectories of the system for the given value of parameters are depicted in Figs. 6 and 7, which qualitatively
demonstrate the existence of chaos in the behavior of the graphene-based mass sensor.

The Poincaré maps of the system are illustrated in Figs. 8 and 9 for the same values of parameters as given in Figs. 6 and
7, respectively. Scattered points appearing within the Poincaré maps, qualitatively confirmed the chaotic nature of the
graphene-based mass sensor.

Phase plane trajectories and Poincaré maps intuitively show the dynamics of the system and their complexity are indica-
tive of the chaotic behavior of the system. These figures are very simple for regular and periodic systems. For example, the
phase plane trajectories and Poincaré maps of a periodic motion will be an ellipse and a point, respectively.



810 M. Mir and M. Tahani/Applied Mathematical Modelling 81 (2020) 799-817

2_
/\(’)
Y
1.5 N
=
T I
=
2
&
5 05¢F
g )
2: 0 {\ 1 VY n tl
3 e BT
0.5

1t

Fig. 4. The Lyapunov exponents of the system. The parameters are set as Bo=—0.14112, 8,=-0.6888, $,=0.508, 83=2.14, B4=-0.1, B5=0.23, «=0.05,
w=0.8, ¢p=0.1, ¢;=0.2, c;=0.3, c3=0.4, c4=0.5 and c5=0.6 with initial conditions: ¢(0)=0.1 and (0)=0.25.
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Fig. 5. The Lyapunov exponents of the system. The parameters are set as $¢p=0.14112, $,=0.6888, 8,=—0.508, f3=-2.14, B4=0.1, B5=0.59, «=0.05, »=0.8,
¢0=0.1, ¢;=0.2, c;=0.3, c3=0.4, c,=0.5 and ¢5=0.6 with initial conditions: ¢(0)=0.1 and (0)=0.25.

6. Results and discussions

A graphene-based mass sensor is comprised of a graphene sheet as a resonator with an attached mass which vibrates
at its resonant frequency. In this study, a fully clamped graphene sheet is considered for modeling the two-dimensional
nano-resonator. Practically, this boundary condition is closer to the actual conditions of the nano-sensor and is easier to
construct. The sensitivity of resonator with fully clamped boundary condition is the highest in comparison with the other
boundary conditions [15]. For the other boundary conditions, only Eq. (22) should be replaced with relevant eigenfunction
and the rest of the steps of the procedure are the same as this study.
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Fig. 7. Phase plane trajectories of the system for $5=2.7 and the other parameter values as in Fig. 5.

Fig. 8. Poincaré map of the system for parameter values associated with Fig. 6.
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Fig. 9. Poincaré map of the system for parameter values associated with Fig. 7.

The only approximation used in the study of chaotic dynamics of nano-sensor includes employing the corresponding
homoclinic and heteroclinic orbits of the Duffing equation instead of orbits of the original system. In previous research
[57,59,63,64,70-72], a Taylor’s third-order expansion of electrostatic force was used to investigate the Melnikov chaos of
micro- and nano-systems based on the orbits of the Duffing equation. In this study, Taylor’s fifth-order expansion of elec-
trostatic force along with the corresponding orbits of the Duffing equation was employed to investigate Melnikov chaos,
and the existence of non-zero coefficients c4 and ¢5 in the Melnikov criteria Eqs. (38) and ((40)) indicates a more accurate
prediction of chaos than previous studies.

In view of Egs. (B1) and B2) in Appendix A, it is observed that the obtained Melnikov criteria (Eqs. (38) and ((40))
in addition to geometric and material properties depend on length scale parameters of nonlocal strain gradient elasticity
theory. The dependence of the Melnikov criteria to length scale parameters demonstrates that employing the nonlocal strain
gradient elasticity theory is of crucial importance for precise chaos prediction in a graphene-based mass sensor. It is also
realized from Eqs. (B1) and (B2) that the parameters of the Melnikov criteria are functions of the position and amount of
the nanoparticle which is attached to the graphene sheet and can influence the chaotic behavior of the graphene-based
mass Sensor.

As proved earlier, this system is prone to the occurrence of homoclinic and heteroclinic chaos. Eqgs. (38) and (40) are
two Melnikov criteria for predicting the chaotic nature of the system. These criteria must be taken into consideration during
the design process to keep the system away from chaotic behavior. The Melnikov criteria obtained for mass nano-sensor
are the necessary but not sufficient conditions, i.e. changing the amount of a single parameter may not provide a chaotic
behavior. Therefore, it is not that simple to achieve the range of change for each parameter that causes chaotic dynamics.
The Melnikov criteria Eqs. (38) and ((40)) implicitly include all material and geometrical parameters of the mass nano-
sensor. The designer can simply change the allowable parameters to transmit the system to a safe region and suppressing
the chaos.

7. Concluding remarks

This paper dealt with the study of nonlinear and chaotic dynamics of graphene-based mass sensor which consisted of
an electrostatically actuated fully clamped graphene resonator with a concentrated attached mass. The equations of motion
were derived employing the nonlocal strain gradient elasticity theory and reduced to an ordinary differential equation by
means of the Galerkin decomposition method. The potential energy of the system was analyzed to investigate the possibility
of occurrence of homoclinic and heteroclinic bifurcations. The Melnikov’s integral method was employed to derive two nec-
essary inequality equations as analytical criteria which indicated the susceptible region of the system for chaotic behavior.
Due to the presence of length scale parameters of nonlocal strain gradient theory of elasticity in the Melnikov criteria, it was
concluded that the classical theory of elasticity was not able to predict precisely the chaotic behavior of nano-resonators.
It was also found that the position and amount of the attached mass can affect the chaotic behavior of the system. The
chaotic regimes of the system were also studied through plotting the Lyapunov exponent diagrams, phase plane trajectories
and Poincaré maps which verified the intrinsic chaotic nature of graphene-based mass sensors.

Appendix A

The governing equation of motion of the nano-resonater and the attached mass can be derived employing the extended
Hamilton’s principle in Eq. (13). Based on the nonlocal strain gradient theory, the virtual strain energy can be written as
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8Ty = / (OuSExx + 20 88xy + Oyy8eyy + 000 Ve + 20, Viexy + o)) Ve, )dV

- fv [ — VI )88w + 2(0 — Vo )8eny + (03 — Vol )dey]dv

[ (B (" a "
+ / / o8¢ dz+2/ oxy)(Sexydz+/ o, 8eyydz |dy
| Jo h2 2

Ly

0
[ L h/2 h/2 h/2 Ly
o ( [ otbseudz+2 [ ofPseydz+ / o] 88yydz>d } (A1)
| Jo —hy2 —hy2 —hy2 0
Herein the stress resultants are introduced as
Nmexx h/2 Exx
Ny, My, ¢ = / ty 4 (1,2)dz (A2)
Nyy, Myy “h2 |ty
1 1 1
Ny, My w2 [0
N<(;> M) ¢ = oy ¢ (1,2)dz (A3)
1 -h/2 1
ny)’ M)Ey) a)c(y)

By substituting Eq. (12) into Eq. (A1), in view of Eqs. (A2) and (A3), one can obtain the following expressions for the
virtual strain energy in terms of displacements and stress resultants

ow 98w 325w ow ddw  Ow dsw
Oy = / |:NXX ax ox Mg +ny<3}/3>< + 8x3y>

825w ow ddw 025w

vy dwadw ) 9%w ) (dw ddw  dw 9w
+|:/0 <N"" ox 0x M ax2 + Ny dy ox tax 3y

328w dw 9w a2sw\ . 1"
(1) 1) (1
— oMy G N S Ty~ MY )dy}0

x ow 06w 3%25w ow déw  ow dasw
(1) ow dow (1) ) owoow
+|:/0 (N"" ox 0x ~ M ox2 + Ny <8y ox T ax By)

328w dw 9sw a2sw\ . 1"
(1) (1) (1)
2Mxy axay +Nyy ay ay Myy 8y2 )dx]o

The total kinetic energy of the mass nano-sensor (K) is the summation of the kinetic energy of the graphene sheet (K;)
and the kinetic energy of the attached mass (Kj). Neglecting rotary inertia of the nano-plate and considering only transverse
deflection, the variation of the kinetic energy of the nano-plate can be written as

SK¢ _/ ha—WSB—WdA (A5)

(A4)

The kinetic energy of the concentrated attached mass is defined employing the Dirac delta function. The following main
property of Dirac delta function

/ T (¢ )dxt = 1 (46)

implies that the product §p(x*)dx* must be dimensionless and consequently the dimension of the Dirac delta function be-
comes the inverse (reciprocal) of its argument. Hence, the variation of the kinetic energy of the attached mass which is
located at (xg,yg) can be stated as

5Ko = f MoSn (X — %0)8p (Y — Yo) 3W58ﬂaA (A7)
By summing Eqgs. (A5) and (A7), the variation of the kinetic energy of the mass sensor can be obtained as
5 = [ [oh -+ mody (x ~ )85y —y0)] 5y D e dA (A8)

also, the virtual work due to electrostatic and damping forces is as follows:

SWp = / (FE —G 88W>8wdA (A9)



814 M. Mir and M. Tahani/Applied Mathematical Modelling 81 (2020) 799-817

where Cp is the coefficient of the viscous damping coefficient per unit area and F is the electrostatic force per unit area of
the graphene sheet.
The electrostatic force per unit area of the graphene sheet can be expressed as [73-76]

F— SO(VDC + Ve Sil’l(,()t)2

2(g-w)’
where g is the permittivity of the gap medium and Vpc and Vj¢ are the bias DC voltage and harmonic excitation voltage,
respectively, and g is the initial gap distance between the graphene and the ground plate.

Substituting Eqs. (A4), (A8) and (A9) into Eq. (13), applying integration by parts and doing some mathematical process
lead to the equation of motion and corresponding classical and non-classical boundary conditions of the system as follows:
equation of motion:

d ow ow d ow ow
Ix (Nxxax + nyay) + @ (nyax + Nyyay>

02 M, 92My, =~ 92Myy ow
T T 2axay T gy * fe=Cogp

(A10)

92w
= [Ph+mo5D(X—Xo)5D(y—}’0)]W (A11)
classical boundary conditions: at x = 0 or Ly
. ow ow  OMy  OMy
eitherdw =0 or NX"W +nyw + X + 3y 0
. ow
either P Oor My, =0
either 2 — 0 or My = 0 (A12)
dy
aty=0orly
. B ow ow  OMy, ~OMy
elther(Sw_OornyW-i—NyyW-|—W 5y =0
. ow
either P OorM, =0
either %—;v =0o0rM,, =0 (A13)

non-classical boundary conditions: at x = 0 or Ly and y = 0 or L

either 2% — 0 or N,E,Z)a—w =

0x ox 0
2
either 887‘2/ =0or M,E,l() =0
. aw ow 1)
either XAy OorN,,’ =0
. 82W 1)
either Xy OorM,, =0
. ow 1) 0w
either Ty 0or N, Ty = 0
ith 92w 1)
either Ea =0orM;’ =0 (A14)
Integrating Eq. (9) along the z-axis of the nano-plate yields
Niyx A]] A12 0 (8W/3x)2
(1= uVHINyt =(1-AVH)| Az Ay O (dw/dy)? (A15)
Ny 0 0 Aes] | (9w/9x)(dw/3y)
Also, multiplying both sides of Eq. (9) to z then integrating over the thickness leads to:
My By B1; 0 82W/8X2
(1=puVH{My ¢ =(1-AV?)|B;; By 0 32w/ dy” (A16)
My 0 0  Bss||d2w/axdy
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where A; and By are as follows:

An, Bn Qu

A2, By | _ (B ;h3) Q2

Az, B 2° 12 7| Qe

Aes, Bes Qs6

In order to obtain the equation of motion in terms of the transverse displacement, stress resultants must be eliminated

from Eq. (A11). Since, in this study, the mid-plane displacements are considered to be zero (uxo=uy0=0) and no force is

applied to the plate in the x and y directions, the in-plane forces can be assumed to be constant. Based on this assumption,
Reddy [77] adopted that the first two terms of Eq. (A11) can be linearized as follows to overcome this great challenge:

a ow ow a ow ow
bR (N"X ax TN 8y) % (ny ox +Nyyay)
92w 9’w 92w

0x2 +2ny3 dy Ny 5z 9y2

(A17)

~ Ny —— (A18)

Finally, an explicit expression is derived for the governing equation of motion directly in terms of the displacement by
using Eq. (A18) in Eq. (A11) and in view of Egs. (A15) and (A16).

Appendix B
The coefficients appearing in Eq. (23) are defined as
-3 = _
Q= 4—nEh3CD(3LXLy +4m? 2 (L; + 13))
1 -
Bo = EEh3eLxLy

1 12BnL3n4 9 3 B
Br = [8Bcs + % + SERLiLyE + 32Be (L3 + L) 22
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z ' 2
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in which
n= %Eh3{—9LXLy — 120372 12 = 120372 1 + 321 [ Ly (—Ly + 2L, 702 %)
+ (Lely + 4L *@? — 21372 22 cos(271y0)]sir14 (7T X0) sin’ (7T yo)
— 512mLy 7?1 cos* (7rxo/2) cos (7 xo) (—7 + 8 cos(1wxg))sin® (7w yo)
+ 128mL2 2 1% cos® (Xo/2) (5 — 10 cos(7xo) + 9 os(27xo))sin’ (o)
— 160mL2? 3% sin® (7rx0/2)sin4(7ry0)} (B2)
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