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Abstract Many studies show that the human
energy-related behaviors have a significant impact
on the return of Energy Efficiency Programs (EEPs).
However, studies that aimed at increasing the energy
savings from the EEPs are still limited. In this paper,
a Genetic Agent-Based (GAB) framework has been
proposed to enhance the return of a typical EEP by
simulating social network and energy behavior attri-
butes and finding the best participants among a
target community. Several attributes are considered
for creating the agent-based model of households
and numerically representing their interactions with
the EEP or within their social network. The im-
provement of the EEP using the GAB framework
is tested on a social network consisting of 56 house-
holds. The simulation results show that by accurate-
ly selecting participants using the presented frame-
work, the amount of energy saving could increase
up to ten times. This ultimately indicates the con-
siderable impact of the social network on the EEP
performance. In other words, to have an efficient
EEP in the long term, the social network attributes
such as network degree and strength of connections
should be also considered in decision-making along
with the energy-related attributes.

Keywords Energy efficiency programs . Occupancy
interventions . Social impact . Agent-based simulation .

Genetic algorithm

Introduction

Recently, global climate change has emerged as an
important international issue, and Energy Efficiency
Programs (EEPs) research has become a major fo-
cus worldwide. Typical EEPs have been tradition-
ally introduced with physical changes to residential
buildings such as building envelopes (Cheung et al.
2005; Harvey 2009) and equipment (Lanzisera
et al. 2012). Studies on occupant behavior revealed,
however, that human actions play a major role in
the success of such programs and more attention
should be given to this topic (Delzendeh et al.
2017; Hanus et al. 2018; Morgenstern et al. 2016;
Hoicka and Parker 2018). For example, due to
different occupancy behaviors, one home could
consume 2.6 times more electricity than another
identically equipped home (Parker et al. 2008), or
two similar buildings could have an energy con-
sumption ratio of 5-to-1 (Diamond 1984). Here, a
phenomenon known as the “take-back” or “re-
bound” effect is worth mentioning, whereby the
households tend to increase their energy consump-
tion after physical promotions, so that improving
households’ energy behavior is more important than
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technical improvements (Sorrell et al. 2009;
Abdessalem and Labidi 2016). Therefore, physical
improvements without taking human behaviors into
account cannot be as effective as expected (Gynther
et al. 2012; Winther and Wilhite 2015).

Since running the EEPs require adequate investment,
particularly on a large scale, increasing the return on these
projects is of great importance for decision makers and
investors (Sauma et al. 2016). The return (the amount of
energy saving) from anEEP can be divided into short term
or direct impact and long term or indirect impact
(Ekpenyong et al. 2014). The short-term impact is con-
tributed to the direct energy savings by target individuals
(referred as participants in this paper) during the imple-
mented EEPs such as energy feedback programs
(Dougherty and van de Grift 2016), workshops (O’connor
and Macur 2018), and green marketing (Cho et al. 2015).
The long-term impact is the result of social interactions
between program participants and nonparticipants, which
could change the EEP effect on participants or spread the
energy-saving behavior through the nonparticipants.

Valuable empirical (Abrahamse et al. 2005; Vine
et al. 2014; Hoicka and Parker 2018) and simulation
efforts (Anderson et al. 2013; Azar and Al Ansari
2017; Azar and Menassa 2013; Du et al. 2016;
Ekpenyong et al. 2014; Ekpenyong et al. 2015;
Chen et al. 2012; Zarei and Maghrebi 2020) have
been made to enhance the performance of EEPs con-
sidering human factors. The results in (Peschiera and
Taylor 2012) show that the energy consumption of a
typical building is affected by not only the behavior
of its own occupants but also by occupants from
neighboring buildings. Residents can thus reduce
energy use by sharing information on energy effi-
ciency in a social network (Shimokawa and Tezuka
2014). In addition, the use of energy feedback meth-
od shows that individuals tend to decrease their en-
ergy use when comparative information about con-
sumption is provided (Anderson et al. 2017; Ma et al.
2018). These studies also reported a gradual decline
in the impact of interventions over time.

In the simulation studies, the impact of several factors
on the return of the EEPs have been investigated includ-
ing social network types and their characteristics
(Anderson et al. 2013), multilayer program efficiency
(Azar and Al Ansari 2017), word-of-mouth effect
(Bastani et al. 2016), and indirect energy saving estima-
tion (Ekpenyong et al. 2014), to name but a few. For
instance, a mathematical model that describes the

reduction of information propagation over time in a
social network is proposed for expected energy cost
savings (Ekpenyong et al. 2015). The results show that
the increase in connections among members of a social
network enhances the potential for increasing energy
saving over time. This model, however, neglects the
differing strength of the links between people covered
by another work by (Du et al. 2016). Although the
upgraded model has a more realistic representation for
social networks, the difference in the susceptibility of
people to energy conservation issues is not taken into
account.

The current study focuses on the impact of social
network on the performance of EEPs in residential
buildings. In most EEPs, it is not possible to directly
engage with all households in a target community. A
number of households will, therefore, be selected as
the EEP participants. In this regard, previous works
have shown that the selection of participants could
change the energy saving both directly and indirectly
(Du et al. 2016; Ekpenyong et al. 2014, 2015). Using
agent-based simulation integrated with genetic algo-
rithm, a new framework is suggested in this paper to
find the near-optimum targets among a social net-
work of households in order to participate in a typical
EEP and provide more short- and long-term energy
savings. This framework, called the Genetic Agent-
Based (GAB) framework, has been tested in a com-
munity of 56 households whose social structure is
derived from (Ekpenyong et al. 2014), to identify the
best EEP participant combination.

The rest of the paper will be structured as follows.
The first section describes the GAB framework and the
concepts used. The proposed framework is carried out
on a simulation experiment in the subsequent section
and the results are discussed. Finally, in the last section,
some conclusions are drawn.

Methodology

The first step in a typical EEP is to find the potential
participants and encourage them to reduce their energy
consumption by either upgrading equipment or improv-
ing their energy consumption habits (Gynther et al.
2012). The purpose of this study is to provide a general
framework for finding the best EEP participants. The
proposed framework, GAB, is made up of two main
components (Fig. 1(a))
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(1) Genetic Algorithm module (GA)
(2) Agent-Based Model (ABM)

GA is responsible for heuristically finding the near-
optimum solution and producing feasible candidates as
the input of ABM. These solutions are a list of IDs
representing the potential participants attending in the
EEP (Fig. 1(b)). ABM’s role is to estimate the energy
saving in the target community caused by the EEP. This
task is accomplished by simulating the participants’
behavioral change during the EEP aswell as considering
individuals’ interactions within their social network.
Details of these processes are described below.

Genetic algorithm (GA) module

The Genetic Algorithm (GA) used in this study is a
natural selection process inspired by the theory of natu-
ral evolution of Charles Darwin, where the best individ-
uals are selected in order to produce next-generation
offspring (Koza 1994). In GA, chromosomes are candi-
date solutions and consist of genes. Each gene contains
the value of a variable to be optimized, i.e., a chromo-
some is a gene string containing the values of all

variables of the optimization. A fitness function mea-
sures the goodness of the chromosomes. By randomly
generating a set of chromosomes called population, GA
is initialized. Then there are three main operations:
selection, crossover, and mutation to search for the
fittest chromosome, which has the highest/lowest value
of the fitness function (depending on minimizing or
maximizing the fitness function). Two chromosomes
are selected randomly as crossover parents. The fitter
chromosomes are more likely to be chosen. Some parent
genes are randomly swapped in the crossover to produce
offspring with inherited characteristics. Lastly, mutation
is performed by altering randomly the value of one or
more genes to counteract trapping in a local optimum
solution. In each iteration of this process, a new gener-
ation of chromosomes is created and evaluated by the
fitness function. The algorithm ends when the chromo-
some population has converged. One of the common
conditions for stopping iteration is to reach the maxi-
mum number of generations [see (Kinnear et al. 1999)
for further information about GA].

A chromosome in this study consists of a defined
number of binary cells (representing the number of
households), the value of which indicates which indi-
viduals are selected for the EEP involvement. It should

Fig. 1 (a) GAB framework; (b) Composition of chromosome in GA
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be noted that all acceptable chromosomes are expected
to have a similar number of participants as a predefined
value. As illustrated in Fig. 2, ABM will calculate the
fitness function (details in the next section) for all can-
didates to find the one with maximum fitness function in
the generation after initializing the first generation of
possible solutions (participant list for EEP) and random-
ly setting the optimum candidate. If it has more fitness
function than the previous optimum candidate, it will be
replaced as an optimum candidate. Next, some candi-
dates will be selected for the GA operations including
two-point crossover and swap mutation (Fig. 3). This
step is repeated until new acceptable chromosomes are
produced that show the exact number of participants.
Then in the new generation, the presence of the opti-
mum candidate will be checked. If during GA opera-
tions the optimum candidate were changed, it would be
added to the new generation again. This so-called elit-
ism strategy will increase the speed of optimum conver-
gence of candidates (Kinnear et al. 1999). Finally, ABM
will compute the candidates’ fitness function in the new

generation, and this cycle will be performed until the
number of generations is equal to the maximum number
of generations defined.

Agent-based model (ABM)

The main components of an agent-based model are
autonomous agents that act intelligently and interact in
an environment (Macal 2016). In modeling complex
systems, the agent-based structure, flexibility, and com-
putational advantages have made them powerful tools.
In addition, a standard protocol with seven steps called
Overview, Design Concepts, and Details (ODD) is pre-
pared for researchers to build more reproducible and
readable ABMs. The simulated system can behave very
similar to the actual system after accurately defining the
behavior of each agent and the relationship of agents
within the environment. Consequently, to obtain a set of
related data, the simulated system’s reaction to each
strategy or any other plausible intervention can be real-
istically simulated. Because of the dynamic nature of the

Fig. 2 Finding near-optimum participant list using GAB framework
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occupants, a residential building with several occupants
can be defined as a complex system, and thus agent-
based modeling is a suitable tool for modeling such
systems.

ABM calculates the fitness function of the proposed
candidates by GA in the GAB framework suggested in
this paper (Fig. 1). The fitness function is the amount of
energy savings in a target community by deploying an
EEP. N nodes on a network can represent a community
with N agents (households), and edges on the network
represent the connections between the nodes. They are
said to be connected when there is mutual recognition of
friendship between two households. One of the ABM
inputs is the social structure of agents in the community.
Furthermore, each agent has some variable and constant
attributes to be considered in the ABM (Table 1).

Energy Index (EI), which is dynamic and changes
due to the EEP or the social interactions, is the primary
attribute of interest. The EI of an agent is calculated
using the Min-Max method of normalization (Patro and
Sahu 2015):

EIi ¼
EIni−EInmin
EInmax−EInmin

" 100 ð1Þ

where,EInmax,EInmin, and EIni are the maximum annual
electricity consumption per unit area among the agents,
minimum annual electricity consumption per unit area
among the agents, and the annual electricity consump-
tion per unit area for agent i, respectively.

Participants are encouraged in a common EEP to-
ward efforts to save energy. For example, energy-
efficient products known as green marketing will be
given or introduced (Ekpenyong et al. 2014) or eco-
feedback programs are conducted (Francisco et al.
2018), in which the participants are given comparative
information about their energy consumption. This pro-
cess could be mathematically described as the following
general equation:

EItþ1
i ¼ 1−εi " ϵð Þ " EIti ð2Þ

where EItþ1
i and EIti are respectively denoted to the

energy index of i after and before the EEP. εi indicates
the susceptibility of agent i, which should be obtained
for all of the households in the target community. Final-
ly, ϵ reflects the success rate of the EEP. This factor
represents the program quality and the other potential
issues that could limit participants’maximum change in
energy consumption (interest in change, ability to

Fig. 3 Two-point crossover and swap mutation

Table 1 Agent attributes

Attribute Description

ID Agent ID. A unique and constant identification code for
each agent

EIn Energy Intensity. The annual energy consumption of
each household per unit area (kw/m2) obtained from
historical data

A Area of the house (m2)
EI Energy Index. The annual energy intensity of each

household at a scale of 1 to 100

ε Susceptibility. The household’s adaptation rate to
change their energy-use behavior by external influ-
ence on a scale of 0 to 1

Degree Degree of connections. Number of social connections

Net Network list. List of the social connections
(relationships)
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change, change effectiveness, etc.). For all EEP partic-
ipants, the Eq. 2 is implemented.

Social interactions in the target community could
change the energy use of all agents after the program.
The amount that an agent changes its EI during the
interactions with the other connected agents is calculat-
ed on the basis of Eq. 3 derived from the models of
mathematical opinion change in psychological studies
(Friendkin 2001; Deffuant et al. 2002).

EItþ1
i ¼ 1−εið Þ " EIti þ εi " ∑

j∈Net ið Þ
ωij " EItj ð3Þ

where EItþ1
i and EIti are respectively denoted to the

energy usage of agent i at time t + 1 and t, which are
calculated based on eq. 4. εi indicates the susceptibility
of agent i, and ωij reflects the weight-factor that repre-
sents the strength of the relationship between agent i and
j. The weight-factor for each pair of connected agents
can be estimated based on (Friendkin 2001):

ωij ¼
Cij

∑kCik
ð4Þ

where Cij is the estimate of the probability of an inter-
personal attachment from agent i to agent j; and i ≠ {j,
k}; 0≤ωij≤1;∑ jωij ¼ 1.

In the final step, the average energy saving amount
from the EEP that is represented as the fitness function
of each participant list is assessed by the following
equation:

ES ¼
∑n0

1 EIi−EI
0

i

! "
" Ai

n0
ð5Þ

where n′ is the number of agents, EIi and EI
0

i are respec-
tively the energy index of agent i before and after the
EEP and social interactions, and Ai is the house area of
agent i. The purpose of this framework is to maximize
the Eq. 3 by choosing proper participants for the EEP.

To sum up, GA produces the potential lists of partic-
ipants as the candidate solutions in the GAB framework,
ABM calculates the candidates’ fitness function and
returns the value of fitness functions to the GA to
generate new candidates. This cycle will continue until
the maximum number of generations is reached. The
proposed framework will be tested in a simulation ex-
periment in the next section.

Simulation experiment

A small community of 56 households with their social
connections will be considered in order to examine the
GAB framework and five households will be selected as
the participants of the EEP (searching among 56

5

! "
¼ 3;

819; 816 different possible combination of participant
list). Clearly, by expanding the community’s population,
the number of possible solutions will increase signifi-
cantly, further justifying the need to use the presented
framework to find the near-optimum solution, which is
the best combination of participants. For example, the
total number of possible combinations to select 10 peo-
ple among 100 people is approximately 10 trillion
( 100

10

! "
¼ 1:73" 1013).

The social network between the households is
depicted in Fig. 4 that is taken from (Ekpenyong et al.
2014). The size and the color for each node represent
Degree and EI of each household (see Table 1). The
range of values for Degree and EI are between (1 to
17) and (13.7 to 84.8), respectively.

Table 2 provides the details of the required attributes
for the households. Note that it is beyond the scope of
this paper to develop amethod for quantifying household
susceptibility and remains for future works. There are,
however, some primitive questionnaires used to capture
this attribute in previous studies (Azar and Al Ansari
2017; Zhang et al. 2011). This experiment also aims to
demonstrate the applicability of the framework if the
required data are already available. Thus, a random
constant value is assigned to each agent from a normal
distribution (σ = 0.3, μ = 0.5), which is a common ap-
proach in the study of human energy behavior (Anderson
et al. 2013; Azar and Menassa 2013). EI for each agent
was derived from a lognormal distribution (σ = 0.388,
μ = − 0.924, γ = − 0.099), which is the best obtained fit
among known restricted distributions to the energy use
data acquired from a typical 100-unit residential building
located in Mashhad, Iran (Fig. 5). The result of
Kolmogorov-Smirnov (KS) statistic is 0.032, which is
less than the 0.05 common threshold confirming the
goodness of fit (Massey Jr 1951). Finally, all houses
are assumed to be similar in the total area (90 m2).

The GAB framework is programmed in Python 3.6
environment using NetworkX (Hagberg et al. 2008) as a
robust Python package for complex network analysis. In
this experiment, it is assumed that ϵ = 1 and the quality of
the EEP is set at maximum influence. However,
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sensitivity analysis demonstrated relative changes in sys-
tem behavior with different values for this factor, and the
suggested lists remains stable. GA’s parameters used in the
model are 500, 50, 0.5, and 0.2 for the number of gener-
ations, population size, crossover rate, and mutation rate,
respectively. Having run the model, the near-optimum
participant lists are identified as presented in Table 3.

Table 3 shows that the selection of participants has a
significant impact on the EEP return. The community’s
best combination of participants has nearly ten times
more energy saving than the worst combinations. This
conclusion could persuade the EEP planners to give more
attention to the selection process of the participants. An-
alyzing the attributes of the agents selected as the opti-
mum participants reveals that considering only one attri-
bute for selection (having a high degree of connections,

high energy consumption, high susceptibility, etc.) is not
sufficient to achieve a near-optimal solution. On the basis
of Table 4, it is not easy to identify the best participants
simply by inspecting their characteristics, and the final
result depends on many factors. Separate studies on this
ground (Du et al. 2016; Ekpenyong et al. 2014; Chen
et al. 2012) also found that people with the highest
connections do not necessarily result in maximum energy
savings during EEPs. In other words, there are many
factors involved in determining participants’ energy sav-
ing through an EEP such as the energy consumption
level, susceptibility, social connections, and strength of
connections, to name but a few. The GAB framework is,
therefore, an applicable tool to help decision-makers
search for the appropriate EEP participants and achieve
more energy savings within the community.

Fig. 4 Social network of 56 household
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Implications

This paper presents the GAB framework as a practical
solution for finding the near-optimum combinations of
participants in an EEP. As the evaluator of potential
participants, the framework integrated ABM with GA
as the generator of the potential lists. Although some
aspects of this issue have been addressed in the previous
works (Du et al. 2016; Ekpenyong et al. 2014), the model
in those papers has not considered the fact that people
have different reactions to the energy conservation ef-
forts. While in this paper, by using a behavior change
model from psychology studies in an agent-based envi-
ronment, the quantified influence of individuals is more
reliable. Moreover, the connections weights in (Du et al.

2016) is obtained by using a questionnaire survey, which
could be inaccurate. However, in the GAB framework,
the weights of connections are calculated by considering
the closeness of connections in the social network that
eliminate the weight acquisition step.

Limitations of the framework

There are some limitations to the GAB framework pre-
sented in this paper. First, survey data including the
details of social network connections and the attributes
of households (energy consumption and susceptibility)
are required. This reduces the scale of the social network
being targeted. One possible solution in the future might
be to find possible relationships between the different
attributes of households. Another limitation is to quantify
household susceptibility. Although this attribute is cap-
tured by some primitive questionnaires (Azar and Al
Ansari 2017; Zhang et al. 2011), further studies are
required to achieve more accurate methods. One sug-
gested way to gather social network details is to ask
people about their connections in person. For example,
Ekpenyong et al. provided a list of all 56 neighbors for
each household and asked them to select their friends
(Ekpenyong et al. 2014). Second, the GAB framework’s
reliability of the result depends on whether the sampled
social network is sufficiently representative. The results
will be less representative due to inappropriately selected
network. Finally, through social interactions or the EEPs,
many factors are responsible for the energy behavior
dynamics. Although a validated model of behavior
change is used in the presented framework, future studies
could addmore elements and details to bring the outcome
closer to the real-world events. Finally, the behavioral
change of participants by an EEP is simulated in a
general form. Since various EEPs have different factors,
they could be modeled separately in the future works.

Conclusion

The indirect energy saving through a community is due
to the individuals’ interactions within their social net-
work. This impact should be considered by decision
makers to identify the best targets for attending the
EEPs. This implies that a proper group of participants
will encourage the rest of the network to join the pro-
gram in a mass roll-out or toward more energy-efficient

Table 2 Community data

ID EI ε Degree ID EI ε Degree

1 16.5 0.79 11 29 48.4 0.58 5

2 32.6 0.22 13 30 39.2 0.7 6

3 13.9 0.17 17 31 41.3 0.23 6

4 35.0 0.12 10 32 34.4 0.8 4

5 50.8 0.76 11 33 35.3 0.29 5

6 45.2 0.7 10 34 29.6 0.87 1

7 36.5 0.78 11 35 46.6 0.4 5

8 20.3 0.55 8 36 30.4 0.53 7

9 44.1 0.22 15 37 33.5 0.38 6

10 47.2 0.48 1 38 22.4 0.13 2

11 32.3 0.17 3 39 55.3 0.65 3

12 65.8 0.61 6 40 41.7 0.25 4

13 65.3 0.61 3 41 43.4 0.51 3

14 18.6 0.21 2 42 18.4 0.4 2

15 57.8 0.57 4 43 28.6 0.78 4

16 43.6 0.39 2 44 19.1 0.58 8

17 34.9 0.79 6 45 29.1 0.26 9

18 48.1 0.93 4 46 34.2 0.67 4

19 32.3 0.12 3 47 39.7 0.93 6

20 31.8 0.52 16 48 36.7 0.02 5

21 35.8 0.26 2 49 53.1 0.42 5

22 55.2 0.39 10 50 84.8 0.13 3

23 34.2 0.75 1 51 32.6 0.83 7

24 21.4 0.8 2 52 43.3 0.66 5

25 25.1 0.72 4 53 28.1 0.2 2

26 29.3 0.31 7 54 33.2 0.77 1

27 39.8 0.64 4 55 38.7 0.16 9

28 56.0 0.1 8 56 34.3 0.92 1
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behaviors. A Genetic Agent-Based (GAB) framework is
developed in this study to integrate the social network
and the energy behavior attributes and identifies the best
combination of participants in a community. The opti-
mal combination of participants could spread more en-
ergy conservation behavior initiated by the EEP. To this

end, GA is used to generate the feasible candidate
solutions and heuristically search for the near-optimal
list of participants. This is integrated with ABM, a
powerful method for modeling the social networks and
examining the candidate solutions’ energy savings. In
this framework, households are simulated as the agents
with several attributes in a social network, and their
interactions with the EEPs or the other households are
described using a validated behavior change model. The
successful implementation of the GAB framework in
the simulation experiment confirmed its applicability by
increasing the EEP return. The results show that differ-
ent combinations of the participants could increase the
energy savings rate for the EEP up to 10 times. Addi-
tionally, it is revealed that there are several factors that
determine the outcome of an EEP such as project
type/quality/conditions or the many attributes for a giv-
en household. It is not recommended to find the best

Fig. 5 Lognormal distribution
fitting of scaled energy
consumption data

Table 3 Energy saving for participant combinations

Participant IDs ES Participant IDs ES
Best combinations Worst combinations

5, 6, 12, 13, 18 4.048 3, 10, 11, 23, 34 0.489

5, 6, 12, 18, 20 3.931 4, 11, 24, 39, 54 0.488

5, 6, 12, 18, 30 3.869 10, 14, 24, 48, 54 0.458

5, 6, 12, 17, 18 3.743 10, 11, 19, 34, 39 0.448

5, 6, 12, 15, 30 3.647 23, 38, 39, 48, 56 0.446

5, 6, 12, 30, 51 3.561 10, 11, 24, 38, 56 0.432
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decision by inspecting a limited number of attributes.
The influence of the social network is found to be
significant among the factors mentioned. As a result,
the social network attributes (degree and strength of
connections, etc.) should be also considered in the pro-
gram planning along with the other energy related attri-
butes. The presented framework is a practical and ex-
tendible approach for incorporating these attributes.
This will lead to better decisions made about the imple-
mentation of the EEPs.
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