
Industrial Robot: An International Journal
Real-time velocity scaling and obstacle avoidance for industrial robots using fuzzy dynamic movement
primitives and virtual impedances
Iman Kardan, Alireza Akbarzadeh, Ali Mousavi Mohammadi,

Article information:
To cite this document:
Iman Kardan, Alireza Akbarzadeh, Ali Mousavi Mohammadi, (2018) "Real-time velocity scaling and obstacle avoidance for
industrial robots using fuzzy dynamic movement primitives and virtual impedances", Industrial Robot: An International Journal,
Vol. 45 Issue: 1, pp.110-126, https://doi.org/10.1108/IR-02-2017-0035
Permanent link to this document:
https://doi.org/10.1108/IR-02-2017-0035

Downloaded on: 29 December 2017, At: 15:58 (PT)
References: this document contains references to 48 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 20 times since 2018*

Users who downloaded this article also downloaded:
(2018),"In-line stereo-camera assisted robotic spot welding quality control system", Industrial Robot: An International Journal,
Vol. 45 Iss 1 pp. 54-63 <a href="https://doi.org/10.1108/IR-06-2017-0117">https://doi.org/10.1108/IR-06-2017-0117</a>
,"An industrial security system for human-robot coexistence", Industrial Robot: An International Journal, Vol. 0 Iss 0 pp. - <a
href="https://doi.org/10.1108/IR-09-2017-0165">https://doi.org/10.1108/IR-09-2017-0165</a>

Access to this document was granted through an Emerald subscription provided by Token:Eprints:4TBUPRSREMBWESPRBNFQ:

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service
information about how to choose which publication to write for and submission guidelines are available for all. Please visit
www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of
more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online
products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics
(COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 5

.1
61

.1
27

.8
6 

A
t 1

5:
58

 2
9 

D
ec

em
be

r 
20

17
 (

PT
)

https://doi.org/10.1108/IR-02-2017-0035
https://doi.org/10.1108/IR-02-2017-0035


Real-time velocity scaling and obstacle
avoidance for industrial robots using
fuzzy dynamic movement primitives

and virtual impedances
Iman Kardan, Alireza Akbarzadeh and Ali Mousavi Mohammadi

Center of Excellence on Soft Computing and Intelligent Information Processing, Mechanical Engineering Department,
Ferdowsi University of Mashhad, Mashhad, Iran

Abstract
Purpose – This paper aims to increase the safety of the robots’ operation by developing a novel method for real-time implementation of velocity
scaling and obstacle avoidance as the two widely accepted safety increasing concepts.
Design/methodology/approach – A fuzzy version of dynamic movement primitive (DMP) framework is proposed as a real-time trajectory
generator with imbedded velocity scaling capability. Time constant of the DMP system is determined by a fuzzy system which makes decisions based
on the distance from obstacle to the robot’s workspace and its velocity projection toward the workspace. Moreover, a combination of the DMP
framework with a human-like steering mechanism and a novel configuration of virtual impedances is proposed for real-time obstacle avoidance.
Findings – The results confirm the effectiveness of the proposed method in real-time implementation of the velocity scaling and obstacle avoidance
concepts in different cases of single and multiple stationary obstacles as well as moving obstacles.
Practical implications – As the provided experiments indicate, the proposed method can effectively increase the real-time safety of the robots’
operations. This is achieved by developing a simple method with low computational loads.
Originality/value – This paper proposes a novel method for real-time implementation of velocity scaling and obstacle avoidance concepts. This method
eliminates the need for modification of original DMP formulation. The velocity scaling concept is implemented by using a fuzzy system to adjust the DMP’s time
constant. Furthermore, the novel impedance configuration makes it possible to obtain a non-oscillatory convergence to the desired path, in all degrees of freedom.

Keywords Safety, Fuzzy inference system, Collision avoidance, Dynamic movement primitives, Velocity scaling

Paper type Research paper

1. Introduction

Different design-level considerations are proposed for safe
human–robot interaction, e.g. limiting the range of the robot’s
motion, imbedding emergency and safe stopping sensors and
switches and defining reduced speed working regions (Gaskill,
1994). Moreover, some operation-level considerations may be
incorporated to increase the safety. Camera visions, laser
trackers, proximity sensors and even physiological monitoring
systems (Kuli�c and Croft, 2007) are frequently used to provide
a perception of operator and environment for the robot.
Different actions may be taken when nearby obstacles are
detected. Reducing the robot speed, also termed as velocity
scaling, is a well-established safety increasing strategy. This
strategy is required by some safety standards, such as ISO
10218 and ISO 15066, and widely used in industries and
literatures (Kuli�c and Croft, 2007; Kuli�c, 2006; Zanchettin
et al., 2016). The safety of the robot’s operations is usually

enhanced further by implementing some obstacle avoidance
strategies such as repelling potential fields (Khatib, 1986; Kim
and Khosla, 1992; Park et al., 2008; Zavlangas and Tzafestas,
2000), virtual impedances (Cai et al., 2014; Lacevic et al.,
2013; Lo et al., 2016; Arai et al., 1989; Khansari-Zadeh and
Khatib, 2017), elastic strips (Brock and Khatib, 2002; Sun
et al., 2016) and human-like steering (Fajen andWarren, 2003;
Huang et al., 2006; Fajen et al., 2003; Ijspeert et al., 2013;
Hoffmann et al., 2009; Pastor et al., 2013) techniques.
Practical implementation of velocity scaling and obstacle

avoidance techniques requires real-time path generation
methods. These methods should have low computation loads
and should be capable of synchronized modification of all the
robot’s degrees-of-freedom (DOF). Moreover, when velocity
scaling or obstacle avoidance modifications are imposed, the
real-time path generation method should preserve the
smoothness and continuity of the end-effector (EE) path.
Dynamic movement primitive (DMP) framework is a

biologically inspired trajectory generationmethod and has recently
gained great attentions from the researchers (Ijspeert et al., 2013;
Hoffmann et al., 2009; Ijspeert et al., 2002; Ijspeert et al., 2003;
Basa and Schneider, 2015; Pastor et al., 2013; Park et al., 2008;
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Ude et al., 2010). The DMP framework is used in a wide array of
applications including learning by demonstration (Tamosiunaite
et al., 2011; Pignat and Calinon, 2017; Deniša et al., 2016;
Kramberger et al., 2016; Abu-Dakka et al., 2014), mobile robots
(Jiang et al., 2016), robot locomotion (Rosado et al., 2016),
control applications (Krug and Dimitrov, 2015), human–robot
and robot–robot cooperative tasks (Maeda et al., 2016; Kulvicius
et al., 2013), exoskeletons (Kamali et al., 2016; Huang et al.,
2016), humanoid robots (Mukovskiy et al., 2017; Li et al., 2014)
and obstacle avoidance (Park et al., 2008; Ijspeert et al., 2013;
Hoffmann et al., 2009; Tan et al., 2011; Hoffmann and Mitchell,
2016). The DMP method has a simple structure and low
computation loads. Moreover, as the path is generated based on
motion equations of a second-order dynamic system, the
smoothness and continuity of the trajectory and its derivatives are
guaranteed (Nemec and Ude, 2012). Furthermore, the DMP
method makes it possible to easily and smoothly scale the task
velocity by changing only one parameter, which is theDMP’s time
constant (Ijspeert et al., 2002;Nemec andUde, 2012).
In this paper, a fuzzy inference system (FIS) is used to adjust

the DMP’s time constant. The FIS increases the DMP’s time
constant or equivalently reduces the robot’s speed, according to
the detected risk level. The subject’s distance from the
workspace and its velocity projection toward the workspace are
considered as inputs to the FIS.
Adding some terms to the system dynamics, the DMP

framework can also be used for obstacle avoidance purposes. The
potential field (Park et al., 2008; Tan et al., 2011; Hoffmann and
Mitchell, 2016) and human-like steering (Hoffmann et al., 2009;
Ijspeert et al., 2013) terms are successfully added to the DMP
equations to obtain automatic obstacle avoidance methods. The
human-like steering technique is inspired from human behavior
in avoiding the obstacles and therefore provides more natural
performances (Fajen and Warren, 2003; Huang et al., 2006;
Fajen et al., 2003). Moreover, this method removes some
problems with the potential field technique, e.g. leading to local
minima in the case of multiple nearby obstacles. However, these
methods need to modify the original DMP equation which may
cause some problems in the convergence of the deviated path to
the desired path when obstacles are passed. Therefore, some
stability and convergence considerations are required.
In this paper, we propose a combination of the DMP

framework with the virtual impedance method to avoid obstacles
in real-time. The virtual impedance method for real-time
obstacle avoidance was first proposed by Arai et al. (Arai et al.,
1989) and has found extensive applications (Cai et al., 2014;
Lacevic et al., 2013; Lo et al., 2016; Zavlangas and Tzafestas,
2000; Khansari-Zadeh and Khatib, 2017). Combination of the
virtual impedance method with the DMP framework eliminates
the need for manipulating the original DMP formulation. The
DMP formulation outputs the desired path with scaled velocity,
while distraction from the desired path is caused by the virtual
repelling forces exerted to the virtual mass. The virtual
impedance is consisted of some simple mass-spring-damper
components. Therefore, it provides a better physical
interpretation and the stability of the path generation system is
guaranteed as well as its convergence to the desired path when
obstacles are passed.
In the existing applications (Cai et al., 2014; Lacevic et al.,

2013; Lo et al., 2016; Arai et al., 1989; Zavlangas and

Tzafestas, 2000; Khansari-Zadeh and Khatib, 2017), the
virtual impedance is assumed as a single point mass, simply
pinned to the desired path through a spring and a damper.
Adjusting the impedance parameters, it is possible to obtain a
critically damped longitudinal convergence to the desired path
when repelling forces are diminished. However, some lateral
oscillations will be always present in the motion of the virtual
mass. In this paper, we propose a novel configuration of the
virtual impedance which makes it possible to obtain critically
damped convergence in all directions.
Themain contributions of this paper are as listed as follows:

� proposing a fuzzy version of the DMP framework for
implementation of the velocity scaling concept;

� proposing a combination of the DMP formulation with
human-like steering mechanism and virtual impedance
method to avoid collision with obstacles; and

� proposing a novel configuration of the virtual impedance
to obtain critically damped convergence in all directions.

The effectiveness of the proposed method is evaluated through
some simulations and experiments, carried out on a custom
made SCARA robot, called FUM SCARA (Shariatee et al.,
2014; Mousavi et al., 2015b; Mousavi et al., 2015a). Figure 1
displays the FUM SCARA robot, designed and manufactured
in FUMRobotics Lab at Ferdowsi University ofMashhad.
The rest of the paper is organized as follows. Section 2 details

the proposed method in two subsections. Subsection 2.1
describes the DMP framework with fuzzy time constant. The
new configuration of the virtual impedance is given in Subsection
2.2. The inverse kinematic model (IKM) of the FUM SCARA
robot is given in Section 3. Sections 4 and 5 provide the results of
evaluating the performance of the proposed method in
simulation and practice. Finally, Section 6 concludes the paper.

2. Proposed method

2.1 Dynamicmovement primitives with fuzzy time
constant
Unlike the traditional online trajectory generation methods,
using the DMPs makes it possible to smoothly and
synchronically reduce the robot speed in all directions by

Figure 1 FUM SCARA robot
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modulating only one parameter. The general formulation of
DMP is given as in (Ijspeert et al., 2013):

t _q ¼ ar b r Pgoal � Pð Þ � q
� �þ f sð Þ (1)

t _P ¼ q (2)

in which q is the vector of state variables and P is the vector of
trajectory variables which may include joint space or workspace
variables. To facilitate the obstacle avoidance procedure, in this
paper, P is considered to include EE’s workspace variables as
P = {x, y, z}T. ar and b r are positive constants that affect
learning and generalization abilities of the DMPmodel, usually
chosen as b r = ar/4. Pgoal is the vector of the goals or the final
values that the trajectory variables should attain at the end of
the motion. t is a time constant resembling parameter that
governs the overall time for going through the trajectory and is
somehow reciprocal to the robot’s motion speed. Larger t
indicates slower motions and vice versa. f(s) is the vector of
forcing terms calculated as:

f sð Þ5 sPN
i¼1 c iðsÞ

Pgoal � Pinitð Þ �
XN

i¼1
c ðsÞwi (3)

Here, ° denotes entry-wise (element wise) product, Pinit

includes the initial values of the desired trajectory variables and
wi= [wix,wiy,wiz]

T is the ith column ofW= [w1, . . . ,wi, . . . ,wN]
which is the weightingmatrix to be adjusted to learn the desired
trajectory. TheN basis functions, c i(s), are obtained as:

c i sð Þ ¼ exp � 1
2s2

i
s� cið Þ2

� �
(4)

where, s i is the width of the ith basis function and ci is its center
location. The center locations should cover the entire interval
of the variable s [ [0, 1] which is calculated as:

t _s ¼ �ass (5)

where, as is a constant. The variable s can be considered as the
phase variable of the system with s = 1 and s = 0 indicating the
initial and the final state of themotion, respectively. Note that, s
is a scalar variable which is common between all the trajectory
variables. Therefore, all the motion DOF will have the same
phase all over the trajectory and the synchronization is
automatically assured. The supervised learning approach
(Schaal et al., 2007) is applied to adjust the weights. For a given
ideal trajectory, the target values of the forcing vector are
obtained as:

f �q ¼ t2 €P q þ ar
_P q � ar b r Pgoal � Pqð Þ; q ¼ 1; . . . ;m

(6)

where, subscript q indicates the variables calculated for the qth

sample of the ideal trajectory and m is the total number of the
points in the learning set, sampled from the ideal trajectory.
Then, the weightingmatrix is obtained as:

wi kð Þ ¼ KT
k WiCk=K

T
k WiKk; k ¼ 1; 2; 3 (7)

where:

Wi ¼

c i s1ð Þ 0 . . . 0

0 c i s2ð Þ ..
.

..

. . .
.

0

0 . . . 0 c i smð Þ

2
666666664

3
777777775

(8)

Ck ¼
f *1 kð Þ
..
.

f *m kð Þ

0
BBBB@

1
CCCCA (9)

Kk ¼
n1 kð Þ
..
.

nm kð Þ

0
BBB@

1
CCCA (10)

in which, sq is the phase variable for the q
th sample and j q is the

scaled phase variable for the qth sample calculated as:

nq ¼ sq Pgoal � Pinitð Þ; q ¼ 1; :::;m (11)

Distance from obstacle to the workspace, the obstacle velocity
and its motion direction are important safety factors. The
distance from obstacle to the robot’s base is considered as
the distant measure, rn, non-dimensionalized by the radius of
the workspace as:

rn ¼ jP j
oj

rw
(12)

where, rw is the radius of the workspace sphere of the robot and
Pj

o is the position vector of the jth obstacle, described in a
coordinate system whose origin is located at the robot’s base.
The two latter safety factors can be combined by considering
the projection of the obstacle velocity on the line connecting the
obstacle to the robot’s base. The velocity projection, non-
dimensionalized by the maximum speed of the EE, is
considered as the velocitymeasure:

vn ¼
_P
j
o � Pj

o

j veð Þmaxj
(13)

where, j(ve)maxj is the absolute maximum velocity of the EE, _P
j
o

is the velocity vector of the jth obstacle and the inner product
_P
j
o � P j

o gives the projection of the obstacle velocity. Note that a
negative value of vn indicates an approaching obstacle. rn and vn
are chosen as decisive factors in safe robot operation, and the
robot speed should be set as a function of these two factors. The
function is implemented as a fuzzy inference engine which takes
the two factors as its inputs and decides the non-
dimensionalized time constant for the DMPs, tn, as its output.
The output variable is defined as:

tn ¼ t

t I
(14)

where, t I is the ideal time constant which is the duration of the
ideal trajectory, PI, in the absence of the nearby obstacles.
Figure 2 depicts the Gaussian membership functions for input
and output parameters. The rules table of the fuzzy inference
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engine is given in Figure 3, designed to be intuitive and to
provide a continuous and smooth rule surface.
Each cell of the rule table represents a fuzzy rule of the form:

Rule ]l : If rn is Al and vnis Bl then tn is Cl (15)

in which l [ {1. . .9} is the number of the considered rule.Moreover,
Al [ {F, C, VC} is the membership function of rn, Bl [ {P, Z,N} is
the membership function of vn and Cl [ {T1, T2, T3, T4} is the
membership function of tn, all corresponding to the l

th rule.
Using Mamdani inference engine, singleton fuzzifier and

center average defuzzifier, the FIS calculates the non-
dimensionalized output as:

tn ¼ 1P9
l¼1 mAl

rnð ÞmBl
vnð Þ

X9
l¼1

blmAl
rnð ÞmBl

vnð Þ (16)

where, bl is the center value of the output membership function
Cl. Moreover, mAl

rnð Þ and mBl
vnð Þ are the membership values

of rn and vn inAl andBl, respectively.
In the case of multiple obstacles, the time constant is

calculated for each obstacle separately, and the largest time
constant is applied.
If there is no obstacle nearby, the FIS sets t as t = t I.

Therefore, the DMP outputs the ideal trajectory, i.e. P = PI

where PI is the ideal EE trajectory. When there are some
obstacles nearby, the FIS sets t as t > t I. Consequently, the
DMP outputs the EE trajectory with scaled velocity, i.e. P =
Psv, where Psv is the same as the ideal EE trajectory but with
reduced speeds. Note that, in the cases of PI and Psv, the
physical paths followed by the EE are identical. In other words,
in the case of Psv, the EE still moves on the ideal path but with
scaled velocity.

2.2 Virtual impedance and human-like steeringmodel
for obstacle avoidance
To avoid the manipulation of the DMP formula, the concept of
virtual impedance is used in this paper. In this approach, the EE
is set to follow the trajectory of a point mass with arbitrary inertia,
Mv, pinned to the scaled velocity trajectory of the EE (output of
the DMP framework, Psv) by means of a spring and a damper of
arbitrary stiffness, Kv, and damping, Dv. Nearby obstacles apply
repelling forces on the virtual point mass to keep it away from
collision. Therefore, when obstacles are present around the ideal
path, the point mass is deviated from the ideal path. As the EE is
set to follow the trajectory of the pointmass, the collision between
EE and obstacle is prevented. Considering Figure 4, the equation
ofmotion of the pointmass is obtained as:

Mv €Pd þDv _Pd � _P sv

� �
þKv Pd � Psvð Þ ¼

Xp
j¼1

F j
o (17)

where, Pd is the position vector of the point mass which is
considered as the desired position to be followed by the EE. Psv

locates the scaled velocity position of the EE on the ideal path,
F j

o is the force vector applied to the point mass from jth obstacle
and p is the total number of obstacles. The parameters are also
illustrated in Figure 4. The position vectors are defined in the
inertial frame W located at the robot’s base. In Figure 4, it is
assumed that the EE perfectly follows the position of the point
mass. Therefore, the actual trajectory of the EE, Pa, is depicted
to exactly match the trajectory of the point mass, Pd. However,
some tracking errors are always present in the practice, and the
matching between Pd and Pa depends on the position control
accuracy of the robot.
The inertia, stiffness and damping coefficients of the virtual

impedance are usually chosen such that a critically damped
transient behavior is obtainedwith no oscillation and a reasonable
speed. Although the coefficients can be chosen to remove the
longitudinal oscillations (toward the desired trajectory), some
lateral oscillations will be present in the EE motion if the point
mass is simply pinned to the desired trajectory (Figure 5).
To avoid the lateral oscillations, a new arrangement of the

virtual impedance is considered in this paper. Figure 6 illustrates
a 2D version of the new arrangement of the virtual impedance. In
this arrangement, the point mass is assumed to be connected to

Figure 2 Membership functions for the input and output parameters

Figure 3 Fuzzy rules for time constant adjustment
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the desired trajectory, through two sets of springs and dampers.
The springs and dampers are confined in two perpendicular
prismatic guides. The prismatic guides are always aligned with x
and y axes of the inertial frame and do not take rotations.
Therefore, the equation of motion of the point mass is

obtained as:

Mv€xd þDvx _xd � _xsvð Þ þKvx xd � xsvð Þ ¼
Xp

j¼1

Fj
ox

Mv€yd þDvy _yd � _ysvð Þ þKvy yd � ysvð Þ ¼
Xp

j¼1

Fj
oy

8>>>>>>>><
>>>>>>>>:

(18)

where, (xd, yd)
T denotes the location of the virtual point mass

and (xsv, ysv)
T shows the location on the scaled velocity

trajectory to which the point mass is connected.Kvx andKvy are
the stiffness coefficients of the virtual springs located in x and y
directions, Dvx and Dvy are the damping coefficients of the
virtual dampers located in x and y directions and Fj

ox and Fj
oy are

the projections of the jth obstacle force along x and y directions.
In this configuration, the impedance coefficients can be chosen
to obtain critically damped convergence in all directions.
Although it may be a bit challenging to graphically represent the
new configuration in higher dimensions, its formulation can be
easily extended to more DOF systems. For example, in the case
of a system with three translational DOF, the equations of
motion of the pointmass are simply obtained as:

Mv€xd þDvx _xd � _xsvð Þ þKvx xd � xsvð Þ ¼
Xp

j¼1

Fj
ox

Mv€yd þDvy _yd � _ysvð Þ þKvy yd � ysvð Þ ¼
Xp

j¼1

Fj
oy

Mv€zd þDvz _zd � _zsvð Þ þKvz zd � zsvð Þ ¼
Xp

j¼1

Fj
oz

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(19)

In this paper, the human-like steering model is used to run the
point mass away from the obstacle. According to Fajen and
Warren (2003), Huang et al. (2006), Fajen et al. (2003),
Ijspeert et al. (2013) and Hoffmann et al. (2009), the human-
like steering model adds an acceleration, perpendicular to the
relative velocity of the EE and the obstacle. The direction of
acceleration is obtained by rotating the relative velocity, Vrel, by
an amount of 90 degrees. As shown in Figure 7, the rotation is
performed about an axis perpendicular to the relative velocity
and the vector from the virtual mass to the jth obstacle, P j

do. The
repelling acceleration is given as:

_V
j ¼ gRV j

relw
j e�aw jw j je�ar jP j

doj (20)

where, g , ar and aw are three constants,R is the rotationmatrix
and w j is the heading angle of the virtual mass toward the jth

obstacle. This acceleration can be simply replaced by an
equivalent force as:

F j
o ¼ Mv _V

j ¼ MvgRV j
relw

j e�aw jw j je�ar jP j
doj (21)

Finally, the overall block diagram of the proposed method is
depicted in Figure 8, where the FIS takes in the obstacle
trajectory, Po, and determines the time constant, t , for the DMP.
The DMP framework is designed to produce the EE trajectory
with scaled velocity, Psv. The desired trajectory of the EE, Pd, is

Figure 4 Conventional virtual impedance method

Figure 5 Lateral vibrations in conventional virtual impedance method

Figure 6 Two-dimensional representation of the proposed
configuration for the virtual impedance

Figure 7 The repelling force by the human-like steering mechanism
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determined as the trajectory of the virtual point mass, moving
under the attracting and repelling forces from the obstacles as
well as the virtual springs and dampers. However, the position
controllers of the joint actuators need the desired and actual joint
space trajectories (u d and u a), to calculate the joint torques, u.
Therefore, the IKM of the robot is required. IKM of FUM
SCARA is briefly introduced in Appendix 1. Appendix 2
provides a complete list of the symbols and notations used in this
paper.

3. Simulations

In this section the performance of proposed method is
evaluated in three different sets of simulations by considering:
1 a single stationary obstacle;
2 multiple stationary obstacles; and
3 a single moving obstacle

around the ideal path of the EE. In all the simulation sets, the
three-dimensional (3D) path of Figure 9(a) is considered as the

Figure 9 The ideal path used in the simulations

Figure 8 Block diagram of the proposed method
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ideal EE trajectory. The ideal trajectory is a straight path from the
point (0.5, –0.3, –0.05)T to (0.6, 0.3, –0.18)Twith zero speeds and
accelerations in all DOF at the beginning and end points of the
path. The ideal trajectory completes in 1 s. Therefore, t I=1(s).
Figure 9(a) also shows the EE trajectories as learnt by the

DMP. Moreover, Figure 9(b) compares the ideal time
trajectories of different DOF of the EE with those learnt by the
DMP. The good agreement between the ideal trajectories and
the ones learnt by the DMP indicates the suitable choice of the
DMP parameters. The results are obtained for, ar = 15, b r =
ar/4,N= 300,as= ar/3 and s i= 1/N.
For all the simulation sets, the parameters of the virtual

impedance and the human-like steering mechanism are set as
Mv = 1(kg),Dvx =Dvy=Dvz = 40(Ns/m),Kvx=Kvy =Kvz = 400
(N/m), g = 2 � 106(1/(rad � s)), aw = 10/p(1/rad) and ar = 30
(1/m).

3.1 Single stationary obstacle
In the first set of simulations, a stationary obstacle is put at
three different locations around the ideal path. Therefore, the

first simulation set includes three separate simulations of
evaluating the performance of the proposed method for each
location of the obstacle.
The results of the first set of simulations are depicted in

Figure 10, where the obstacle locations I, II and III refer to the
points with coordinates of (0.725,0,–0.115)T, (0.65,0,–0.115)T

and (0.575,0,–0.115)T, respectively. Figure 10(a) shows the 3D
actual paths tracked by the EE, along with its ideal path. It is
clear that the proposed algorithm has successfully distracted the
EE from its ideal path to prevent it from hitting the obstacles.
Figure 10(b) depicts the time trajectories of the three DOF of

the EE in the first simulation set. It is observed that the fuzzy
inference engine has successfully altered the time constants
according to the obstacles location. As shown in Figure 10(b),
when the obstacle is put closer to the workspace, it takes longer
for all the DOF to reach their final values. For example, when
there is no obstacle, the xDOF of the EE reaches its final value
of 0.6(m) in about 1 s. However, when the obstacle is put at
location III, it takes almost 1.5 s for the xDOF of the EE to get
to its final value. Although all the simulations are performed for

Figure 10 Results of the first set of simulations for a single stationary obstacle put at different locations around the ideal path
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1.5 s, in the case of no obstacle and far obstacles, the robot
DOF have clearly reached their final value before the final time
of 1.5 s. The delays are appeared because the FIS has down-
scaled the EE velocity, as the result of detecting nearby
obstacles. Note that no oscillations are observed in the motion
of the EE, before and after passing the obstacles.
The successful performance of the fuzzy inference engine is

better shown in Figure 10(c), which illustrates the variations of
the non-dimensionalized DMP’s time constants. As shown in
Figure 10(c), the time constant increases when the obstacle is
put closer to the workspace. In the first simulation set, the
obstacles are stationary. That is why the time constants in
Figure 10(c) have fixed vales during the entiremotion.

3.2Multiple stationary obstacles
In the second simulation, multiple stationary obstacles are put
around the ideal path. As shown in Figure 11(a), the stationary

obstacles are simultaneously put around the ideal path at three
points with coordinates of (0.55, 0, –0.11)T, (0.6, –0.15, –
0.08)T and (0.6, 0, –0.14)T. Figure 11(a) also shows the ideal
path of the EE as well as the actual path followed by the EE.
Figure 11(b) compares the time trajectories of the robot

DOF in the case of multiple obstacles with that of the ideal
path. According to Figure 11(b), when the obstacles are put
around the ideal path, it clearly takes a longer time for all the
robot DOF to get to their final values. This observation
along with the increased DMP’s time constant, depicted in
Figure 11(c), are clear indications of successful performance
of the FIS.
Note that the same time constant would have obtained if a

single stationary obstacle was put at the coordinate of (0.55,
0, –0.11)T. This is due to the fact that the FIS sets the DMP’s
time constant according to the most unsafe obstacle. Clearly,
in the case of stationary obstacles where all the velocity

Figure 11 Results of the second simulation for multiple stationary obstacles put around the ideal path
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projections are zero, the most unsafe obstacle is the one with
the smallest distance from the robot’s base.
However, all of the three obstacles contribute in distracting

the EE from its ideal path, by applying the repelling forces to
the virtual mass. Figure 12(a) illustrates the time history of the
components of the repelling forces, applied from each obstacle.
The components of the total repelling force are also depicted in
Figure 12(a). Themagnitude of the total repelling force applied
to the virtual mass is shown in Figure 12(b), along with the
magnitude of the obstacle forces.

3.3 Singlemoving obstacle
In the third simulation, a moving obstacle is considered to
travel on a circular path around the ideal path. The results of
the third simulation are shown in Figure 13.
Figure 13(a) shows the ideal and actual paths of the EE along

with the circular path of the moving obstacle. The time
trajectories of the robot’s DOF are depicted in Figure 13(b)
and the time constant of the DMP is depicted in Figure 13(c).
Here again, the successful performance of the FIS in increasing
the DMP’s time constant, or equivalently down scaling the EE
velocity, is clearly evident from Figure 13(b) and 13(c).
It is noteworthy that, unlike the stationary obstacles, the

moving obstaclemoves toward the workspace and away from it.
Therefore, the inputs to the FIS (rn and vn) change during the
simulation and the FIS outputs a varying time constant, as
shown in Figure 13(c).
The components and the magnitude of the repelling force

applied from the moving obstacle to the virtual mass, are
respectively depicted in Figure 14(a) and 14(b).
To gain a better insight of how the robot avoids the moving

obstacle, four snapshots of the robot structure are shown if
Figure 15. Note that in Figure 15, the desired and the actual

paths of the EE and the obstacle trajectory are the same as
Figure 13, displayed from another angle of view.

4. Experiments

Practical performance of the proposed method is evaluated in a
couple of experiments performed on FUMSCARA robot. This
robot is used to run two-dimensional experiments. Therefore,
in the following tests, only the two first joints of the robot are
actuated and only the two first links of the robot are considered
whose lengths are l1 = 0.4(m) and l2 = 0.3(m).
A TSPMDI interface board by tsPishro Company is used to

connect the motor drives with a supervising PC on which the
proposedmethod is implemented in a C code running at 50Hz.
The interface board communicates with the PC through an
Ethernet connection withUserDatagramProtocol (UDP).
Two separate cameras are installed above the workspace. A

high-definition (HD) camera of a brand new smart phone is
used for monitoring purposes, while a Pixy (CMUcam5) vision
system (Lee et al., 2015; Dang and Kwon, 2016) is used to
obtain the position of the EE and the obstacle. The Pixy camera
outputs the position data at 50 Hz. As shown in Figure 16, a
blue ball is used to indicate the location of the EE, and a purple
ball is used to indicate the obstacle location.
In both of the experiments, the ideal path of the EE is chosen

as a straight path from {0.5, –0.3, –0.05}T to {0.6, 0.3, –0.05}T

in 2 s. The z coordinate of the robot is locked at z = –0.05 to
obtain a 2D motion and the Pixy camera is calibrated to give x
and y data at the height of the indicating balls rather than the
actual position of the EE.
As shown in Figure 17, the coordinate system W, whose

origin is located at the robot base, is defined for the Pixy camera
to report the locations of the balls. The Pixy Camera is then
calibrated to measure the coordinates of the balls with respect

Figure 12 Repelling forces applied to the virtual mass from multiple stationary obstacles
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to the origin of the coordinate system. The distance from
obstacle to the robot’s base is then calculated as

jP j
oj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j
o

� �2
1 y j

o

� �2q
where, x j

o; y j
o

� �T
is the location of the

obstacle, reported by Pixy camera. The position vector of the

obstacle is also formed as Pj
o ¼ xjo y j

o

� �T . The obstacle
velocity vector is calculated by subtracting two successive
position vectors and dividing by the sampling time of the Pixy

camera, i.e. 20 ms. Therefore, _P
j
o ¼ Pj

o i11ð Þ��
Pj

o ið ÞÞ=0:02 ¼ _xjo _y j
o

� �T . Finally, the velocity projection is
obtained by calculating the inner product

Pj
o � _P

j
o ¼ xjo _x

j
o 1 y j

o _y
j
o.

In the first experiment, the obstacle ball is positioned
stationary in the workspace at the same height of the EE ball. In
the second experiment, an operator holds the obstacle ball at

the same height of the EE ball and moves it arbitrarily around
the ideal path. Practical performance of the proposedmethod is
illustrated in Figures 18 and 19 by providing some snapshots of
the FUM SCARA avoiding the stationary and the moving
obstacles, respectively.
The snapshots in Figures 18 and 19 show that the proposed

method has successfully distracted the EE from the ideal path
to avoid collision with the obstacle.
In the first experiment, the robot has reached to the final

position in about 3.1 s, while in the second experiment, it took
about 3.5 s. It could be justified by the fact that in the second
experiment, the operator has put the obstacle ball closer to the
workspace, compared to the first experiment.
As previously mentioned, the method is implemented in a C

code running at 50Hz. Therefore, it is clear that each cycle of the
proposed method requires less than 20 ms in a PC with 4

Figure 13 Results of the third simulation for a moving obstacle
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gigabytes of RAMand a 2.4 gigahertz CPU.However, it is not an
easy task to calculate the exact required time for each cycle of the
proposed method in a C code because of the latencies caused by
theWindows operating system. To provide a better estimation of
the cycle time, the proposed method is implemented in a
Simulink real-time (formerly known as XPc Target) scheme
where no operating system is active other than the Simulink code.
In this approach, the required time for each cycle of the proposed
method, excluding the time needed for obtaining the outputs of
the Pixy camera, is calculated about 30 ms. Note that this cycle
time is obtained in a relatively powerful PC and will definitely
increase in the case of using a weaker PC or using a
programmable logic controller (PLC). Therefore, the proposed
method has a very low computational load and the overall cycle
time of the method is governed by the time required by the vision
system to report the locations.

The provided experiments evaluate the practical performance
of the proposed method in 2D motions. In the case of 3D
motions in real environments, there will be a need for extra
cameras and more advanced vision systems to obtain the 3D
locations of the EE and the obstacles. If feedbacks from joint
angles of the robot (encoder feedbacks from joint motors) are
accessible, it may be easier to use forward kinematic model of
the robot to calculate the location of the EE. In such cases, the
vision system will be only responsible for obtaining the
locations of the obstacles.

5. Conclusion

In this paper, a novel method is proposed to implement the
concepts of velocity scaling and obstacle avoidance to increase
the safety of the robots’ operation. A fuzzy DMP framework is

Figure 15 Snapshots of the virtual model of FUM SCARA, avoiding the simulated moving obstacle

Figure 14 Repelling forces applied to the virtual mass from the moving obstacle
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proposed for downscaling the EE velocity when nearby
obstacles are detected. The velocity projection of the obstacle
and its distance from the workspace are considered as inputs to
a FIS which determines the DMP’s time constant. The fuzzy
DMP framework is then combined with a new configuration of
the virtual impedance, enabling a non-oscillatory convergence
of the EE to the desired path in all directions. The human-like
steering mechanism is used to apply repelling forces to the
virtual impedance. The combination of the fuzzy DMP
framework with the virtual impedance and the human-like
steering mechanisms provides the velocity scaling and the
obstacle avoidance capabilities for the robot.
Some simulation and experiments are performed on a

custom made SCARA type robot. The performance of the
proposed method is evaluated in single and multiple stationary
obstacles as well as moving obstacles. The obtained results
clearly verify the practical performance of the proposed
method. The EE speed is effectively downscaled when nearby
obstacles are detected and the obstacles are successfully
avoided.
Velocity scaling and obstacle avoidance are two common

safety considerations for the robots working in unstructured
environments. These considerations are simultaneously
handled by the proposed method. Simple structure and low
computational cost of the DMP frame work and virtual
impedance technique provide the capability of real-time
implementation for the proposed method with medium to low
range supervisory controllers. Moreover, the proposed method
simply synchronizes the velocity scaling among the entire
robot’s DOF while maintaining the smoothness and continuity
of the trajectory. This removes the need for extra formulations
to ensure the DOF synchronization and to guarantee the
trajectory smoothness and continuity. This is another aspect of
the simplicity of the proposed method which facilitates its low-
cost real-time implementation. Consequently, it may be
possible to implement the proposed method on industrial
robots with already developed supervisory controllers having
limited performances.
In this paper, the collision is only considered between the end

effector and obstacles. However, future works may focus on
avoiding the collision of robot’s links with the obstacles as well
as the collisions between the robot’s links. Practical
implementation of the proposed method on a robot with more
DOF and practical evaluation of the possibility of

Figure 16 Test-bed for performing the experiments

Figure 17 the coordinate system W, defined for the Pixy camera to
report the locations

Figure 18 Snapshots of FUM SCARA avoiding the stationary obstacle

Figure 19 Snapshots of FUM SCARA avoiding the moving obstacle
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implementing the proposed method on a low range PLC may
also be focused in the future works.
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Appendix 1. Inverse kinematic model of FUM
SCARA

In this paper, the performance of the proposed algorithm is
evaluated through implementation on FUM SCARA. The
required parameters for defining the IKM of FUM SCARA
are illustrated in Figure A1. Knowing the joint angles, the
position and orientation of the EE are obtained as follows.

x
y
z

2
4

3
5 ¼

l1c1 1 l2c12
l1s1 1 l2s12

�d

2
4

3
5 (A1)

where, c1 = cos(u 1), s1 = sin(u 1), c12 = cos(u 11u 2) and s12 =
sin(u 11u 2).
Therefore, the IKM of the FUM SCARA is obtained as the

following closed-form equations

c2 ¼ x2 1 y2 � l21 � l22
� �

2l1l2
(A2)

u 2 ¼ atan2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c22

q
; c2

� �
(A3)

u 1 ¼ atan2 y; xð Þ � atan2 l2s2; l1 1 l2c2ð Þ (A4)

d ¼ �z (A5)

in which c2 = cos(u 2).
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Figure A1 Kinematic parameters of FUM SCARA

Velocity scaling and obstacle avoidance

Iman Kardan, Alireza Akbarzadeh and Ali Mousavi Mohammadi

Industrial Robot: An International Journal

Volume 45 · Number 1 · 2018 · 110–126

124

D
ow

nl
oa

de
d 

by
 5

.1
61

.1
27

.8
6 

A
t 1

5:
58

 2
9 

D
ec

em
be

r 
20

17
 (

PT
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IR-02-2017-0035&iName=master.img-019.jpg&w=419&h=203


Appendix 2

Table AI Symbols and notations

Symbols Description

Acronyms
DMP Dynamic movement primitive
EE End-effector
DOF Degree(s)-of-freedom
IKM Inverse kinematic model
FIS Fuzzy inference system

Variables
t DMP’s time constant
tn Non-dimensionalized DMP’s time constant
t I Ideal DMP’s time constant (duration of the ideal trajectory)
ar, b r Constants affecting learning and generalization of the DMP
P Vector of trajectory variables
Pgoal Vector of the goals values of the trajectory variables
Pinit Vector of the initial values of the trajectory variables
Pq; €P q;P€q Position, velocity and acceleration vectors of the qth sample of the ideal trajectory, used for teaching the DMP
PI Ideal EE trajectory
Psv Ideal EE trajectory with scaled velocity
(xsv, ysv, zsv)

T The point on Psv to which the virtual point mass is connected
Pd Desired EE trajectory (trajectory of the virtual point mass)
(xd, yd, zd)

T Location of the virtual point mass
Pa Actual EE trajectory
Pj

o Trajectory of the jth obstacle
x jo; y

j
o; z

j
o

� �T
Location of the jth obstacle

P State vector of the DMP system
f Vector of forcing terms in DMP
f *q Target value of the forcing term for the qth sample of the ideal trajectory
c i(s) DMP’s ith basis function
wi ith column of the DMP’s weighting matrix
W DMP’s weighting matrix
s i width of the ith basis function of the DMP
ci center location of the ith basis function of the DMP
s DMP’s phase variable
sq Phase variable for the qth sample of the ideal trajectory
as DMP’s phase coefficient
Ci Accumulated matrix of ith basis function
Ck Accumulated vector of the target forcing value for kth DOF
Kk Accumulated vector of j q(k) for k

th DOF
j q Scaled phase variable for the qth sample of the ideal trajectory
rn Non-dimensionalized distance from obstacle to the robot’s base
rw Radius of the workspace sphere
vn Non-dimensionalized projected obstacle velocity
j(ve)maxj Absolute maximum velocity of the EE
Al [ {F,C,VC} Membership functions of the input rn, corresponding to the l

th rule of the FIS (VC = very close, C = close, F = far)
Bl [ {P,Z,N} Membership functions of the input vn, corresponding to the l

th rule of the FIS (P = positive, Z = zero, N = negative)
Cl [ {T1,T2,T3,T4} Membership functions of the output tn, corresponding to the l

th rule of the FIS (T1 = 1, T2 = 2, T3 = 3, T4 = 4)
bl Center value of the output membership functions, corresponding to the lth rule of the FIS
u d Desired joints trajectory
U Joints torques
Mv,Kv,Dv Mass, stiffness and damping coefficients of the conventional virtual impedance
Kvx,Kvy,Kvz Stiffness of the virtual springs located in x, y and z direction
Dvx, Dvy, Dvz Damping of the virtual dampers located in x, y and z direction

F j
o ¼ Fjox; F

j
oy; Fjoz

h iT
Force vector from jth obstacle to the virtual mass

(continued)
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Table AI

Symbols Description

V j
rel Relative velocity of the EE with respect to jth obstacle

P j
do Position vector of jth obstacle relative to the EE

€V
j

Repelling acceleration from jth obstacle
w j Angle formed between vectors V j

rel and P
j
do

g , ar, aw Constant coefficients in the human-like steering mechanism
R Rotation matrix of the human-like steering mechanism
l1, l2 Lengths of the two first links of FUM SCARA
d Translational displacement of the third link of FUM SCARA
Subscripts
i = 1. . .N ith basis function
q = 1. . .m qth sample of the ideal trajectory, used for teaching the DMP
k = 1, 2, 3 kth DOF of the EE corresponding to x, y and z DOF
l = 1. . .9 lth rule of the FIS
j = 1. . .p jth obstacle
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