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a b s t r a c t

Recently Georgiev, Luc, and Pardalos (2013), [Robust aspects of solutions in deterministic multiple objective

linear programming, European Journal of Operational Research, 229(1), 29–36] introduced the notion of ro-

bust efficient solutions for linear multi-objective optimization problems. In this paper, we extend this notion

to nonlinear case. It is shown that, under the compactness of the feasible set or convexity, each robust ef-

ficient solution is a proper efficient solution. Some necessary and sufficient conditions for robustness, with

respect to the tangent cone and the non-ascent directions, are proved. An optimization problem for calcu-

lating a robustness radius followed by a comparison between the newly-defined robustness notion and two

existing ones is presented. Moreover, some alterations of objective functions preserving weak/proper/robust

efficiency are studied.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

Due to perturbations and partial knowledge, in most practical

optimization problems we are faced with uncertainty. Popular ap-

proaches for dealing with uncertainty are stochastic optimization,

robust optimization and sensitivity analysis. Each approach has its

own advantages and disadvantages (Ben-Tal, Ghaoui, & Nemirovski,

2009; Bertsimas, Brown, & Caramanis, 2011). From the late 1990s, ro-

bust single-objective optimization has been being investigated. In ro-

bust single-objective optimization, we try to find a feasible point that

optimizes the worst case counterpart of the objective function, see

Ben-Tal et al. (2009) and Bertsimas et al. (2011) for more formal def-

inition and more details about robustness in single-objective opti-

mization.

The robustness of single-objective optimization has received con-

siderable attention, but the robustness of multi-objective optimiza-

tion has not been frequently considered. See e.g. Deb and Gupta

(2006), Ehrgott, Ide, and Schöbel (2014), Kuroiwa and Lee (2012) and

Georgiev, Luc, and Pardalos (2013), where this notion is studied from

different standpoints. Deb and Gupta (2006) focused on two defini-

tions for robustness. In the first definition, they call an efficient solu-

tion to be robust if it optimizes the mean of all objective functions. In

the second definition, the objectives do not change, but a constraint
is added which restricts the absolute difference between the mean
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nd original objective functions. There, the efficient solutions of the

odified problem are called robust. Ehrgott et al. (2014) extended the

orst case robustness notion from single-objective optimization to

ulti-objective programming. They further introduced some scalar-

zation methods which are able to produce a robust solution in worst-

ase sense. Bokrantz and Fredriksson (2014) studied more methods

f scalarization with respect to the definition given by Ehrgott et al.

2014). Moreover, Fliege and Werner (2014) utilized a special robust-

ess concept in portfolio optimization.

In a recent work, Georgiev et al. (2013) have defined the robust-

ess for linear multi-objective programming problems from a dif-

erent point of view. They have considered a perturbation stand-

oint, and have defined an efficient solution as a robust solution if

t remains efficient for small perturbations in the coefficients of the

bjective functions. Georgiev et al. (2013) studied their definition

onsidering different kinds of perturbations, including changing the

bjectives’ coefficients and adding a new objective function. They ob-

ained necessary and sufficient conditions and presented various nice

roperties of the robust solutions in linear cases. Goberna, Jeyakumar,

i, and Vicente-Pérez (2015) extended Georgiev et al.’s definition for

inear multi-objective optimization problems under perturbations of

he coefficients of both objective functions and constraints.

In this paper, we extend the definition given by Georgiev et al.

2013) to nonlinear multi-objective programming problems. We

how that, under the compactness of the feasible set or convexity,

he set of robust efficient solutions is a subset of the set of proper ef-

cient solutions. Some necessary and sufficient conditions for robust

olutions with respect to the tangent cone and non-ascent directions,

nder appropriate assumptions, are given. A robustness radius is
EURO) within the International Federation of Operational Research Societies (IFORS).
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alculated. The relationships between the robustness notion con-

idered in the present paper and two worst case-based definitions,

tudied by Fliege and Werner (2014) and Ehrgott et al. (2014), are

ighlighted. Two kinds of modifications in the objective functions are

ealt with and the relationships between the weak/proper/robust ef-

cient solutions of the problems, before and after the perturbation,

re established. Some examples, to clarify the theoretical results, are

iven.

The rest of the paper unfolds as follows. In Section 2, some prelim-

naries are given. In Section 3, robustness is defined, its relationship

ith proper efficiency is established, and some necessary and suffi-

ient conditions are proved. Section 4 is devoted to the robustness

adius calculation. Section 5 contains some results about connections

etween the new and previously defined robustness definitions. In

ection 6, we study some alterations of the objective functions that

reserve weak/proper/robust efficiency.

. Preliminaries

This section is devoted to some preliminaries. For a set � ⊆ R
n,

e use the notations co�, int� and cl � to denote the convex hull,

he interior and the closure of �, respectively. For a vector d ∈ R
n, dT

tands for transpose of d, and for two vectors x and y, xTy denotes the

tandard inner product in R
n. For � ⊆ R

n,

os(�) :=
{

y ∈ R
n : ∃m ∈ N; y =

m∑
i=1

λiyi, λi ≥ 0,

yi ∈ �, i = 1, 2, . . . , m

}
.

f �1, . . . ,�l ⊆ R
n are convex sets, it can be shown that

os

(
l⋃

i=1

�i

)
=

{
l∑

i=1

λidi : di ∈ �i, λi ≥ 0, i = 1, 2, . . . , l

}
.

For � ⊆ R
n and x ∈ cl�, the tangent cone of � at x, denoted by

�(x̄), is defined by

�(x̄) =
{

d ∈ R
n : ∃({xi} ⊆ �, {ti} ⊆ R); ti ↓ 0,

xi − x̄

ti

−→ d

}
.

For x, y ∈ R
n, the vector inequality x < y means xi < yi for all i =

, 2, . . . , n. Analogously, ≤, >, and ≥ are defined componentwise.

Consider the following multi-objective optimization problem:

in f (x)

s.t. x ∈ �,
(1)

hat � ⊆ R
n is nonempty and f : � → R

p with p ≥ 2. In fact, f (x) =
f1(x), f2(x) . . . , fp(x)) for each x. In the whole of this paper, we as-

ume that fi is locally Lipschitz for each i, though some of the results

iven in this paper are valid without this assumption.

efinition 2.1. The vector x̄ ∈ � is called an efficient solution of

roblem (1) if there exists no x ∈ � such that f (x) ≤ f (x̄) and f (x) 
=
f (x̄).

efinition 2.2. The vector x̄ ∈ � is called a weak efficient solution of

roblem (1) if there exists no x ∈ � such that f (x) < f (x̄).

In order to obtain efficient solutions with bounded trade-offs,

eoffrion (1968) suggested restricting attention to efficient solutions

hat are proper in the sense of the following definition.

efinition 2.3. (Geoffrion 1968): The vector x̄ ∈ � is called a proper

fficient solution of Problem (1) if it is efficient and there is a real

umber M > 0 such that for all i and x ∈ � satisfying fi(x) < fi(x̄)
here exists an index j such that f j(x̄) < f j(x) and

fi(x̄) − fi(x)

f j(x) − f j(x̄)
≤ M.
Proper efficiency has been defined in different senses and has

een studied in several publications, including Benson (1979),

orwein (1977), Geoffrion (1968), Henig (1982) and Kuhn and Tucker

1951). In this paper, we use the above definition.

Our robustness notion in the present work is based on the matrix

erturbations. Hence, we need a matrix norm. For an m × n matrix

= [ci j], the Frobenius norm is as ‖C‖ =
(∑

i, j |ci j|2
)1/2

. Although we

se this norm, almost all of the provided results are valid with any

atrix norm.

In this paper, Clarke generalized gradient (Clarke (2013)) is used

n the presence of nonsmooth data.

efinition 2.4. Let f : R
n → R be Lipschitz near a given point x ∈ R

n.

he generalized directional derivative of f at x in the direction v,

enoted by f°(x; v), is defined as f ◦(x; v) := lim supy→x

t↓0

f (y+tv)− f (y)
t ,

here y is a vector in R
n and t is a positive scalar.

efinition 2.5. Let f : R
n → R be Lipschitz near a given point x ∈ R

n.

he generalized gradient of f at x, denoted by ∂ f(x), is defined as

f (x) := {ζ ∈ R
n : f ◦(x; v) ≥ ζ T v, ∀v ∈ R

n}.
If f : R

n → R is convex, then ∂ f(x) reduces to the subgradient set

n classic convex analysis (Clarke, 2013):

ζ ∈ R
n : f (y) − f (x) ≥ ζ T (y − x), ∀y ∈ R

n}.
efinition 2.6. (Clarke 2013): A function h : R

n → R is called regular

t x̄ if h◦(x̄; d) exists and h◦(x̄; d) = limt↓0
h(x̄+td)−h(x̄)

t for each d ∈ R
n.

Each convex function is a regular function (Clarke, 2013).

. Robust solutions and proper efficiency

We start this section by introducing the concept of robust solution

or nonlinear multi-objective optimization Problem (1). This defini-

ion extends Definition 3.1 in Georgiev et al. (2013).

efinition 3.1. Let x̄ ∈ � be an efficient solution of Problem (1). x̄ is

alled a robust efficient solution if there exists ε > 0 such that for any

× n matrix C with ‖C‖ < ε, the vector x̄ is an efficient solution for

in f (x) + Cx
s.t. x ∈ �.

(2)

The following theorem presents a nice property of the robust ef-

cient solutions. It proves that the set of robust efficient solutions is

subset of properly efficient solutions under the compactness of the

easible set.

heorem 3.1. Let � be compact. If x̄ is a robust efficient solution of Prob-

em (1), then x̄ is a proper efficient solution of Problem (1).

roof. Suppose x̄ is not a proper efficient solution. Then, there exist

xi}⊆�, increasing sequence {Mi} of positive real numbers, and k ∈
1, . . . , p}, such that Mi −→ +∞,

fk(xi) < fk(x̄) ∀i, (3)

nd

fk(x̄) − fk(xi)

f j(xi) − f j(x̄)
> Mi for each j ∈ {1, . . . , p} with f j(xi) > f j(x̄).

(4)

ince � is compact, without loss of generality, we may assume that

xi} converges to some x̂ ∈ �. Also, we define Qi = { j : f j(xi) > f j(x̄)}.
his set is nonempty because x̄ is efficient. Without loss of generality,

y choosing an appropriate subsequence, Qi is a constant set for all i

ndices. So, we denote it by Q. Two cases may occur for x̂; either it is

qual to x̄ or not. We consider these two possible cases and we get a

ontradiction in each case.
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As robustness of x̄, there exists some ε > 0 such that x̄ is an effi-

cient solution of Problem (2) for any matrix Cp × n with ‖C‖ < ε. Let

x̂ 
= x̄. We can choose matrix ‖C̃p×n‖ < ε such that

˜ j(x̂ − x̄) < −2δ, ∀ j ∈ Q, (5)

˜ j = 0, ∀ j ∈ {1, . . . , p} \ Q, (6)

for some δ > 0 (C̃ j denotes the jth row of C̃). Since f is bounded on �,

from (4), we have f j(xi) −→ f j(x̄) for each j ∈ Q as i −→ +∞. There-

fore, for sufficiently large i values, we have f j(xi) − f j(x̄) − δ < 0.

Hence, by (5), for sufficiently large i values, we get

f j(xi) + C̃ jxi < f j(x̄) + C̃ j x̄ − δ < f j(x̄) + C̃ j x̄, ∀ j ∈ Q . (7)

Also, by (6) and the definition of Q, for sufficiently large i values, we

have

f j(xi) + C̃ jxi ≤ f j(x̄) + C̃ j x̄, ∀ j ∈ {1, . . . , p} \ Q . (8)

Inequalities (7) and (8) contradict the robustness of x̄.

Now, we consider the latter case, i.e. x̄ = x̂. We assume that the

sequence { xi−x̄

‖xi−x̄‖ } converges to some nonzero vector d. We choose

˜p×n satisfying ‖C̃p×n‖ < ε and

˜ jd < −2δ, ∀ j ∈ Q, (9)

˜ j = 0, ∀ j ∈ {1, . . . , p} \ Q, (10)

for some δ > 0. Assume that Lj is the Lipschitz constant of fj on a

neighbourhood of x̄. By (4), for sufficiently large i values, we get

f j(xi) − f j(x̄) <
Lk‖x̄ − xi‖

Mi

< δ‖x̄ − xi‖. (11)

Therefore, by (9)–(11) we get inequalities (7) and (8) in this case

as well. These contradict the robustness of x̄ and the proof is

complete. �

The converse of the above theorem does not hold necessarily, even

for the linear case; see Example 3.2 in Georgiev et al. (2013).

The following example shows that the compactness assumption

of � in Theorem 3.1 is essential.

Example 3.1. Consider the multi-objective optimization problem

min ( − x, x3)

s.t. x ∈ R.

It is not difficult to see that x̄ = 1 is a robust efficient solution (con-

sider ε = 0.1), while the problem does not have any properly efficient

solution.

Now we are going to provide a characterization for robust efficient

solutions with respect to the non-ascent directions of the objective

function and the tangent cone of the feasible set.

Definition 3.2. d ∈ R
n is called a non-ascent direction of f at x̄ if dTξ

≤ 0, for each ξ ∈ ∂ fi(x̄) and each i ∈ {1, 2, . . . , p}. Hereafter, G(x̄) de-

notes the set of all non-ascent directions of f at x̄.

The following theorem presents a necessary condition for

robustness.

Theorem 3.2. If x̄ is a robust efficient solution to Problem (1), then

T�(x̄) ∩ G(x̄) = {0}.
Proof. We prove it by contradiction. Suppose that 0 
= d ∈ G(x̄) ∩
T�(x̄). By robustness of x̄, there exists an ε > 0 such that x̄ is an ef-

ficient solution to problem (2) for any matrix Cp × n, with ‖C‖ < ε.

We choose a matrix C̃p×n such that

‖C̃‖ < ε and C̃d < −2δe (12)
or some δ > 0 (e is a column vector with all components equal to

ne). Since d ∈ T�(x̄),

({xi} ⊆ �, ti ↓ 0); xi − x̄

ti

→ d. (13)

herefore, from (12) and (13), for sufficiently large i, we have

˜

(
xi − x̄

ti

)
< −δe (14)

hich implies C̃xi + tiδe < C̃x̄. Using the mean value theorem (Theo-

em 10.17 in Clarke, 2013), for each i,

f (xi) = f (x̄) + ξ T
i (xi − x̄) (15)

here ξ i is an n × p matrix whose jth column belongs to ∂ f j(x̃
j
i
) for

ome x̃
j
i

∈ (x̄, xi). Thus,

f (xi) + C̃xi + tiδe < f (x̄) + ξ T
i (xi − x̄) + C̃x̄

⇒ f (xi) + C̃xi + ti

(
δe − ξ T

i

(
xi − x̄

ti

))
< f (x̄) + C̃x̄.

ince x̃
j
i

−→ x̄ as i −→ +∞ and f is locally Lipschitz at x̄, by Proposi-

tion 10.2 in Clarke (2013), the sequence {ξ i} is bounded. Hence, ξi −→
for some ξ ∈ ∂ f (x̄), because of Proposition 10.10 in Clarke (2013).

hus, ξ Td ≤ 0. Therefore, for sufficiently large i values, ξ T
i
(

xi−x̄
ti

) < δe.

hus, we get

f (xi) + C̃xi < f (x̄) + C̃x̄,

hich contradicts the robustness of x̄, and completes the proof. �

The condition given in the above theorem is necessary for robust-

ess and it is not sufficient in general case. The following example

larifies this:

xample 3.2. Consider the multi-objective optimization problem

in ( f1(x), f2(x))

.t. x ∈ R,

n which

f1(x) := x,

f2(x) :=
{

−x |x| < 1,

−x( 1
3 ) |x| ≥ 1.

et x̄ = 2. At this point we have T�(x̄) = R and G(x̄) = {0}. It is not

ifficult to see that x̄ = 2 is an efficient solution to the above problem,

hile for any ε > 0 it is not an efficient solution to

in ( f1(x), f2(x) + ε
2

x)

.t. x ∈ R,

ecause for each ε > 0, by setting xε = min{−125, −1
ε3 }, we have

f1(xε) < f1(2) and f2(xε) ≤ f2(2).

As shown by the above example, the necessary condition given

n Theorem 3.2 may not be sufficient for robustness in general.

heorem 3.3 establishes that this condition is sufficient under the

onvexity assumption.

heorem 3.3. Let � be a closed and convex set and fi(i = 1, . . . , p) be

onvex. Assume that x̄ is an efficient solution to Problem (1). x̄ is a robust

fficient solution to Problem (1) if and only if T�(x̄) ∩ G(x̄) = {0}.
roof. The “only if” part is derived from Theorem 3.2. For “if” part,

uppose that x̄ is not a robust efficient solution. Thus there exist a

equence {Ci} of p × n matrices and a sequence {xi}⊆� such that Ci

0,

f (x ) + C x ≤ f (x̄) + C x̄, and f (x ) + C x 
= f (x̄) + C x̄. (16)
i i i i i i i i
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et

i := xi − x̄

‖xi − x̄‖ . (17)

wo cases may occur for the sequence {xi}. Either it has a subse-

uence convergent to x̄ or it does not have any subsequence conver-

ent to x̄. We consider these two possible cases and we get a contra-

iction in each case.

In the first case, without loss of generality, we assume that xi → x̄.

rom the convexity of f, for any ξ ∈ ∂ f (x̄) we have,

f (xi) ≥ f (x̄) + ξ T (xi − x̄), (18)

hat ξ is an n × p matrix whose jth column belongs to ∂ f j(x̄). There-

ore, due to (16), we have

xi − x̄‖−1(ξ T (xi − x̄) + Ci(xi − x̄)) ≤ 0. (19)

ithout loss of generality, we can assume that, di → d for some

∈ R
p with ‖d‖ = 1 and it is obvious that d ∈ T�(x̄). Moreover, from

19) we conclude that d ∈ G(x̄). Thus d ∈ G(x̄) ∩ T�(x̄). This makes a

ontradiction.

Now, we consider the latter case: {xi} does not have any subse-

uence convergent to x̄. Therefore, without loss of generality, there

xist an r > 0 such that ‖xi − x̄‖ > r. On the other hand, di → d for

ome nonzero d ∈ T�(x̄). Since � is convex and closed, for each i

di + x̄ ∈ �, ∀t ∈ [0, r],

d + x̄ ∈ �, ∀t ∈ [0, r].

hus, 0 
= d ∈ T�(x̄). Suppose that {ti} is a sequence of scalars in [0, r]

hat converges to zero. By convexity of f and due to (16) and (17), we

et

f (x̄ + tidi) ≤ (1 − ti

‖xi − x̄‖ ) f (x̄) + ti

‖xi − x̄‖ f (xi)

≤ f (x̄) + ti

‖xi − x̄‖Ci(x̄ − xi).

ince Ci → 0, from the convexity of f and the above statement, we

ave ξ Td ≤ 0 that ξ is an n × p matrix whose jth column belongs

o ∂ f j(x̄). Therefore 0 
= d ∈ G(x̄) ∩ T�(x̄). This makes a contradiction

nd completes the proof. �

In the rest of this section, we consider a multi-objective optimiza-

ion problem whose feasible set is defined by some constraint func-

ions. Consider

in f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,
(20)

here f : R
n → R

p is the objective function (i.e. f (x) =
f1(x), . . . , fp(x)) and gj functions define the constraints. Here-

fter, whenever we use the Clarke subdifferential for gj functions, we

ssume that these functions are locally Lipschitz.

For a feasible point x̄, the index set A(x̄) is defined by

(x̄) = { j ∈ {1, 2 . . . , m} : gj(x̄) = 0}.
In the following, we are going to provide a characterization for

obust efficient solutions of Problem (20). The following constraint

ualification (CQ) helps us in the sequel.

efinition 3.3. We say that the constraint qualification (CQ) holds at

¯ if

/∈ co

{ ⋃
j∈A(x̄)

∂gj(x̄)

}
.

heorem 3.4. If x̄ is a robust efficient solution which satisfies (CQ), then

os

(
p⋃

i=1

∂ fi(x̄)

)
+ Pos

( ⋃
i∈A(x̄)

∂gi(x̄)

)
= R

n.
roof. For simplicity, we set Ax̄ = Pos(
⋃p

i=1
∂ fi(x̄)) +

os(
⋃

i∈A(x̄) ∂gi(x̄)). It can be seen that under the assumptions

f the theorem,

d : g◦
i (x̄; d) ≤ 0, ∀i ∈ A(x̄)} ⊆ T�(x̄);

ee Theorem 10.42 in Clarke (2013). Therefore, according to

heorem 3.2, the system below has no solution d ∈ R
n:

T d ≤ 0, ∀ξ ∈ ∂ fi(x̄), ∀i ∈ {1, . . . , p}
T d ≤ 0, ∀ξ ∈ ∂gi(x̄), ∀i ∈ A(x̄)

= 0.

ence, the following system has no solution d ∈ R
n:

T d ≤ 0, ∀ξ ∈ ∂ fi(x̄), ∀i ∈ {1, . . . , p}
T d ≤ 0, ∀ξ ∈ ∂gi(x̄), ∀i ∈ A(x̄)

1 > 0.

sing the semi-infinite Farkas’ theorem (see Corollary 3.1.3 in

oberna and Lopez, 1998), we have e1 ∈ cl(Ax̄). Similarly, it can be

hown that ±ei ∈ cl(Ax̄) for each i ∈ {1, 2, . . . , p}. Here, ei denotes

he i-th unit vector. Therefore, cl(Ax̄) = R
n. Since Ax̄ is a convex set

hose closure is equal to R
n, we have Ax̄ = R

n and the proof is

ompleted. �

orollary 3.5. Assume that fi(i = 1, . . . , p) and g j( j = 1, . . . , m) in

roblem (20) are continuously differentiable. If x̄ is a robust efficient so-

ution of Problem (20) which satisfies (CQ), then

os{∇ f1(x̄), . . . ,∇ fp(x̄)} + Pos{∇gi(x̄) : i ∈ A(x̄)} = R
n.

Theorem 3.6 provides a converse version of Theorem 3.4.

heorems 3.4 and 3.6 extend Theorem 3.4 in Georgiev et al. (2013).

heorem 3.6. Let fi(i = 1, . . . , p) and g j( j = 1, . . . , m) in Problem (20)

e convex. If x̄ is an efficient solution and

os

(
p⋃

i=1

∂ fi(x̄)

)
+ Pos

( ⋃
i∈A(x̄)

∂gi(x̄)

)
= R

n,

hen x̄ is a robust efficient solution to Problem (20).

roof. We prove the theorem by contradiction. Suppose that x̄ is

ot robust. Then, according to Theorem 3.3, there exists a nonzero

ector d̄ ∈ T�(x̄) ∩ G(x̄). From the convexity assumption, we get
T d̄ ≤ 0 for each ξ ∈ Pos(∂gi(x̄)) and each i ∈ A(x̄). Also, ξ T d̄ ≤ 0

or each ξ ∈ Pos(∂ fi(x̄)) and each i ∈ {1, 2, . . . , p}, because of d̄ ∈
(x̄). On the other hand, by the assumption of the theorem, d̄ =

p
i=1

uiξi + ∑
j∈A(x̄) v jζ j for some ui, vj ≥ 0, ξi ∈ Pos(∂ fi(x̄)), and ζ j ∈

os(∂g j(x̄)). Therefore, d̄T d̄ ≤ 0. Hence we get d̄ = 0 which makes a

ontradiction. �

orollary 3.7. Assume that fi(i = 1, . . . , p) and g j( j = 1, . . . , m) in

roblem (20) are differentiable and convex. If x̄ is an efficient solution

nd

os{∇ f1(x̄), . . . ,∇ fp(x̄)} + Pos{∇gi(x̄) : i ∈ A(x̄)} = R
n,

hen x̄ is a robust efficient solution of Problem (20).

Although the compactness assumption is essential in Theorem 3.1

see Example 3.1), the following result shows that Theorem 3.1 re-

ains valid without compactness of the feasible set for convex pro-

ramming problems with an appropriate (CQ).

heorem 3.8. Let fi(i = 1, 2, . . . , p) and g j( j = 1, 2, . . . , m) be convex

n Problem (20). If x̄ is a robust efficient solution of Problem (20) which

atisfies (CQ), then x̄ is a proper efficient solution of Problem (20).

roof. Suppose that x̄ is not a proper efficient solution. Therefore,

here exist {xi}⊆�, increasing sequence {Mi} of positive real numbers,

nd k ∈ {1, . . . , p}, such that Mi −→ +∞,

f (x ) < f (x̄) ∀i, (21)
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and

fk(x̄) − fk(xi)

f j(xi) − f j(x̄)
> Mi for each j ∈ {1, . . . , p} with f j(xi) > f j(x̄).

(22)

Define Qi = { j : f j(xi) > f j(x̄)}. This set is nonempty because x̄ is ef-

ficient. Without loss of generality, by choosing an appropriate subse-

quence, Qi is a constant set for all i indices. So, we denote it by Q. Also,

define the feasible set of Problem (20) as � = {x ∈ R
n : g j(x) ≤ 0, j =

1, 2, . . . , m}.
Without loss of generality, we assume that the sequence { xi−x̄

‖xi−x̄‖ }
converges to some nonzero vector d. Setting ti = min{ 1

i
,‖xi − x̄‖} and

di = xi−x̄

‖xi−x̄‖ , we have ti↓0 and x̄ + tidi ∈ �, according to the convexity

assumptions. Hence d ∈ T�(x̄).
Due to the convexity assumption, we get

f j(xi) ≥ f j(x̄) + ξ T (xi − x̄), ∀ξ ∈ ∂ f j(x̄), ∀ j ∈ {1, . . . , p} \ Q,

⇒ ξ T (xi − x̄) ≤ 0, ∀ξ ∈ ∂ f j(x̄), ∀ j ∈ {1, . . . , p} \ Q,

⇒ ξ T d ≤ 0, ∀ξ ∈ ∂ f j(x̄), ∀ j ∈ {1, . . . , p} \ Q .

Moreover from (22) and the convexity of the objective functions, we

have

ξ T (xi − x̄) ≤ f j(xi) − f j(x̄), ∀ξ ∈ ∂ f j(x̄), ∀ j ∈ Q,

<
fk(x̄) − fk(xi)

Mi

, ∀ξ ∈ ∂ f j(x̄), ∀ j ∈ Q,

≤ 1

Mi

ηT (x̄ − xi), ∀η ∈ ∂ fk(x̄).

Thus

ξ T d ≤ 0, ∀ξ ∈ ∂ f j(x̄),∀ j ∈ Q .

Therefore, d ∈ T�(x̄) ∩ G(x̄). This is a contradiction because of

Theorem 3.2, and the proof is complete. �

Remark 3.1. This remark indicates that the robust solution studied in

the present paper may not exist in some special cases, though these

solutions (if exist) have nice properties as compared to non-robust

points. An efficient point is robust if it stays efficient under small lin-

ear perturbations. Let us assume that fi and gj functions are differen-

tiable here. Under some CQs and appropriate assumptions, the KKT/FJ

condition

p∑
i=1

λi∇ fi(x̄) +
∑

j∈A(x̄)

μ j∇gj(x̄) = 0

for some nonnegative μj’s and some nonnegative λi’s (not all zero),

is necessary for the efficiency of x̄. When some objective function,

say f1, is perturbed, then ∇ f1(x̄) is alerted and hence to preserve

the KKT/FJ condition (efficiency of x̄), the Lagrangian multiplier(s)

of some other objective function(s) or some constraint function(s)

should be changed. Hence, at least one other objective function or at

least one constraint function is required for robustness, i.e. m + p ≥
2. Thus, there is not any robust solution for unconstrained single-

objective problems. To show this analytically, let x̄ be an arbitrary op-

timal solution to minx∈Rn h(x) where h : R
n −→ R. Then ∇h(x̄) = 0

which implies ∇h(x̄) + C 
= 0 for each C 
= 0. Therefore, x̄ is not op-

timal to minx∈Rn h(x) + Cx for each C 
= 0. Hence, x̄ is not robust for

minx∈Rn h(x). Thus this unconstrained problem does not have any ro-

bust solution.

Now, consider an unconstrained multi-objective programming

problem minx∈Rn f (x) with f : R
n −→ R

p and p ≥ 2. Here, m = 0. If x̄

is a robust solution, then by Corollary 3.5, Pos{∇ f1(x̄), . . . ,∇ fp(x̄)} =
R

n, and hence p ≥ n + 1.

For constrained problem (20) satisfying the assumptions of

Corollary 3.5, if x̄ is a robust solution, then p + m ≥ n + 1. It is not
estrictive for practical cases, because in practice the problem has at

east 2n constraints due to the lower and upper bounds of variables.

emark 3.2. The necessary condition introduced in Theorem 3.2 pro-

ides a tie-in to the gradient-like descent methods existing in the

iterature for solving vector optimization problems; see Drummond

nd Iusem (2004) and Fliege and Svaiter (2000). Extending these nu-

erical tools to generate robust solution(s) can be worth studying in

uture.

. Robustness radius

In this short section, we compute a radius of robustness. For a

iven vector a ∈ R
p, the vector a+ is obtained from a by substitut-

ng all negative components by zero. It is not difficult to show that

a+‖ is equal to the distance from a to −R
p
+ = {x ∈ R

p : x ≤ 0}.
emma 4.1. Let � be a closed and convex set and fi (i = 1, . . . , p) be

onvex. Let d ∈ T�(x̄) with ‖d‖ = 1. If x̄ is a robust solution of Problem

1), then ‖( f ′(x̄; d))+‖ > 0 and it is equal to the optimal value of the

ollowing problem:

up{t : f ′(x̄; d) + tCd /∈ −R
p
+, ∀‖C‖ ≤ 1}.

roof. First we show that f ′(x̄; d) /∈ −R
p
+. If f ′(x̄; d) ≤ 0, then due to

he convexity of f, we have d ∈ G(x̄), which makes a contradiction

ccording to Theorem 3.2. The proof of the second part is similar to

hat of Lemma 4.2 in Georgiev et al. (2013). �

heorem 4.2. Under the assumptions of Lemma 4.1, the optimal value

f the following problem is positive and it is a robustness radius for x̄.

in ‖( f ′(x̄; d))+‖
s.t. d ∈ T�(x̄),

‖d‖ = 1

roof. Let ρ be the optimal value of the given problem. Thus, by

emma 4.1, ρ > 0. Now, we show that ρ is a robustness radius for

¯. If this is not a robustness radius, then there exist some xo ∈ X and

ome matrix Co such that ‖Co‖ < ρ , and

f (xo) + Coxo ≤ f (x̄) + Cox̄, f (xo) + Coxo 
= f (x̄) + Cox̄. (23)

etting do = xo−x̄
‖xo−x̄‖ , we have ‖do‖ = 1 and do ∈ T�(x̄) due to the con-

exity of �. Furthermore, by convexity of f, we get

f
′
(x̄; do)+Codo = f

′
(x̄; xo−x̄)

‖xo−x̄‖ +Codo ≤ f (xo) − f (x̄)

‖xo − x̄‖ + Co(xo − x̄)

‖xo − x̄‖ .

herefore, according to (23), we get

f ′(x̄; do) + Codo ∈ −R
p
+. (24)

Defining

o = sup{t : f ′(x̄; do) + tCdo /∈ −R
p
+, ∀‖C‖ ≤ 1}, (25)

e have ρ ≤ ρo. Furthermore, for each t ∈ (0, ρo) and each C with ‖C‖
1, we have f

′
(x̄; do) + tCdo /∈ −R

p
+. This is in contradiction with (24)

y setting t = ‖Co‖ and C = Co

‖Co‖ , and the proof is complete. �

It can be seen that, the optimal value of the optimization problem

onsidered in the above theorem is equal to the maximum robustness

adius if one furthermore assumes the equality of the tangent cone

nd the cone of feasible directions.

. Comparison with worst case-based notions

There are some definitions for robustness in the multi-objective

rogramming literature that optimize the worst case of the objective

unctions. In the following, we highlight the relationships between

he robustness notion considered in the present paper and two worst

ase-based definitions studied by Fliege and Werner (2014) (FW in
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rief) and Ehrgott et al. (2014) (EIS in brief). See also Georgiev et al.

2013) for some comparison.

Let U be an uncertain set and � ⊆ R
n be the set of feasible solu-

ions. Also, let fi : � × U −→ R for i = 1, 2, . . . , p be objective func-

ions. For a feasible decision variable vector x ∈ � and a u ∈ U, the

alue of objective function is denoted by f(x, u). Define F : � → R
p

y

i(x) = max
u∈U

fi(x, u), i = 1, 2, . . . , p.

feasible vector x̄ ∈ � is called a robust solution in the sense of FW

f it is an efficient solution to the following multi-objective problem

in F(x)

s.t. x ∈ �

The following proposition provides a connection between the ro-

ustness notion studied in the present paper and that in the sense of

W.

roposition 5.1. Let x̄ be a robust solution of Problem (1), in the sense of

efinition 3.1, with radius ε. Then considering any ε̄ ∈ (0, ε), the vec-

or x̄ is a robust solution in the sense of FW with U = {Cp×n : ‖Ci‖ ≤
ε̄√
p
, ∀i = 1, 2, . . . , p} and f (x,C) = f (x) + Cx.

roof. By contradiction, assume that there exists some xo ∈ � such

hat F(xo) ≤ F(x̄) and F(xo) 
= F(x̄). If x̄ = 0, then F(x̄) = f (0) and

ence by considering a p × n matrix C with ‖Ci‖ ≤ ε̄√
p
, i = 1, 2, . . . , p,

e get ‖C‖ =
(∑p

i=1
‖Ci‖2

) 1
2 < ε, and

f (xo) + Cxo ≤ f (0), f (xo) + Cxo 
= f (0).

hese relations contradict the robustness of x̄ (in the sense of

efinition 3.1). Now, assume that x̄ 
= 0. Then F(x̄) = f (x̄) + ε̄‖x̄‖√
p

e,

here e is a vector with all components equal to one. Now, we con-

ider a p × n matrix C̄, with C̄i = ε̄√
p‖x̄‖ x̄T . We get C̄ ∈ U and

f (xo) + C̄xo ≤ F(xo) ≤ F(x̄) = f (x̄) + ε̄‖x̄‖√
p

e = f (x̄) + C̄x̄

urthermore, ‖C̄‖ =
√∑p

i=1
‖C̄i‖2 < ε. Hence, ‖C̄‖ < ε, and

f (xo) + C̄xo ≤ f (x̄) + C̄x̄, f (xo) + C̄xo 
= f (x̄) + C̄x̄.

hese relations contradict the robustness of x̄ (in the sense of

efinition 3.1) and the proof is complete. �

In a recently published paper, Ehrgott et al. (2014) (EIS in brief)

ave defined a feasible point x̄ ∈ � as a robust solution if there is no

∈ � such that

fU(x) ⊆ fU(x̄) − (Rp
≥ \ {0})

hat fU(x) = { f (x, u) : u ∈ U} and U it is an uncertain set.

heorem 5.2. Let x̄ be a robust solution of (1), in the sense of Definition

.1, with radius ε. Then x̄ is a robust solution in the sense of EIS with

fU(x) = { f (x) + Cx : ‖C‖ ≤ 0.5ε}.

roof. By contradiction assume that

fU(xo) ⊆ fU(x̄) − (Rp
≥ \ {0}) (26)

or some xo ∈ �. This implies that

C ∈ U ∃C̄ ∈ U s.t. f (xo) + Cxo ≤ f (x̄) + C̄x̄, f (xo) + Cxo


= f (x̄) + C̄x̄. (27)

wo vectors xo and x̄ cannot be zero. If xo = 0, then by (27),

f (0) + C̄(0) ≤ f (x̄) + C̄x̄, f (xo) + C̄xo 
= f (x̄) + C̄x̄

or some C̄ ∈ U . This contradicts the robustness assumption. More-

ver, if x̄ = 0, then by considering C = 0 in (27), there exists some C̄
ith ‖C̄‖ ≤ 0.5ε such that f (xo) ≤ f (x̄) and f (xo) 
= f (x̄). This con-

radicts the efficiency of x̄. Hence, x0 
= 0 and x̄ 
= 0.

Define

= {λ ∈ R
p
≥ : ‖λ‖ ≤ 1,

p∑
j=1

λ j ≥ 1}.

t is clear that, M is a nonempty compact convex set. Now, let F : M ⇒
be a set-valued mapping defined by

(λ) =
{
λ′ ∈ M : f (xo) + ε‖xo‖

2‖λ‖ λ ≤ f (x̄) + ε‖x̄‖
2‖λ′‖λ′

}
.

e show that F(λ) is nonempty and convex for each λ ∈ M.

Let λ ∈ M. Defining p × n matrix Co by Co := ε
2‖λ‖‖xo‖λxoT

, we have

Co‖ ≤ 0.5ε, and hence by (27), there exists some p × n matrix C such

hat ‖C‖ ≤ 0.5ε, and

f (xo) + ε‖xo‖
2‖λ‖ λ ≤ f (x̄) + Cx̄. (28)

onsider λ̄ with λ̄i = ‖C
i‖. Define λ

′
:= λ̄

‖λ̄‖ . By considering Cauchy–

chwarz inequality and ε
2‖λ̄‖ ≥ 1, we have

f (xo) + ε‖xo‖
2‖λ‖ λ ≤ f (x̄) + Cx̄

≤ f (x̄) + ‖x̄‖λ̄
≤ f (x̄) + ε‖x̄‖

2‖λ̄‖ λ̄

≤ f (x̄) + ε‖x̄‖
2‖λ′ ‖λ

′

herefore, due to λ
′ ∈ M, we have λ

′ ∈ F(λ), and hence F(λ) is

onempty.

To prove the convexity, let λ1, λ2 ∈ F(λ) and υ ∈ (0, 1). First we

ssume that ‖λ1‖ = ‖λ2‖ = 1. Then, by definition of F(λ), we get

f (xo) + ε‖xo‖
2‖λ‖ λ ≤ f (x̄) + ε‖x̄‖

2
(υλ1 + (1 − υ)λ2)

ue to ‖υλ1 + (1 − υ)λ2‖ ≤ 1 and υλ1 + (1 − υ)λ2 ≥ 0, we can in-

er that

f (xo)+ ε‖xo‖
2‖λ‖ λ ≤ f (x̄)+ ε‖x̄‖

2‖υλ1+(1 − υ)λ2‖ (υλ1 + (1 − υ)λ2).

ence, υλ1 + (1 − υ)λ2 ∈ F(λ) when ‖λ1‖ = ‖λ2‖ = 1. Now, con-

idering two arbitrary vectors λ1, λ2 ∈ F(λ) and υ ∈ (0, 1), there are

> 0 and μ ∈ (0, 1) such that

λ1 + (1 − υ)λ2 = γ

(
μ

λ1

‖λ1‖ + (1 − μ)
λ2

‖λ2‖
)

(29)

otice that 0 < ‖λ1‖, ‖λ2‖ ≤ 1. By definition of F(λ), it is clear

hat
λ1‖λ1‖ ,

λ2‖λ2‖ ∈ F(λ). Furthermore, if λ
′ ∈ F(λ) and γ λ

′ ∈ M for

ome γ > 0, then γ λ
′ ∈ F(λ). Therefore, according to (29), we have

λ1 + (1 − υ)λ2 ∈ F(λ). Hence, F is a convex-valued mapping. It is

lear that F is a closed mapping. Therefore, by Kakutani fixed-point

heorem (see Franklin, 2003), there exists some λ∗ ∈ M such that

f (xo) + ε‖xo‖
2‖λ∗‖λ∗ ≤ f (x̄) + ε‖x̄‖

2‖λ∗‖λ∗. (30)

he above inequality does hold as equality, otherwise due to (27) we

ave

f (x̄) + ε‖x̄‖
2‖λ∗‖λ∗ = f (xo) + ε‖xo‖

2‖λ∗‖λ∗ ≤ f (x̄) + C̃x̄,

f (xo) + ε‖xo‖
2‖λ∗‖λ∗ 
= f (x̄) + C̃x̄,
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for some C̃ with ‖C̃‖ ≤ 0.5ε. Then ε‖x̄‖
2‖λ∗‖λ∗ ≤ C̃x̄ and ε‖x̄‖

2‖λ∗‖λ∗ 
= C̃x̄. By

Cauchy–Schwarz inequality, we get ε‖x̄‖
2‖λ∗‖λ∗ ≤ ‖x̄‖d and ε‖x̄‖

2‖λ∗‖λ∗ 
=
‖x̄‖d in which d ∈ R

p with di = ‖C̃i‖. Therefore, ‖C̃‖ = ‖d‖ > 0.5ε
which is a contradiction. Thus, inequality (30) holds and it does not

hold as equality. On the other hand, by Cauchy–Schwarz inequality,

f (xo) + εx̄T xo

2‖λ∗‖‖x̄‖λ∗ ≤ f (xo) + εxoT
xo

2‖λ∗‖‖xo‖λ∗

Hence, according to (30),

f (xo) + εx̄T xo

2‖λ∗‖‖x̄‖λ∗ ≤ f (x̄) + εx̄T x̄

2‖λ∗‖‖x̄‖λ∗,

f (xo) + εx̄T xo

2‖λ∗‖‖x̄‖λ∗ 
= f (x̄) + εx̄T x̄

2‖λ∗‖‖x̄‖λ∗.

Therefore, setting Co = ε
2‖λ∗‖‖x̄‖λ∗x̄T , we have ‖Co‖ < ε and

f (xo) + Coxo ≤ f (x̄) + Cox̄, f (xo) + Coxo 
= f (x̄) + Cox̄.

Two last relations contradict the robustness of x̄ (in the sense of

Definition 3.1) and the proof is complete. �

It is not difficult to see that, Theorem 5.2 will be valid if one re-

places 0.5ε, in the considered uncertainty set, with some ε̄ ∈ (0, ε).

In fact, the robustness notion considered in the present paper is

sufficient for two above mentioned (worst case-based) notions. In

definition studied in the present paper, the robustness is coming from

a linear perturbation instead of an arbitrary perturbation and this

leads to Proper efficiency as proved in Section 3. See also, Section 3 of

Georgiev et al. (2013) for some comparison.

6. Modification of the objective function

In this section, we consider two robustness aspects of

(weakly/properly) efficient solutions. In the first one, we con-

sider a convex combination of the objective function of Problem (20)

with a new special function. The second robustness aspect is due to

adding a new objective function to the problem. In both cases, we

examine preserving the weak/proper/robust efficiency.

Consider the following problem for α ∈ [0, 1],

min f (x) + (1 − α)h(x)q

s.t. gi(x) ≤ 0, i ∈ {1, 2, . . . , m}, (31)

where h : R
n → R is a convex function and 0 
= q ∈ R

p
+ is a p-vector

with nonnegative components. We denote this program by (MOP)α ,

and this program coincides with (20) when α = 1.

Note: In the whole of this section, we assume that the functions h,

fi(i = 1, . . . , p) and g j( j = 1, . . . , m) are convex.

Theorem 6.1 presents a sufficient condition for properly efficient

solutions of problems (20) and (MOP)0 to remain properly efficient

for (MOP)α .

Theorem 6.1. Let x̄ be a proper efficient solution to both problems (20)

and (MOP)0. If (CQ) holds at x̄, then x̄ is a proper efficient solution of

(MOP)α for each α ∈ (0, 1).

Proof. Since x̄ is a properly efficient solution to Problem (20), then

there exists λ ∈ R
p and w ∈ R

m such that (see Clarke, 2013):

0 ∈
p∑

i=1

λi∂ fi(x̄) +
m∑

j=1

wj∂gj(x̄),

wjgj(x̄) = 0, j = 1, . . . , m, λ > 0, w ≥ 0.

Also, since x̄ is a proper efficient solution to Problem (MOP)0, there

exist μ ∈ R
p and v ∈ R

m such that μ > 0, v ≥ 0, and

0 ∈
p∑

i=1

μi∂ fi(x̄) + qTμ∂h(x̄) +
m∑

j=1

v j∂gj(x̄), (32)
jg j(x̄) = 0, j = 1, . . . , m. (33)

otice that the convexity of h is crucial in obtaining (32).

Let α ∈ (0, 1). We define t and γ as follows

t := αqTμ

αqTμ + (1 − α)qTλ
,

:= tλ + (1 − t)μ.

t is clear that 0 < t < 1 and γ > 0. Also,

1 − t)qTμ = (1 − α)qT γ . (34)

hus,

p

i=1

γi∂ fi(x̄) + (1 − α)qTγ ∂h(x̄)

= t

p∑
i=1

λi∂ fi(x̄) + (1 − t)
p∑

i=1

μi∂ fi(x̄) + (1 − t)qTμ∂h(x̄).

herefore, setting z = tw + (1 − t)v, we get

∈
p∑

i=1

(tλi + (1 − t)μi)∂ fi(x̄) + (1 − t)qTμ∂h(x̄)

+
m∑

j=1

(twj + (1 − t)v j)∂gj(x̄)

=
p∑

i=1

γi∂ fi(x̄) + (1 − α)qTγ ∂h(x̄) +
m∑

j=1

z j∂gj(x̄),

here γ > 0 and z ≥ 0. Therefore x̄ is a global minimum for

in
∑p

i=1
γi fi(x) + (1 − α)qT γ h(x)

s.t. gj(x) ≤ 0, j = 1, . . . , m.

his implies that x̄ is a proper efficient solution of (MOP)α , according

o Theorem 3.11 in Ehrgott (2005). �

The following two results give sufficient conditions for efficient

resp. weakly efficient) solutions of problems (20) and (MOP)0 to re-

ain efficient (resp. weakly efficient) for (MOP)α . These results ex-

end Proposition 2.2 in Georgiev et al. (2013).

heorem 6.2. Let x̄ be an efficient solution to both Problems (20) and

MOP)0. Then x̄ is an efficient solution of (MOP)α for each α ∈ (0, 1).

roof. Let α ∈ (0, 1). By contradiction assume that there exists a fea-

ible point, x̂, such that

f (x̂) + (1 − α)qh(x̂) ≤ f (x̄) + (1 − α)qh(x̄),

f (x̂) + (1 − α)qh(x̂) 
= f (x̄) + (1 − α)qh(x̄).

f h(x̄) < h(x̂), then

f (x̂) − f (x̄) ≤ (1 − α)q(h(x̄) − h(x̂)) ≤ (and 
= )0.

his contradicts the efficiency of x̄ for (20). Hence, we assume that

(x̄) ≥ h(x̂). Due to the convexity assumption, we have

f
(

1
2

x̂ + 1
2

x̄
)

+ qh
(

1
2

x̂ + 1
2

x̄
)

≤ 1
2

f (x̂) + 1
2

f (x̄) + 1
2

qh(x̂) + 1
2

qh(x̄)

≤ (and 
= ) f (x̄) + 1
2
(1 − α)q(h(x̄) − h(x̂)) + 1

2
qh(x̂) + 1

2
qh(x̄)

= f (x̄) + q
(
h(x̄) + α

2
(h(x̂) − h(x̄))

)
≤ f (x̄) + qh(x̄).

ence, setting z = 1
2 x̂ + 1

2 x̄, the vector z is feasible and

f (z) + qh(z) ≤ f (x̄) + qh(x̄) and f (z) + qh(z) 
= f (x̄) + qh(x̄).

his contradicts the efficiency of x̄ for (MOP)0, and the proof is

omplete. �
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heorem 6.3. Let x̄ be a weak efficient solution to both Problems (20)

nd (MOP)0. Then x̄ is a weak efficient solution of (MOP)α for each α ∈
0, 1).

roof. The proof of this theorem is similar to that of Theorem 6.2 and

s hence omitted. �

Theorem 6.4 gives a sufficient condition for robust efficient so-

utions of Problems (20) and (MOP)0 to remain robust efficient for

MOP)α .

heorem 6.4. Let x̄ be a robust efficient solution for both Problems (20)

nd (MOP)0. If (CQ) holds at x̄, then x̄ is a robust efficient solution for

MOP)α for each α ∈ [0, 1].

roof. Let α ∈ [0, 1]. By Theorem 6.2, x̄ is efficient for Problem

MOP)α . Now, we show that x̄ is robust for (MOP)α . By Theorem 3.4,

os

(
p⋃

i=1

∂ fi(x̄)

)
+ Pos

( ⋃
i∈A(x̄)

∂gi(x̄)

)
= R

n

nd

os

(
p⋃

i=1

∂
(

fi + qih
)
(x̄)

)
+ Pos

( ⋃
i∈A(x̄)

∂gi(x̄)

)
= R

n.

y the above two equalities, and since all of the ∂-sets

re convex here, we have Pos
(⋃p

i=1
∂
(

fi + (1 − α)qih
)
(x̄)

)
+

os
(⋃

i∈A(x̄) ∂gi(x̄)
)

= R
n. Therefore, x̄ is a robust efficient solu-

ion for (MOP)α , because of Theorem 3.6. �

In the rest of this section, we examine adding a new objective

unction to Problem (20). Consider the following multi-objective op-

imization problem, denoted by (MOPh):

in

(
f (x)

h(x)

)
.t. gi(x) ≤ 0 i = 1, . . . , m,

(35)

here h : R
n → R. The following two theorems address some con-

ections between the proper efficient solutions of two problems (20)

nd (MOPh). Recall that the functions h, fi, and gj are convex.

heorem 6.5. Let x̄ be a proper efficient solution to Problem (MOPh).

f (CQ) holds at x̄, and ∂h(x̄) ⊆ Pos
(⋃p

i=1
∂ fi(x̄)

)
+ Pos

(⋃
i∈A(x̄) ∂gi(x̄)

)
,

hen x̄ is a proper efficient solution to Problem (20).

roof. Since x̄ is a proper efficient solution of Problem (MOPh), then

here exist λ ∈ R
p and w ∈ R

m such that (see Clarke, 2013):

∈ ∑p
i=1

λi∂ fi(x̄) + ∂h(x̄) + ∑m
j=1 wj∂gj(x̄),

jg j(x̄) = 0, j = 1, . . . , m λ > 0, w ≥ 0.

herefore, by assumption of the theorem, 0 ∈ ∑p
i=1

λ̄i∂ fi(x̄) +
m
j=1 w̄i∂g j(x̄), for some λ̄ > 0, w̄ ≥ 0. This implies that x̄ is a proper

fficient solution for Problem (20). �

By a manner similar to the proof of the above theorem, it can be

hown that this theorem is valid for weak efficient solutions as well.

he following example shows that this result may not be valid for

fficient solutions.

xample 6.1. Let g(x) = f (x) = x and h(x) = x2. It is clear that x̄ = 0

s an efficient solution of (MOPh) and {∇h(0)}⊆Pos(∇f(0)) but x̄ = 0

s not an efficient solution of Problem (20).

The following result gives more connections between the proper

fficient solutions of two problems (20) and (MOPh) when fi and gj

unctions are continuously differentiable.

heorem 6.6.

(i) Let x̄ be a proper efficient solution to both Problems (20) and

(MOPh). If (CQ) holds at x̄, then there exist vectors u ∈ R
p and
v ∈ R
m such that u > 0, and(

p∑
i=1

ui∇ fi(x̄) +
m∑

j=1

v j∇gj(x̄)

)
∈ ∂h(x̄).

(ii) Let x̄ be a proper efficient solution to Problem (20). If there exist

vectors u ∈ R
p and v ∈ R

|A(x̄)| such that v ≥ 0 and(
p∑

i=1

ui∇ fi(x̄) −
∑

j∈A(x̄)

v j∇gj(x̄)

)
∈ ∂h(x̄),

then x̄ is a proper efficient solution for Problem (MOPh).

roof.

(i) Since x̄ is a proper efficient solution of Problem (MOPh), then

there exist (λ, λp+1) ∈ R
p × R and w ∈ R

m such that

0 ∈ ∑p
i=1

λi∇ fi(x̄) + λp+1∂h(x̄) + ∑m
j=1 wj∇gj(x̄),

wjgj(x̄) = 0, j = 1, . . . , m, λ > 0, w ≥ 0.

Therefore, there exists some d ∈ ∂h(x̄) such that

d = −∑p
i=1

λi

λp+1
∇ fi(x̄) − ∑m

j=1
wj

λp+1
∇gj(x̄).

On other hand, x̄ is a proper efficient solution to Problem (20).

Therefore, there exist λ′ ∈ R
p and w′ ∈ R

m such that

0 = ∑p
i=1

λ′
i
∇ fi(x̄) + ∑m

j=1 w′
j
∇gj(x̄), (36)

w′
j
g j(x̄) = 0, j = 1, . . . , m λ′ > 0, w′ ≥ 0. (37)

Let t > max1≤i≤p{ λi

λ′
i
λp+1

}. We have

d =
p∑

i=1

(tλ′
i − λi

λp+1

)∇ fi(x̄) +
m∑

j=1

(tw′
j − wj

λp+1

)∇gj(x̄).

Setting ui := tλ′
i
− λi

λp+1
and v j = tw′

j
− w j

λp+1
, completes the

proof of part (i).

(ii) Setting μ j = 0 for each j /∈ A(x̄), by the assumption of the the-

orem, we have 0 = − ∑p
i=1

ui∇ fi(x̄) + d + ∑m
j=1 μ j∇g j(x̄) for

some d ∈ ∂h(x̄). On other hand, since x̄ is a proper efficient so-

lution to Problem (20), there exist λ′ ∈ R
p and w′ ∈ R

m satisfy-

ing (36) and (37). For t > max1≤i≤p{ ui

λ′
i

}, we have

0 = ∑p
i=1

(tλ′
i
− ui)∇ fi(x̄) + d + ∑m

j=1 (tw′
j
+ μ j)∇gj(x̄)

∈ ∑p
i=1

(tλ′
i
− ui)∇ fi(x̄) + ∂h(x̄) + ∑m

j=1 (twj + μ j)∇gj(x̄).

Therefore, x̄ is a proper efficient solution to (MOPh), and the

proof is complete. �

The following example shows that part (i) of the above theorem

ay not hold when some fi or gj functions are nonsmooth. A similar

xample can be constructed for part (ii).

xample 6.2. Let f : R → R be defined by

f (x) =
{

x2 − x1 x2 > 0

−x1 x2 ≤ 0

onsider the following optimization problem

in f (x)

.t. g(x) = x1 − x2 ≤ 0.

he functions f and g are convex and

f

(
0
0

)
=

{(
−1
α

)
: α ∈ [0, 1]

}
, ∂g

(
0
0

)
=

{(
1

−1

)}
.

ith λ = α = μ = 1, we have:

0
0

)
= λ

(
−1
α

)
+ μ

(
1

−1

)
.
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Therefore, x̄ = (0
0
) is an optimal solution to the above prob-

lem. Now consider the function h(x) = x1 and the following

problem

min

(
f (x)
h(x)

)
s.t. g(x) = x1 − x2 ≤ 0.

(38)

We have ∂h(x̄) = {(1
0
)}. Also, for λ1 = λ2 = 1 and α = μ = 0, we get(

0
0

)
= λ1

(
−1
α

)
+ λ2

(
1
0

)
+ μ

(
1

−1

)
,

Therefore, x̄ = (0
0
) is a proper efficient solution to Problem (38).

Hence, in this example, x̄ = (0
0
) is a proper efficient solution to

both problems (20) and (MOPh), while there is not any λ > 0

satisfying(
1
0

)
= λ

(
−1
α

)
+ μ

(
1

−1

)
for some μ ∈ R and α ∈ [0, 1]. It shows that part (i) of Theorem 6.6

may not be valid in the presence of nonsmooth fi or gj functions.

The last theorem of this section provides a connection between

the robust solutions of two problems (20) and (MOPh).

Theorem 6.7. If x̄ be a robust efficient solution to Problem (20), then x̄

is a robust efficient solution of (MOPh). The converse holds if

∂h(x̄) ⊆ Pos

(
p⋃

i=1

∂ fi(x̄)

)
+ Pos

( ⋃
i∈A(x̄)

∂gi(x̄)

)
.

Proof. These are derived from Theorems 3.3 and 3.8. �
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