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Abstract. We consider a parametric multiobjective optimization problem whose objective func-
tion and constraint set are not necessarily convex. We introduce the concept of uniform efficiency,
characterize it and compare it with the well-known concepts of proper efficiency and normal effi-
ciency. Then we establish the semi-differentiability of the marginal (efficient value) mapping and a
formula to compute its semi-derivative at a uniformly efficient value. As an application we derive
semi-differentiability of the marginal function for a problem in which the constraint set is given by a
system of inequalities, and for a problem whose constraint set is a union of polyhedral convex sets.
The results of this paper are not only new in the case of nonconvex multiobjective problems, but
they also deepen some existing ones for the convex case.
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1. Introduction. Stability and sensitivity analysis constitutes an important
part in the theory of mathematical optimization. It studies continuity and differ-
entiability properties of the optimal solution mapping and the optimal value function
(called also the marginal function) of a parametric optimization problem. These prop-
erties are indispensable in post-optimal analysis and the convergence of algorithms.
Excellent books on this topic already exist, for instance [1, 2, 4, 8, 18, 21] and many
others, without mentioning numerous research papers on it. As to multiobjective op-
timization, there are also a lot of works devoted to continuity properties of the efficient
solution and efficient frontier mappings in a very general setting of infinite-dimensional
spaces, sometimes with moving ordering cones (see [3, 10, 13, 14, 16, 22] and the ref-
erences given therein). Tanino’s paper [26] seems to be the first work dealing with
differentiability of the marginal mapping (called also efficient value mapping). Tanino
used contingent derivatives in the framework of convex problems and established some
estimates for the contingent derivative of the marginal mapping by way of the efficient
set of the derivative of the value mapping. Similar results were then extended for the
proto-derivative, Clarke derivative, coderivative, and epiderivatives in [5, 6, 10, 12]
and some others. Among derivatives of set-valued mappings, the semi-derivative and
strict semi-derivative introduced in [19] and largely studied in [4, 10, 20, 27] seem to
be most interesting because they are small and enjoy quite nice calculus. Of course,

∗Received by the editors September 2, 2016; accepted for publication (in revised form) November
14, 2017; published electronically May 8, 2018.

http://www.siam.org/journals/siopt/28-2/M109219.html
Funding: The work of the second author was in part supported by the Iran National Science

Foundation (INSF) (grant 95849588)
†Parametric Multiobjective Optimization Research Group, Ton Duc Thang University, Ho Chi

Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi
Minh City, Vietnam (dinhtheluc@tdt.edu.vn); and LMA, Avignon University, Avignon, France.
‡School of Mathematics, Statistics and Computer Science, College of Science, University of

Tehran, Tehran, Iran (soleimani@khayam.ut.ac.ir, moslemzamani@ut.ac.ir).

1255

D
ow

nl
oa

de
d 

05
/1

0/
18

 to
 1

28
.1

23
.4

4.
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siopt/28-2/M109219.html
mailto:dinhtheluc@tdt.edu.vn
mailto:soleimani@khayam.ut.ac.ir
mailto:moslemzamani@ut.ac.ir


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1256 D. THE LUC, M. SOLEIMANI-DAMANEH, M. ZAMANI

semi-differentiability is a strong property and its validity can be expected only under
a certain constraint qualification. To the best of our knowledge, sensitivity analysis
in terms of semi-derivatives for vector optimization was first addressed in [24, 25, 28].
The authors of these works gave a formula of the so-called mth order lower Stud-
niarski derivative, which coincides with the lower semi-derivative when m = 1, for the
marginal mapping in relation with that of the value mapping (see Remark 4). Our
goal is to establish conditions for semi-differentiability of the efficient solution and
the marginal mappings. A formula to compute their derivatives will be obtained as a
by-product. To this end, we introduce the concept of uniform efficiency and compare
it with the concept of normal efficiency introduced in [26] for convex sets. This con-
cept and the concept of an asymptotic function are key ingredients of our analysis.
They allow us to establish nice formulas to compute semi-derivatives of efficient so-
lutions and efficient value mappings of nonconvex problems. In the convex case, our
results strengthen a number of existing ones on contingent and proto-derivatives. To
simplify the presentation we consider Pareto efficiency, which is determined by the
positive orthant in a finite-dimensional Euclidean space. The results of the present
paper can easily be translated to efficiency with respect to any partial order generated
by a closed, convex, and pointed cone.

The paper is structured as follows. In section 2, notation and definitions are
given for tangent cones of sets and for derivatives of set-valued mappings. Section 3
is devoted to the concept of uniform efficiency, which substitutes proper efficiency in
the presence of a parameter. We present some characterizations of uniformly efficient
points and their links with normally efficient points of convex sets. In section 4, we
study semi-differentiability of the marginal mapping of a parametric vector problem
and establish a formula to compute its semi-derivative. It is the first time we obtain a
condition for differentiability of the efficient solution mapping via the differentiability
of the feasible set and the objective function. We discuss certain conditions, frequently
invoked in the literature for contingent derivatives and proto-derivatives, and show
that some of them are too restrictive and some others may lead to a stronger conclusion
by using our approach. In the last two sections, we apply the general results of
section 4 to a problem with inequality and set constraints and to a problem over a
finite union of polyhedral convex sets.

2. Preliminaries. Let X ⊆ Rn be a nonempty set. Throughout this paper we
shall make use of the standard notation int(X), cl(X), cone(X), pos(X), and X∞ for
the interior, the closure, the conic hull, the positive hull, and the asymptotic cone
of X, respectively. Given x̄ ∈ X, the contingent cone, the adjacent cone, the Clarke
tangent cone, the convex analysis normal cone, the ε-normal set for ε = 0, and the
limiting (Mordukhovich) normal cone to X at x̄ are respectively denoted by TX(x̄),
T adjX (x̄), T clX (x̄), N co

X (x̄), N̂ ε
X(x̄), and NX(x̄). The closed unit ball of Rn is denoted

by Bn. For a set-valued mapping F : Rn ⇒ Rp, the domain and the graph of F are
denoted by domF and gphF , respectively. The outer limit, the inner limit and the
outer horizon limit of F at x̄ ∈ domF are respectively defined by

lim sup
x→x̄

F (x) := {y ∈Rp : ∃(xν , yν)∈ gphF such that (xν , yν)→ (x̄, y) as ν→+∞},

lim inf
x→x̄

F (x) := {y ∈Rp : ∀xν ∈ domF with xν→ x̄,∃yν ∈F (xν), yν → y as ν→+∞},

F∞(x̄) := lim sup
t↓0,x→x̄

tF (x).
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SEMI-DIFFERENTIABILITY OF THE MARGINAL MAPPING 1257

We know that in terms of set limits, X∞ = lim supt↓0 tX. The tangent cones and the
normal cones we mentioned before are expressed as follows:

TX(x̄) = lim sup
t↓0

X − x̄
t

, N co
X (x̄) = {v ∈ Rn : 〈v, x− x̄〉 5 0 for all x ∈ X},

T adjX (x̄) = lim inf
t↓0

X − x̄
t

, N̂ ε
X(x̄) =

{
v ∈ Rn : lim sup

x
X−→x̄

〈v, x− x̄〉
‖x− x̄‖

5 ε

}
,

T clX (x̄) = lim inf
t↓0,x

X−→x̄

X − x
t

, NX(x̄) = lim sup

x
X−→x̄,ε↓0

N̂ ε
X(x),

where x
X−→ x̄ signifies that x tends to x̄ while lying within X, 〈., .〉 is the inner

product and ‖.‖ is the Euclidean norm in Rn.
The set-valued mapping F is said to be closed at x̄ ∈ domF if lim supx→x̄ F (x) ⊆

F (x̄) and closed around x̄ if it is closed at every point in a neighborhood of x̄. It is
locally bounded at x̄ if there is a neighborhood V of x̄ such that F (V ) is bounded. It
is upper (respectively, lower) semi-continuous at x̄ ∈ domF if for every open set W
with F (x̄) ⊆W (respectively, F (x̄)∩W 6= ∅) there is some neighborhood U of x̄ such
that F (x) ⊆ W (respectively, F (x) ∩W 6= ∅) for all x ∈ U . It is pseudo-Lipschitz at
(x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄, W of ȳ, and a constant ` = 0 such
that

F (x1) ∩W ⊆ F (x2) + `‖x1 − x2‖Bp ∀x1, x2 ∈ U,

and it is calm at (x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄, W of ȳ, and a
constant ` = 0 such that

F (x) ∩W ⊆ F (x̄) + `‖x− x̄‖Bp ∀x ∈ U.

If the latter inclusion holds for W = Rp, one says that F is calm at x̄.
The following derivatives of F at (x̄, ȳ) ∈ gphF in the direction d ∈ Rp will be

used throughout this paper.
• The contingent, the adjacent, and the Clarke derivatives:

v ∈ DF (x̄, ȳ)(d)⇔ (d, v) ∈ lim sup
t↓0

gphF − (x̄, ȳ)

t
,

v ∈ DadjF (x̄, ȳ)(d)⇔ (d, v) ∈ lim inf
t↓0

gphF − (x̄, ȳ)

t
,

v ∈ DclF (x̄, ȳ)(d)⇔ (d, v) ∈ lim inf
t↓0

(x,y)
gphF−−−→(x̄,ȳ)

gphF − (x, y)

t
.

• The upper and lower Dini derivatives:

DuppF (x̄, ȳ)(d) := lim sup
t↓0,d′→d

F (x̄+ td′)− ȳ
t

,

DlowF (x̄, ȳ)(d) := lim inf
t↓0,d′→d

F (x̄+ td′)− ȳ
t

.

• The strictly lower Dini derivative:

Ds−lowF (x̄, ȳ)(d) := lim inf
t↓0,d′→d

(x,y)
gphF−−−→(x̄,ȳ)

F (x+ td′)− y
t

.
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1258 D. THE LUC, M. SOLEIMANI-DAMANEH, M. ZAMANI

The mapping F is said to be proto-differentiable (respectively, Clarke differentiable,
semi-differentiable, and strictly semi-differentiable) at (x̄, ȳ) ∈ gphF if DuppF (x̄, ȳ) =
DadjF (x̄, ȳ) (respectively, DuppF (x̄, ȳ) = DclF (x̄, ȳ), DuppF (x̄, ȳ) = DlowF (x̄, ȳ),
and DuppF (x̄, ȳ) = Ds−lowF (x̄, ȳ).)

We note that the contingent derivative coincides with the upper Dini derivative
and the strict lower Dini derivative is graphically the smallest one among the above-
mentioned derivatives. Calculus rules and relations between them can be found in
[10, 18, 21]. Finally, we mention below two known facts on pseudo-Lipschitz continuity
and semi-differentiability that we will use in our proofs.

(R1) Assume gphF is locally closed at (x̄, ȳ) (its intersection with some closed
neighborhood of (x̄, ȳ) is closed). Then F is pseudo-Lipschitz at (x̄, ȳ) ∈ gphF
if and only if (σ, 0) ∈ NgphF (x̄, ȳ) implies σ = 0 (see [18, Theorem 4.10]).

(R2) If F is pseudo-Lipschitz and proto-differentiable (respectively, Clarke differ-
entiable) at (x̄, ȳ), then it is semi-differentiable (respectively, strictly semi-
differentiable) at (x̄, ȳ) (see [21, Proposition 9.50]).

3. Uniformly efficient points. Consider a parametric multiobjective optimiza-
tion problem, denoted by P(u),

min f(u, x)

s.t. x ∈ X(u),(1)

where “s.t.” indicates “subject to”, f : Rq ×Rn → Rp is a continuous vector function
and X : Rq ⇒ Rn is a set-valued mapping, called the feasible solution mapping. In
this problem u ∈ Rq is a parameter and x ∈ Rn is a decision variable. The feasible
value mapping Y : Rq ⇒ Rp is defined by

Y (u) := {f(u, x) : x ∈ X(u)}.

We recall that a feasible solution x̄ ∈ X(u) is an efficient solution of P(u) if f(x̄) is
an efficient point of Y (u), that is, if

Y (u) ∩ (f(u, x̄)− Rp+ \ {0}) = ∅,(2)

where Rp+ denotes the positive orthant of Rp. The set of all efficient points of Y (u) is
denoted by MinY (u) and the set of all efficient solutions of P(u) is denoted by S(u).
The mapping u 7→ S(u) is called the efficient solution mapping and u 7→ V (u) :=
MinY (u) is called the efficient value mapping or the marginal mapping. We say that
Y has the domination property around (ū, ȳ) if there is a neighborhood Q of (ū, ȳ)
such that y ∈MinY (u) + Rp+ for every (u, y) ∈ Q ∩ gphY .

Sometimes one is given a convex and pointed cone K in Rp and defines K-efficient
solutions by substituting K instead of Rp+ in (2). A feasible solution x ∈ X(u) is called
a weakly efficient solution of P(u) if it is K-efficient for K = int(Rp+) ∪ {0}, and it is
called a properly efficient solution of P(u) if it is K-efficient for some K that contains
Rp+ \ {0} in its interior. Let ei denote the ith unit coordinate vector and e the vector
of ones in Rp. For ε = 0, set

Kε := pos{ei + εe : i = 1, . . . , p}.

The positive polar cone of Kε is denoted by K+
ε , that is,

K+
ε := {v ∈ Rp : 〈v, y〉 = 0 for all y ∈ Kε}.
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SEMI-DIFFERENTIABILITY OF THE MARGINAL MAPPING 1259

We have Kε \ {0} ⊂ int(Rp+) ⊂ Rp+ \ {0} ⊂ int(K+
ε ) for every ε > 0. It is clear that a

feasible solution x ∈ X(u) is weakly efficient if and only if it is Kε-efficient for all ε > 0,
and it is properly efficient if and only if it is K+

ε -efficient for some ε > 0. We shall
also use the following characterization of proper efficiency (see [9, Proposition 2.2] for
a general result).

(R3) A point ȳ ∈ Y (u) is properly efficient if and only if there is some ε > 0 such
that

cl(cone(Y (u)− ȳ)) ∩ −K+
ε = {0}.

The concept of uniform efficiency is a key ingredient of our analysis.

Definition 1. Let ū be given. An efficient point ȳ of Y (ū) is said to be a uni-
formly efficient point of Y at ū if there are some ε > 0 and neighborhood Q of (ū, ȳ)
such that y is a K+

ε -efficient point of Y (u) whenever (u, y) ∈ gphV ∩Q.
Needless to say that when p = 1, a uniformly efficient point of Y at ū or an efficient

point of Y (ū) simply signifies the optimal value of P(ū). Moreover, if ȳ ∈ Y (ū) is a
uniformly efficient point of Y at ū, then it is a properly efficient point of Y (ū). In
general, not every properly efficient point of Y (ū) is uniformly efficient (see Example 5
when ū = 0, ȳ = (0, 0), and Y = Y1 ∪ Y2). Below we provide some characterizations
of uniform efficiency.

Lemma 2. Let ȳ ∈ V (ū). The following statements are equivalent:
(i) ȳ is a uniformly efficient point of Y at ū;
(ii) there is a closed, convex, and pointed cone K containing Rp+ \ {0} in its

interior such that for every sequence {(uk, yk)}k ⊆ gphV converging to (ū, ȳ)
the points yk are all K-efficient when k is sufficiently large;

(iii)  lim sup

(u,y)
gphV−−−→(ū,ȳ)

cone(Y (u)− y)

 ∩ −Rp+ = {0}.

Moreover, if Y∞(ū) ∩ −Rp+ = {0} and Y is closed at ū, then ȳ is uniformly efficient
if and only if  lim sup

t↓0

(u,y)
gphV−−−→(ū,ȳ)

Y (u)− y
t

 ∩ −Rp+ = {0}.(3)

Proof. The implication (i)⇒ (ii) is evident. To prove the implication (ii)⇒ (iii),
let v be a nonzero element of

lim sup

(u,y)
gphV−−−→(ū,ȳ)

cone(Y (u)− y).

We find a sequence {uk}k converging to ū, yk ∈ V (uk), y′k ∈ Y (uk), and real numbers
tk = 0 such that v = limk→∞ tk(y′k−yk). According to (ii) and because v 6= 0, we may
assume that yk is K-efficient and y′k 6= yk for all k = 0. Then y′k − yk 6∈ −K, which
implies that v 6∈ − int(K). We deduce that v 6∈ −Rp+ \ {0}. This proves (iii). Now
assume (iii). Because both of the cones in the intersection of (iii) are closed, there is
some ε > 0 such that

lim sup

(u,y)
gphV−−−→(ū,ȳ)

cone(Y (u)− y) ∩ −K+
2ε = {0}.
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Then there is a neighborhood Q of (ū, ȳ) such that cone(Y (u)− y) ∩−K+
ε = {0} for

(u, y) ∈ Q ∩ gphV . This shows, in particular, that y is K+
ε -efficient of Y (u) for every

(u, y) ∈ Q ∩ gphV . By definition, ȳ is a uniformly efficient point of Y at ū.
For the second part of the lemma, let ȳ ∈ Y (ū) be a uniformly efficient point of Y

at ū. According to the first part, (iii) holds, which implies (3) because (Y (u)−y)/t ⊆
cone(Y (u)− y). For the converse, suppose that ȳ is not uniformly efficient. For each
ε = 1/k we find uk and yk ∈ V (uk) and zk ∈ Y (uk) such that limk→∞(uk, yk) = (ū, ȳ)
and zk − yk ∈ −K+

1/k. It can be seen that {zk}k is bounded, because otherwise
we would obtain from this sequence a nonzero vector v ∈ Y∞(ū) ∩ −Rp+, which
is a contradiction. Then, we may assume either it converges to some vector z ∈
Y (ū), z 6= ȳ because Y is closed at ū, or it converges to ȳ. The first case is impossible
because ȳ is an efficient point of Y (ū). In the second case, we may assume that
{(zk − yk)/‖zk − yk‖}k converges to some nonzero vector w. It is clear that (3) does
not hold, for w lies in the intersection on its left-hand side. The proof is complete.

Another concept of efficient points introduced in [26] is also essential in the study
of parametric convex problems. An efficient point ȳ of Y (ū) is called normally efficient
if

N co
Y (ū)+Rp+

(ȳ) ⊂ − int(Rp+) ∪ {0}.

Of course, normally efficient points are properly efficient, but the converse is generally
not true. Here is a useful link between normally efficient points and uniformly efficient
points when the set-valued mapping Y + Rp+ : Rq ⇒ Rp, defined by (Y + Rp+)(u) =
Y (u) + Rp+ for u ∈ Rq, is lower semi-continuous.

Lemma 3. Assume that Y + Rp+ has convex values around ū and is lower semi-
continuous at ū. Then every normally efficient point of Y (ū) is a uniformly efficient
point of Y at ū.

Proof. Let ȳ ∈ V (ū) be normally efficient. We claim that there is some ε > 0
such that

(4) N co
Y (ū)+Rp+

(ȳ) ⊆ −Kε.

Indeed, let ∆ := co{e1, . . . , ep} and ∆0 := ∆ ∩ (−N co
Y (ū)+Rp+

(ȳ)). Since the cone

−N co
Y (ū)+Rp+

(ȳ) is closed and convex and lies in − int(Rp+) ∪ {0}, the set ∆0 is a

compact set and lies in the relative interior of ∆. There is a real number ε > 0
such that every y ∈ ∆0 has components yi, i = 1, . . . , p, greater than or equal to ε.
Consequently, we may express y as

y =

p∑
i=1

yiei =

p∑
i=1

(
yi − ε

1 + pε

)
(ei + εe)

with yi − ε/(1 + pε) ≥ 0, by which y belongs to Kε. Because ∆0 is a base of
−N co

Y (ū)+Rp+
(ȳ), we deduce that N co

Y (ū)+Rp+
(ȳ) = −cone(∆0) ⊆ −Kε, as requested.

We claim further that

(5) lim sup

(u,y)
gphY−−−→(ū,ȳ)

N co
Y (u)+Rp+

(y) ⊆ N co
Y (ū)+Rp+

(ȳ).

In fact, let
v ∈ lim sup

(u,y)
gphY−−−→(ū,ȳ)

N co
Y (u)+Rp+

(y),
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SEMI-DIFFERENTIABILITY OF THE MARGINAL MAPPING 1261

and say v = limk→∞ vk, where vk ∈ N co
Y (uk)+Rp+

(yk) for some (uk, yk) ∈ gphY that
converges to (ū, ȳ) as k tends to ∞. Let y be an arbitrary element of Y (ū) + Rp+.
Due to the semi-continuity hypothesis, we find some zk ∈ Y (uk) + Rp+ such that
limk→∞ zk = y. Then 〈vk, zk − yk〉 ≤ 0 for every k ≥ 1. When k tends to ∞, we
obtain 〈v, y − ȳ〉 ≤ 0, which proves v ∈ N co

Y (ū)+Rp+
(ȳ). In view of (4) and (5), there is

a neigborhood Q of (ū, ȳ) such that

N co
Y (u)+Rp+

(y) ⊆ −Kε/2 for all (u, y) ∈ Q ∩ gphY.

Because Y +Rp+ has convex values around ū, we may choose Q so small that Y (u)+Rp+
is convex when (u, y) ∈ Q∩ gphV . For such (u, y), the cone N co

Y (u)+Rp+
(y) is nontrivial

because y is a boundary point of Y (u) + Rp+. Choose a nonzero vector ξ from this
cone. We have ξ ∈ − int(Kε/4) and find some strict positive numbers αi, i = 1, . . . , p,
such that ξ =

∑p
i=1−αi(ei + (ε/4)e). It follows that

pos(Y (u)− y) ⊆ −[N co
Y (u)+Rp+

(y)]+ ⊆ −{cone(ξ)}+ ⊆
p⋃
i=1

{cone(ei + (ε/4)e)}+.

We deduce that pos(Y (u)−y)∩− int(K+
ε/4) = ∅ for all (u, y) ∈ Q∩gphV. This implies

(iii) of Lemma 2, by which ȳ is uniformly efficient.

We note that the conclusion of Lemma 3 may fail without convexity or the lower
semi-continuity hypothesis. This is because normal efficiency reflects the position of
a point with respect to a given value set, while uniform efficiency involves all value
sets around a point. On the other hand, a uniformly efficient point is not necessarily
normally efficient. For instance, the constant set-valued mapping u 7→ Rp+ has a
unique uniformly efficient point ȳ = 0, which is not normally efficient. Now let us
establish a sufficient condition of uniform efficiency for union of convex sets.

Theorem 4. Let Y =
⋃m
i=1 Yi and let ȳ ∈ V (ū). Assume the following conditions

hold for every i ∈ {1, . . . ,m}:
(i) the mapping Yi+Rp+ has nonempty convex values and the domination property

around ū, and is closed and lower semi-continuous at ū;
(ii) N co

Yi(ū)+Rp+
(ȳ) ⊆ − int(Rp+) ∪ {0} if ȳ ∈ Yi(ū).

Then ȳ is a uniformly efficient point of Y at ū.

Proof. We prove this theorem for m = 2. The proof for m > 2 follows the same
lines. We suppose to the contrary that ȳ is not uniformly efficient for Y at ū. In view
of Lemma 2, there exist (uk, yk) ∈ gphV converging to (ū, ȳ), tk > 0 and y′k ∈ Y (uk)
such that

lim
k→∞

tk(y′k − yk) = v ∈ −Rp+ \ {0}.(6)

Without loss of generality we may assume that (uk, yk) ∈ gphY1 for all k = 1 and
then (ū, ȳ) ∈ gphY1 because Y1 + Rp+ is closed at ū and ȳ is efficient. We distinguish
two cases: (a) (ū, ȳ) 6∈ gphY2, and (b) (ū, ȳ) ∈ gphY2. In the first case, there is a
neighborhood Q of (ū, ȳ) such that Q ∩ gph(Y2 + Rp+) = ∅.

Claim 1. y′k ∈ Y1(uk) for all k sufficiently large.

Indeed, if not, there exists a subsequence {(uνk , y′νk)}k ⊂ gphY2. One may assume
either (a1) limk→∞ y′νk = y′ ∈ Y2(ū) + Rp+ with (ū, y′) /∈ Q because Y2 + Rp+ is closed
at ū, in which case limk→∞ tνk = t0 for some t0 > 0, or (a2) limk→∞ ‖y′νk‖ = +∞,
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in which case limk→∞ tνk = 0. In the (a1) case, we obtain y′ = ȳ + v/t0, which is
in contradiction with the fact that ȳ is an efficient point of Y (ū). In the (a2) case,
we choose an efficient point ŷ of Y2(ū). Due to the lower semi-continuity hypothesis,
there exists ŷνk ∈ Y2(uνk) +Rp+ converging to ŷ. Now, for each positive number α we
consider the convex combinations (1− αtνk)ŷνk + αtνky

′
νk

, which lie in Y2(uνk) + Rp+
for k sufficiently large. Then

ŷ + αv = lim
k→∞

(
(1− αtνk)ŷνk + αtνky

′
νk

)
∈ Y2(ū) + Rp+

because Y2 + Rp+ is closed at ū. This contradicts the choice of ŷ and proves Claim 1.
We return to relation (6). By Claim 1, both y′k and yk belong to Y1(uk). Due to
Lemma 3 and (ii), ȳ is a uniformly efficient point of Y1 at ū. Relation (6) is then in
contradiction with (iii) of Lemma 2.

We now consider (b) the case in which (ū, ȳ) ∈ gph(Y2 +Rp+). It follows from the
hypotheses and from Lemma 3 that ȳ is uniformly efficient for both Y1 and Y2 at ū.
In view of Lemma 2 and because of (6), we may assume that

yk ∈ Y1(uk) \ Y2(uk), y′k ∈ Y2(uk) \ Y1(uk) for k = 1.

By considering z′k ∈ Y2(uk)+Rp+ instead of y′k if necessary, where z′k is a unique point
on the segment joining yk and y′k such that [yk, y

′
k]∩ (Y2(uk) +Rp+) = [z′k, y

′
k], we may

assume that

(7) [yk, y
′
k] ∩ (Y2(uk) + Rp+) = {y′k}.

Note that when z′k 6= y′k, by a suitable change in tk, we still have (6) with z′k replacing
y′k. Moreover, due to the domination property, there are some y′′k ∈ V2(uk) (the
efficient set of Y2(uk)) and rk ∈ Rp+ such that y′k = y′′k + rk.

Claim 2. limk→∞ y′′k = ȳ.

We notice first that the argument used to prove Claim 1 can be applied to show
that limk→∞ y′k = ȳ. Then, consider the sequence {rk}k. If it is bounded, we may
assume it converges to some vector r ∈ Rp+. It follows that limk→∞ y′′k = ȳ − r.
Because Y2 +Rp+ is closed at ū and ȳ is an efficient point of Y (ū), we have r = 0, and
so limk→∞ y′′k = ȳ. If that sequence is unbounded, we may assume limk→∞ ‖rk‖ =
+∞ and limk→∞ rk/‖rk‖ = r̃ ∈ Rp+ \ {0}. By the convexity hypothesis, we have
y′k − rk/‖rk‖ ∈ Y2(uk) + Rp+ for k sufficiently large, which, in view of the closedness
hypothesis, implies ȳ−r̃ = limk→∞(y′k−rk/‖rk‖) ∈ Y2(ū)+Rp+. This is a contradiction
because ȳ is an efficient point of Y (ū) + Rp+.

Now we consider the convex sets

Ak := Y2(uk) + Rp+,
Bk := {y′′k + t(yk − y′′k ) : t = 0}.

We have int(Ak) 6= ∅ and Bk ∩ int(Ak) = ∅. The latter empty intersection is obtained
from (7), because otherwise one should find some t ∈ (0, 1) such that y′′k + t(yk−y′′k ) ∈
Ak. This implies y′k + t(yk− y′k) ∈ [yk, y

′
k]∩ (Y2(uk) +Rp+), which contradicts (7). We

separate them by a unit norm vector λk ∈ Rp as

〈λk, y − y′′k 〉 5 0 5 〈λk, z − y′′k 〉 for all y ∈ Ak, z ∈ Bk.

We deduce, in particular, that λk ∈ N co
Y2(uk)+Rp+

(y′′k ) ∩ (−Rp+) and

〈λk, yk − y′′k 〉 = 0 for k = 1.(8)
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We may assume that limk→∞ λk = λ for some λ ∈ −Rp+. Due to Claim 2, the lower
semi-continuity of Y2 + Rp+ at ū, and (8), we obtain λ ∈ N co

Y2(ū)+Rp+
(ȳ) and

〈λ,−v〉 = lim
k→∞

〈λk, tk(yk − y′k)〉 = lim
k→∞

〈λk, tk(yk − y′′k − rk)〉 = 0.

This is a contradiction because λ ∈ − int(Rp+) by (ii) and −v ∈ Rp+ \ {0} by (6). The
proof is complete.

One should ask whether condition (ii) can be replaced by requiring ȳ to be uni-
formly efficient for Yi whenever it belongs to Yi(ū). The answer is negative, as is
shown by the next example.

Example 5. Consider Y1, Y2 : R⇒ R2 defined by

Y1(u) := co

({(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)})
,

Y2(u) := Y1(u) +

(
u
u2

)
for every u ∈ R. Then the point ȳT = (0 0) is uniformly efficient for both Y1 and
Y2 at ū = 0, but not for their union. In this example condition (ii) of Theorem 4 is
violated.

We close this section by considering a parametric vector problem of minimizing
a linear function on a finite union of polyhedral convex sets. Namely, let f(u, x) =
C(u)x, Xi(u) = {x ∈ Rn : Ai(u)x 5 bi(u)}, where C(u) is a p × n-matrix, Ai(u) is
an mi × n-matrix, and bi(u) is an mi-vector for each u ∈ Rq and i = 1, . . . ,m. The
problem P(u) is written as

min C(u)x

s.t. x ∈
m⋃
i=1

Xi(u).

In our notation, X(u) =
⋃m
i=1Xi(u), Y (u) =

⋃m
i=1 Yi(u) with Yi(u) = {C(u)x : x ∈

Xi(u)}, and Vi(u) = Min(Yi(u)) for i = 1, . . . ,m. In the next corollary, given a point
u, the kernel of the linear operator C(u) is denoted by KerC(u).

Corollary 6. Let ȳ ∈ V (ū). Assume that the following conditions hold:
(i) for every i ∈ {1, . . . ,m}, the functions C,Ai, bi are continuous at ū and there

exists xi with Ai(ū)xi < b(ū);
(ii) for every i ∈ {1, . . . ,m}, KerC(ū) ∩ [Xi(ū)]∞ = {0};
(iii) for i ∈ {1, . . . ,m} such that ȳ 6∈ Yi(ū), one has

(9) C(ū)[Xi(ū)]∞ ∩ −Rp+ = {0};

(iv) for i ∈ {1, . . . ,m} such that ȳ ∈ Yi(ū), one has

{λ ∈ −Rp+ : CT (ū)λ ∈ N co
Xi(ū)(x̄i)} ⊆ − int(Rp+) ∪ {0},

where x̄i ∈ Xi(ū) such that ȳ = C(ū)x̄i, i ∈ {1, . . . ,m}.
Then ȳ is a uniformly efficient point of Y at ū.
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Proof. Our aim is to check the hypotheses of Theorem 4. First, we note that (9) is
true for all i = 1, . . . ,m. Indeed, if not, say for some i with ȳ = C(ū)x̄i ∈ Yi(ū), there
is some nonzero vector v = C(ū)d ∈ C(ū)[Xi(ū)]∞ ∩ −Rp+ with d ∈ [Xi(ū)]∞. Pick
any nonzero vector λ from the set on the left-hand side of the inclusion in (iv) (such a
λ exists because ȳ is an efficient point of Yi(ū)). Then 〈CT (ū)λ, d〉 = 〈λ,C(ū)d〉 = 0,
which contradicts (iv). Second, we show that Y1, . . . , Ym are closed and lower semi-
continuous at ū. Observe that due to (i) the mappings X1, . . . , Xm are closed and
lower semi-continuous at ū. Then the lower semi-continuity of Y1, . . . , Ym is im-
mediate. For the closedness of Yi at ū, let (uk, yk) ∈ gphYi converge to (ū, y).
We find some xk ∈ Xi(uk) such that C(uk)xk = yk. If the sequence {xk}k is
bounded, then it admits a cluster point x ∈ Xi(ū). Then y = C(ū)x, proving
that (ū, y) ∈ gphYi. If that sequence is unbounded, say limk→∞ ‖xk‖ = +∞,
we may assume limk→∞ xk/‖xk‖ = v for some nonzero vector v. Then, on the
one hand C(ū)v = limk→∞ C(uk)xk/‖xk‖ = limk→∞ yk/‖xk‖ = 0. On the other
hand, Ai(ū)v = limk→∞Ai(uk)xk/‖xk‖ 5 limk→∞ bi(uk)/‖xk‖ = 0. This contra-
dicts (ii). Hence, Y1, . . . , Ym are closed and semi-continuous at ū. Third, by defi-
nition, Y1(u), . . . , Ym(u) are polyhedral convex sets. Moreover, due to (ii) and [15,
Lemma 4.2], we have C(ū)[Xi(ū)]∞ = [Yi(ū)]∞. Since (iii) is true for all i = 1, . . . ,m,
we deduce that [Yi(ū)]∞ ∩ −Rp+ = {0}. Due to the closedness of Y at ū, we have
[Yi(u)]∞ ∩ −Rp+ = {0} for all u in a small neighborhood U of ū too. Because
Yi(u) is a convex polyhedral set, the latter equality implies its domination prop-
erty around ū. Thus, Y1, . . . , Ym are closed, semi-continuous at ū, and have con-
vex values and the domination property around ū. Then so too are the mappings
Yi + Rp+, i = 1, . . . ,m. Moreover, it follows from (iv) that the cone NYi(ū)+Rp+(ȳ)
entirely lies in − int(Rp+) ∪ {0} whenever ȳ ∈ Yi(ū). It remains to apply Theorem 4
to complete the proof.

We note that when Xi(ū) is bounded, conditions (ii) and (iii) of the preceding
corollary are evidently satisfied. A sufficient condition for (iv) to hold is that ȳ is a
relative interior point of a (p − 1)-dimensional face of Yi(ū) + Rp+ if ȳ ∈ Yi(ū), i ∈
{1, . . . ,m}. The conclusion of Corollary 6 may fail if the last condition does not hold,
as is shown by the next example.

Example 7. Let X : R ⇒ R3 be given by X(u) =: {x ∈ R3 : −x1 5 −u,−ux1 −
x2 5 0, x3 5 0,−x1 − x2 − x3 5 −u, x1 + x2 − x3 5 10} and let C(u) be given by

C(u) =

1 0 0
0 1 0
0 0 1

 .

At ū = 0, the point ȳT = (0 0 0) is not uniformly efficient, while ŷT = (2 1 −3)
is uniformly efficient. Clearly ȳ is not a relative interior point of a 2-dimensional face
of Y (ū) at which condition (iv) does not hold, but ŷ is.

4. Semi-differentiability of the marginal mapping. In this section, we shall
focus only on conditions for the semi-differentiability of the marginal mapping V and
find a formula to compute its semi-derivative. But, mutatis mutandis, most of the
results of this section and the next ones remain true for strict semi-differentiability.
Let us begin with outer and inner estimates for the semi-derivative of V .

Proposition 8. Let ȳ ∈ V (ū). The following statements hold for every d ∈ Rq:
(i) DlowV (ū, ȳ)(d) ⊆WMin[DlowY (ū, ȳ)(d)];
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(ii) DlowV (ū, ȳ)(d) ⊆ Min[DlowY (ū, ȳ)(d)] provided that ȳ is a uniformly effi-
cient point;

(iii) DlowV (ū, ȳ)(d) ⊇Min[DlowY (ū, ȳ)(d)] provided that Y is semi-differentiable
at (ū, ȳ), closed at ū, and has the domination property around (ū, ȳ), Y∞(ū)∩
−Rp+ = {0}, and DY (ū, ȳ)(0) ∩ −Rp+ = {0}.

Proof. Let d ∈ Rq be given. We prove (ii) first. Suppose to the contrary that
the inclusion in (ii) does not hold, that is, there are some w ∈ DlowV (ū, ȳ)(d), w′ ∈
DlowY (ū, ȳ)(d) and a nonzero vector r ∈ Rp+ such that w = w′ + r. Let tk > 0 with
tk → 0 and dk → d be given. There are zk ∈ V (ū + tkdk) and yk ∈ Y (ū + tkdk)
such that limk→∞(zk − ȳ)/tk = w and limk→∞(yk − ȳ)/tk = w − r. It follows that
limk→∞(yk − zk)/tk = limk→∞((yk − ȳ) + (ȳ − zk))/tk = −r. By Lemma 2 this
contradicts the uniform efficiency hypothesis.

For the first statement, if the inclusion does not hold, then the vector r in the
proof of the first statement belongs to int(Rp+). Hence for k sufficiently large, one
has yk − zk ∈ − int(Rp+), which contradicts the fact that zk is an efficient point of
Y (ū+ tkdk).

For (iii), let w ∈ Min[DlowY (ū, ȳ)(d)]. Let tk > 0 with tk → 0 and dk → d
be arbitrarily given. Our aim is to find zk ∈ V (ū + tkdk) such that limk→∞(zk −
ȳ)/tk = w. Note that, because w ∈ DlowY (ū, ȳ)(d), there are yk ∈ Y (ū + tkdk) such
that limk→∞(yk − ȳ)/tk = w. Due to the domination property, we may find some
zk ∈ V (ū + tkdk) and rk ∈ Rp+ such that yk = zk + rk. Consider the sequence
{rk/tk}k.

Claim 1. limk→∞ rk = 0.

Indeed, if not, we may assume, without loss of generality, that either limk→∞ rk =
r for some nonzero vector r ∈ Rp+, or limk→∞ rk/‖rk‖ = r̄ for some nonzero vector
r̄ ∈ Rp+ with limk→∞ ‖rk‖ = +∞. In the first case, limk→∞ zk = ȳ−r ∈ Y (ū) because
Y is closed at ū, which contradicts the fact that ȳ is an efficient point of Y (ū). In the
second case

lim
k→∞

zk
‖rk‖

= lim
k→∞

(
yk
‖rk‖

− rk
‖rk‖

)
= −r̄,

which shows that −r̄ ∈ Y∞(ū). This contradicts the assumption that Y∞(ū)∩−Rp+ =
{0}.

Claim 2. The sequence {rk/tk}k is bounded.

In fact, suppose to the contrary that it is unbounded, say limk→∞ ‖rνk‖/tνk = +∞
for some subsequence {rνk/tνk}k. Then we may assume that limk→∞ rνk/‖rνk‖ = r
for some nonzero vector r ∈ Rp+ and derive

lim
k→∞

zνk − ȳ
‖rνk‖

= lim
k→∞

(
yνk − ȳ
tνk

tνk
‖rνk‖

− rνk
‖rνk‖

)
= −r,

lim
k→∞

(ū+ tνkdνk)− ū
‖rνk‖

= lim
k→∞

dνk
tνk
‖rνk‖

= 0.

Since limk→∞ rk = 0 by Claim 1, these limits prove that −r ∈ DY (ū, ȳ)(0), which
contradicts the assumption that DY (ū, ȳ)(0) ∩ −Rp+ = {0}.

Claim 3. limk→∞ rk/tk = 0.

We proceed by contradiction. In view of Claim 2, assume there is a subsequence
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{rνk/tνk} converging to some nonzero vector r̄ ∈ Rp+. We have

w − r̄ = lim
k→∞

(yνk − ȳ) + rνk
tνk

= lim
k→∞

zνk − ȳ
tνk

,

which belongs to DY (ū, ȳ)(d). The above limit also belongs to DlowY (ū, ȳ)(d) because
Y is semi-differentiable at (ū, ȳ). This contradicts the fact that w is an efficient point
of DlowY (ū, ȳ)(d).

We return to the sequence {(ū+ tkdk, zk)}k ⊂ gphV , which converges to (ū, ȳ) ∈
gphV according to Claim 1. In view of Claim 3, we also have limk→∞(zk − ȳ)/tk =
limk→∞((yk − ȳ) − rk)/tk = w, by which w ∈ DlowV (ū, ȳ)(d) and statement (iii) is
proven.

Remark 1. In general, the estimates given in the preceding proposition are not
true either for contingent derivatives or for proto-derivatives (see also Remark 3).
When Y is semi-differentiable, inclusion (i) is true for the contingent derivative (see
also [11, Theorem 3.3]), that is,

DV (ū, ȳ)(d) ⊆WMin[DlowY (ū, ȳ)(d)].(10)

Corollary 9 shows that when d ∈ domDlowV (ū, ȳ), the equality DlowV (ū, ȳ)(d) =
Min[DlowY (ū, ȳ)(d)] can be established without hypothesis on the asymptotic direc-
tions of Y .

Corollary 9. Let ȳ ∈ V (ū) be a uniformly efficient point of Y . Assume that
(i) Y is semi-differentiable at (ū, ȳ), closed at ū, and has the domination property

around (ū, ȳ), and
(ii) DY (ū, ȳ)(0) ∩ −Rp+ = {0}.

Then DlowV (ū, ȳ)(d) = Min[DlowY (ū, ȳ)(d)] for every d ∈ domDlowV (ū, ȳ).

Proof. By a close inspection of the proof of Proposition 8 we need only to show
that the sequence {rk}k is bounded. We proceed by contradiction. Assume that
limk→∞ ‖rk‖ = +∞ and limk→∞ rk/‖rk‖ = r̄ for some nonzero vector r̄ ∈ Rp+.
Choose any vector ṽ ∈ DlowV (ū, ȳ)(d). By definition, there exists z̃k ∈ V (ū + tkdk)
such that limk→∞(z̃k − ȳ)/tk = ṽ. Since ȳ is uniformly efficient, we may assume that
z̃k are all K+

ε -efficient for some ε > 0. We have also

lim
k→∞

zk − z̃k
‖rk‖

= lim
k→∞

zk
‖rk‖

= −r̄.

Hence, for k sufficiently large we have (zk− z̃k)/‖rk‖ ∈ − int(K+
ε ), implying zk− z̃k ∈

− int(K+
ε ). The latter relation is in contradiction with the K+

ε -efficiency of z̃k. The
proof is complete.

We are now able to give a main result on the semi-differentiability of the marginal
mapping when the feasible value mapping is semi-differentiable.

Theorem 10. Let ȳ ∈ V (ū) be a uniformly efficient point of Y . Assume the
following conditions:

(i) Y is semi-differentiable at (ū, ȳ), closed at ū, and has the domination property
around (ū, ȳ);

(ii) DY (ū, ȳ)(0) ∩ −Rp+ = {0};
(iii) Y∞(ū) ∩ −Rp+ = {0}.

Then V is semi-differentiable at (ū, ȳ) and its semi-derivative is given by the formula

DlowV (ū, ȳ)(d) = Min[DlowY (ū, ȳ)(d)] for every d ∈ Rq.(11)
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Proof. Let (d,w) ∈ gphDV (ū, ȳ) with (d,w) = lim(uν − ū, yν − ȳ)/sν for some
yν ∈ V (uν), sν > 0, and sν → 0 as ν tends to ∞. Let tk ↓ 0 and dk → d be arbitrary
and given. We have to find w̄k ∈ V (ū+ tkdk) such that

lim
k→∞

w̄k − ȳ
tk

= w.(12)

To this end, we observe that because Y is semi-differentiable, there exists zk ∈ Y (ū+
tkdk) such that

lim
k→∞

zk − ȳ
tk

= w.(13)

Due to the domination property, we find some wk ∈ V (ū + tkdk) and rk ∈ Rp+ such
that zk = wk+rk. We wish to show that limk→∞ rk/tk = 0, which completes the proof
by setting w̄k = wk and using (12) and (13). We observe that the proof of Claims 1
and 2 of Proposition 8 hold, while Claim 3 needs some explanation because in the
present case it is not known whether w is an efficient element of DlowY (ū, ȳ)(d). By
contradiction, we suppose that Claim 3 is not true, that is, there is a subsequence
{rνk/tνk}k that converges to some nonzero vector r̄ ∈ Rp+. It follows from (13)
that (d,w − r̄) ∈ gphDV (ū, ȳ). Again, by the semi-differentiability of Y , for the
subsequences {sνk}k and {dνk}k from {sν}ν and {dν}ν given at the beginning of the
proof, we may find some y′νk ∈ Y (ū+ sνkdνk) such that

lim
k→∞

y′νk − ȳ
sνk

= w − r̄.

We deduce that

lim
k→∞

y′νk − yνk
sνk

= lim
k→∞

(y′νk − ȳ) + (ȳ − yνk)

sνk
= −r̄.

In view of Lemma 2, the latter relation contradicts the uniform efficiency of ȳ. We
conclude that V is semi-differentiable at (ū, ȳ). The formula for the semi-derivative
of V at (ū, ȳ) is obtained from Proposition 8.

Remark 2. The domination property assumption in Proposition 8 and Theo-
rem 10 can be replaced by requesting that Y be closed-valued around ū. Indeed,
condition Y∞(ū) ∩ −Rp+ = {0} implies that for u close to ū and for every y, the set
Y (u) ∩ (y − Rp+) is bounded, and hence compact. Therefore, for each y ∈ Y (u), that
set admits an efficient point dominating y.

Remark 3. In part (iii) of Proposition 8 (hence condition (i) of Theorem 10 and
the subsequent results), the closedness of Y at ū can be replaced by the closed-
ness of Y + Rp+ around (ū, ȳ). Indeed, the closedness hypothesis was used to derive
limk→∞ zk = ȳ − r ∈ Y (ū). The limit ȳ − r may lie outside of Y (ū) when Y is not
closed at ū, but the segment joining (ū, ȳ− r) and (ū, ȳ) does lie in the closure of the
graph of Y +Rp+. Because Y +Rp+ is closed around (ū, ȳ), we find some point (ū, ŷ) in
the interior of that segment, which belongs to the graph of Y +Rp+. This contradicts
the hypothesis that ȳ is an efficient point of Y (ū).

Remark 4. We note that the formula of the lower semi-derivative established in
Corollary 9 and Theorem 10 was already known in [24, Theorem 4.1 and Corollary
4.1]. There are, however, some inadequacies in that paper, some of which were already
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pointed out in [28]. Unfortunately, there is still a problem with these works because
the main results of [24] and [28], including the above mentioned Theorem 4.1 and
Corollary 4.1, are based on Proposition 3.2 of [24], which is wrong in general. A
suitable modification of an example given in [21, p. 199] illustrates this observation.

Example 11. Let Y : R⇒ R2 be given by

Y (u) :=


{

(y1, 0) : u sin(ln(u)) 5 y1 5 u
}
∪
{

(2u,−u)
}

for u > 0,

{(0, 0)} for u = 0,{
(u sin(ln(|u|)), 0), (2|u|,−|u|)

}
for u < 0.

Then at (ū, ȳ) = (0, (0, 0)), we have

Dlow(Y +R2
+)(ū, ȳ)(d) =

{
(l1, l2) : l1 = |d|, l2 ∈ R2

+} ∪ {(l1, l2) : l1 = 2|d|, l2 = −|d|
}
,

DlowY (ū, ȳ)(d) =

{
{(d, 0), (2d,−d)} for d > 0,

{(2|d|,−|d|)} for d ≤ 0.

Hence minDlow(Y +R2
+)(ū, ȳ)(−1) * DlowY (ū, ȳ)(−1), which refutes Proposition 3.2

of [24]. Moreover, since

V (u) =

{
{(u sin(ln(|u|)), 0), (2|u|,−|u|)} for u 6= 0,

{(0, 0)} for u = 0,

we have DlowV (ū, ȳ)(1) = {(2,−1)}, by which minDlowY (ū, ȳ)(1) * DlowV (ū, ȳ)(1).
Notice that for this mapping Y all assumptions of [24, Theorem 4.1 and Corol-
lary 4.1] and [28, Theorems 2.1 and 2.2] are satisfied; nevertheless, equality between
minDlowY (ū, ȳ) and DlowV (ū, ȳ) does not hold.

Corollary 12. Let ȳ ∈ V (ū) be a uniformly efficient point of Y . Assume the
following conditions:

(i) Y is semi-differentiable at (ū, ȳ), closed at ū, and has the domination property
around (ū, ȳ);

(ii) either Y is calm at ū, or
(iia) Y is calm at (ū, ȳ) and
(iib) Y∞(ū) ∩ −Rp+ = {0}.

Then V is semi-differentiable at (ū, ȳ) and its derivative is given by (11).

Proof. To prove this corollary it suffices to show that conditions (ii) and (iii) of
Theorem 10 hold. First, we prove that (iia) implies condition (ii) of Theorem 10. In
fact, let w ∈ DY (ū, ȳ)(0), w 6= 0. There are (uk, yk) ∈ gphY converging to (ū, ȳ) and
tk > 0 converging to 0 such that w = limk→∞(yk− ȳ)/tk and 0 = limk→∞(uk− ū)/tk.
Because Y is calm at (ū, ȳ), we may find some ỹk ∈ Y (ū) and ` > 0 such that
‖ỹk − yk‖ 5 `‖uk − ū‖ for every k sufficiently large. We deduce that

lim
k→∞

ỹk − ȳ
tk

= lim
k→∞

(
ỹk − yk
tk

+
yk − ȳ
tk

)
= w.

Since ȳ is a properly efficient point of Y (ū), due to (R3), we conclude that w 6∈ −Rp+.
Next, we prove that if Y is calm at ū, then condition (iib) is satisfied. Indeed, because
Y is calm at ū, we have

Y∞(ū) ⊆ [Y (ū)]∞.(14)
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Moreover, being uniformly efficient, the point ȳ is a properly efficient point of Y (ū).
Therefore, we deduce from (R3) that

[Y (ū)]∞ ∩ −Rp+ ⊆ cl(cone(Y (ū)− ȳ)) ∩ −K+
ε = {0}

for some ε > 0. This latter relation and (14) yield (iib). The proof is complete.

Corollary 13. Let ȳ ∈ V (ū) be a uniformly efficient point of Y . Assume the
following conditions:

(i) Y is proto-differentiable, pseudo-Lipschitz at (ū, ȳ), closed at ū, and has the
domination property around (ū, ȳ);

(ii) Y∞(ū) ∩ −Rp+ = {0}.
Then V is semi-differentiable at (ū, ȳ) and its derivative is given by (11).

Proof. We know from (R2) that a proto-differentiable and pseudo-Lipschitz map-
ping is semi-differentiable. Therefore, due to (i), the first condition of Corollary 12
holds true. Furthermore, the pseudo-Lipschitz assumption on Y at (ū, ȳ) implies that
it is calm at this point. It remains to apply Corollary 12 to complete the proof.

In the what remains of this section we wish to find conditions on the feasible
mapping X and the objective function f to ensure the semi-differentiability of V and
to compute its semi-derivative. For (u, y) ∈ gphY we define

X̂(u, y) := (f(u, .))−1(y) ∩X(u) = {x ∈ X(u) : f(u, x) = y}.

In the next result “dist” denotes distance.

Lemma 14. Let (ū, ȳ) ∈ gphY . Assume the following conditions:
(i) f is locally Lipschitz at (ū, x̄), x̄ ∈ X̂(ū, ȳ);

(ii) X is closed around ū and pseudo-Lipschitz at (ū, x̄), x̄ ∈ X̂(ū, ȳ);
(iii)

lim sup

(u,y)
gphY−−−→(ū,ȳ)

dist[0, X̂(u, y)] < +∞.

Then Y is pseudo-Lipschitz at (ū, ȳ).

Proof. Our aim is to apply (R1). We first prove that gphY is locally closed at
(ū, ȳ). To this end we claim that there exist α > 0 and a neighborhood Q of (ū, ȳ)
such that

(15) X̂(u, y) ∩ (αBn) 6= ∅ ∀(u, y) ∈ gphY ∩Q.

Indeed, if this is not the case, there exist {(uk, yk)}k ⊆ gphY with (uk, yk) →
(ū, ȳ) and X̂(uk, yk) ∩ (kBn) = ∅. Then for the sequence {(uk, yk)}k, one has
limk→∞ dist[0, X̂(uk, yk)] = +∞, which contradicts (iii). Further, we choose a closed
neighborhood Q′ ⊆ Q of (ū, ȳ) and show that gphY ∩ Q′ is closed. To this end, let
{(uk, yk)}k ⊆ gphY ∩ Q′ converge to (u, y). By (15), there are xk ∈ X(uk) ∩ (αBn)
with f(uk, xk) = yk. We may assume that xk → x̄. Due to the continuity of f and
due to condition (ii), we have (u, y) ∈ gphY ∩Q′ as requested. Thus, gphY is locally
closed at (ū, ȳ).

Now we suppose to the contrary that Y is not pseudo-Lipschitz at (ū, ȳ). In view
of (R1), we have (σ, 0) ∈ NgphY (ū, ȳ) for some σ 6= 0. By definition there are positive
numbers εk converging to 0, a sequence {(uk, yk)}k ∈ gphY converging to (ū, ȳ), and
{(σk, µk)}k with (σk, µk) ∈ N̂ εk

gphY (uk, yk) such that limk→∞(σk, µk) = (σ, 0). In view
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of (ii), we may find a sequence {xk}k such that yk = f(uk, xk) and a subsequence
{xνk} converging to some x̄ ∈ X̂(ū, ȳ). Then for every k we have

ενk = lim sup

(u,y)
gphY−−−→(uνk ,yνk )

〈σνk , u− uνk〉+ 〈µνk , y − yνk〉
‖u− uνk‖+ ‖y − yνk‖

= lim sup

(u,x)
gphX−−−→(uνk ,xνk )

〈σνk , u− uνk〉+ 〈µνk , f(u, x)− f(uνk , xνk)〉
‖u− uνk‖+ ‖f(u, x)− f(uνk , xνk)‖

.

Let ` > 0 be a Lipschitz constant of f at (ū, x̄). For k sufficiently large we deduce
that

(1 + `)(ενk + ‖µνk‖) = lim sup

(u,x)
gphX−−−→(uνk ,xνk )

〈σνk , u− uνk〉
‖u− uνk‖+ ‖x− xνk‖

,

which implies (σνk , 0) ∈ N̂
(1+`)(ενk+‖µνk‖)
gphX (uνk , xνk). By passing to the limit in the

latter relation when k tends to ∞, we obtain (σ, 0) ∈ NgphX(ū, x̄). This contradicts
the pseudo-Lipschitz continuity of X. The proof is complete.

To go further, we recall the concept of an asymptotic function of a real function
φ : Rq × Rn → R with respect to the mapping X at ū (see [15]):

(16) φ∞X (ū; v) := inf
{

lim
k→∞

tkφ(uk, xk) : tk ↓ 0, xk ∈ X(uk), uk → ū, tkxk → v
}

for v ∈ Rn.

Note that φ∞X may take the value −∞ or +∞.

Corollary 15. Assume f is locally Lipschitz at (ū, x̄) and X is locally closed and
pseudo-Lipschitz at (ū, x̄) for every x̄ ∈ X̂(ū, ȳ). The mapping Y is pseudo-Lipschitz
at (ū, ȳ) if any of the following conditions holds:

(i) for every sequence {(uk, yk)}k ⊆ gphY converging to (ū, ȳ), there exists a
sequence {xk}k with xk ∈ X̂(uk, yk) admitting a cluster point x̄ ∈ X̂(ū, ȳ);

(ii) the mapping X̂ is locally bounded at (ū, ȳ);
(iii) {v ∈ Rn : (fi)

∞
X (ū; v) 5 0, i = 1, . . . , p} = {0}.

Proof. We observe that (i) is equivalent to condition (ii) of Lemma 14 and (ii)
clearly implies (i). Therefore, to complete the proof it suffices to show that (iii)
implies (ii). Indeed, suppose to the contrary that X̂ is not locally bounded at (ū, ȳ).
Then we may find a sequence {(uk, yk)}k ⊆ gphY converging to (ū, ȳ) and xk ∈
X̂(uk, yk) such that limk→∞ ‖xk‖ = ∞. Without loss of generality we may assume
{xk/‖xk‖}k converges to some nonzero vector v. We have limk→∞ f(uk, xk)/‖xk‖ =
limk→∞ yk/‖xk‖ = 0, which shows that (fi)

∞
X (ū; v) 5 0 for all i = 1, . . . , p. This

contradicts (iii) and completes the proof.

Let h : Rn → R be a locally Lipschitz function. If the directional derivative
h′(x̄; d) of h at x̄ in any direction d ∈ Rn exists and coincides with the Clarke di-
rectional derivative, then one says that h is regular at x̄. A vector-valued locally
Lipschitz function is said to be regular at x̄ if its components are regular at x̄ (see [7]
for more information).

Lemma 16. Let (ū, ȳ) ∈ gphY . Assume f is locally Lipschitz and regular at (ū, x̄),
x̄ ∈ X̂(ū, ȳ). Then

{f ′((ū, x̄); (d, v)) : v ∈ DlowX(ū, x̄)(d)} ⊆ DlowY (ū, ȳ)(d) for d ∈ Rq.(17)
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If, in addition,
(i) X is semi-differentiable at (ū, x̄), x̄ ∈ X̂(ū, ȳ);

(ii)
lim sup

(u,y)
gphY−−−→(ū,ȳ)

dist[0, X̂(u, y)] < +∞;

(iii) DX(ū, x̄)(0) ∩ {v ∈ Rn : f ′((ū, x̄); (0, v)) = 0} = {0}, x̄ ∈ X̂(ū, ȳ),
then the mapping Y is semi-differentiable at (ū, ȳ) and the semi-derivative of Y at
(ū, ȳ) is given by

DlowY (ū, ȳ)(d) =
⋃

x̄∈X̂(ū,ȳ)

{f ′((ū, x̄); (d, v)) : v ∈ DlowX(ū, x̄)(d)} .(18)

Proof. If DlowX(ū, x̄)(d) is empty, then there is nothing to prove. Let v ∈
DlowX(ū, x̄)(d). We show that the vector f ′((ū, x̄); (d, v)) belongs to DlowY (ū, ȳ)(d).
In fact, let tk > 0 converging to 0 and dk converging to d be given. By definition,
there are some xk ∈ X(ū+ tkdk) such that limk→∞(xk− x̄)/tk = v. Because f is reg-
ular, we deduce that limk→∞(f(ū+ tkdk, xk)− f(ū, x̄))/tk = f ′((ū, x̄); (d, v)). Hence
f ′((ū, x̄); (d, v)) ∈ DlowY (ū, ȳ)(d).

Let (d,w) ∈ gphDY (ū, ȳ), say w = limk→∞(yk − ȳ)/tk, d = limk→∞(uk − ū)/tk,
where (uk, yk) ∈ gphY and tk > 0 converges to 0. In view of (ii) we may find xk ∈
X(uk) such that yk = f(uk, xk) and the sequence {xk}k is bounded, which admits
a cluster point x̄ ∈ X̂(ū, ȳ). By working with subsequences if necessary one may
assume that x̄ is the limit of that sequence. We consider the sequence {(xk− x̄)/tk}k.
If it is unbounded, then we may suppose that the sequence {(xk − x̄)/‖xk − x̄‖}k
converges to some nonzero vector v̄ and {tk/‖xk − x̄‖}k converges to 0. The latter
limit implies limk→∞(uk − ū)/‖xk − x̄‖ = 0 and limk→∞(yk − ȳ)/‖xk − x̄‖ = 0. This
yields v̄ ∈ DX(ū, x̄)(0) and f ′((ū, x̄); (0, v̄)) = 0, which is in contradiction with (iii).
By this we may suppose the sequence {(xk − x̄)/tk}k converges to some vector v and
deduce that (d, v) ∈ gphDX(ū, x̄). Moreover,

w = lim
k→∞

f(uk, xk)− f(ū, x̄)

tk
= f ′((ū, x̄); (d, v)).

Let t̃k > 0 converge to 0 and dk converge to d. Because X is semi-differentiable at
(ū, ȳ), there exists x̃k ∈ X(ū+ t̃kdk) converging to x̄ such that limk→∞(x̃k−x̄)/t̃k = v.
Setting ỹk = f(ū+ t̃kdk, x̃k) we have

lim
k→∞

(ỹk − ȳ)/t̃k = lim
k→∞

(f(ū+ t̃kdk, x̃k)− f(ū, x̄))/t̃k = f ′((ū, x̄), (d, v)) = w.

This proves that Y is semi-differentiable at (ū, x̄). The formula for the semi-derivative
of Y is immediate.

We note that when X is graph convex and ū ∈ int(domX), the mapping X is
semi-differentiable and DlowX(ū, x̄)(d) is nonempty for every direction d (see [10,
Theorem 11.1.36]). In the general case, a certain regularity condition is needed to
ensure the nonemptiness of DlowX(ū, x̄)(d) (see [4, section 4.2], in which first order
feasible directions at x̄ relative to d are exactly those of the lower Dini derivative
DlowX(ū, x̄)(d)).

Corollary 17. Let (ū, ȳ) ∈ gphY . Assume the following conditions:
(i) X̂ is calm at (ū, ȳ) with X̂(ū, ȳ) = {x̄} a singleton;

D
ow

nl
oa

de
d 

05
/1

0/
18

 to
 1

28
.1

23
.4

4.
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1272 D. THE LUC, M. SOLEIMANI-DAMANEH, M. ZAMANI

(ii) f is locally Lipschitz and regular, and X is semi-differentiable at (ū, x̄).
Then the mapping Y is semi-differentiable at (ū, ȳ) and the semi-derivative of Y at
(ū, ȳ) is given by

DlowY (ū, ȳ)(d) = {f ′((ū, x̄); (d, v)) : v ∈ DlowX(ū, x̄)(d)} .

Proof. This corollary is obtained from Lemma 16 by observing that when X̂(ū, ȳ)
is a singleton, the calmness of X̂ at (ū, ȳ) is equivalent to (iii) of that lemma.

We say that Y has locally bounded sections at (ū, ȳ) if there is a neighborhood Q
of (ū, ȳ) and a constant α > 0 such that

Y (u) ∩ (y − Rp+) ⊆ αBp for all (u, y) ∈ Q,(19)

and f has locally bounded level sets at (ū, ȳ) if there is a neighborhood Q of (ū, ȳ) and
a constant α > 0 such that

{x ∈ X(u) : f(u, x) ∈ y − Rp+} ⊆ αBn for all (u, y) ∈ Q.(20)

It is clear that with f continuous, (20) implies (19). Moreover, a sufficient condition
for (20) can be given by {v ∈ Rn : (fi)

∞
X (ū; v) 5 0, i = 1, . . . , p} = {0}. In particular,

this is true when X is locally bounded at ū. We are now able to present a main result
on the semi-differentiability of the mapping V under the semi-differentiability of the
feasible solution mapping.

Theorem 18. Let ȳ ∈ V (ū) be a uniformly efficient point. Assume the following
conditions:

(i) f is locally Lipschitz, regular at (ū, x̄) for every x̄ ∈ X̂(ū, ȳ), and has locally
bounded level sets at (ū, ȳ);

(ii) X is closed around ū, pseudo-Lipschitz, and semi-differentiable at (ū, x̄), x̄ ∈
X̂(ū, ȳ);

(iii) DX(ū, x̄)(0) ∩ {v ∈ Rn : f ′((ū, x̄); (0, v)) = 0} = {0}, x̄ ∈ X̂(ū, ȳ).
Then V is semi-differentiable at (ū, ȳ) and its semi-derivative is given by the formula

DlowV (ū, ȳ)(d) = Min

 ⋃
x̄∈X̂(ū,ȳ)

{f ′((ū, ȳ); (d, v)) : v ∈ DlowX(ū, x̄)(d)}

 .

Proof. We wish to apply Theorem 10 combined with Remark 3. Checking for
three conditions of that theorem will be done by five claims.

Claim 1. Y is semi-differentiable at (ū, ȳ) and its semi-derivative is given by (18).

Indeed, in view of Lemma 16 we have only to prove that

lim sup

(u,y)
gphY−−−→(ū,ȳ)

dist[0, X̂(u, y)] < +∞.(21)

Let Q be a neighborhood of (ū, ȳ+e) and α > 0 be such that (20) is satisfied. Choose
a small neighborhood U of ū such that U × {ȳ + e} ⊂ Q. We deduce from (20) that

X̂(u, y) ⊆ {x ∈ X(u) : f(u, x) 5 y}
⊆ {x ∈ X(u) : f(u, x) 5 ȳ + te}
⊆ αBn

for all (u, y) from the neighborhood U ×{ȳ+ e− int(Rp+)} of (ū, ȳ). This implies (21)
and so Claim 1 is obtained from Lemma 16.
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Claim 2. Y + Rp+ is closed around (ū, ȳ).

Since f has closed bounded level sets at (ū, ȳ), we can have (20) for a closed
neighborhood Q of (ū, ȳ) and X is closed on the projection of Q on Rq. We prove
that gph(Y + Rp+) ∩ Q is closed. Indeed, let {(uk, yk + rk)}k ⊆ gph(Y + Rp+) ∩ Q
converge to (u, y) with yk ∈ Y (uk) and rk ∈ Rp+. Due to (20) and (ii), we may choose
xk ∈ X(uk) such that f(uk, xk) 5 yk + rk and xk → x ∈ X(u). It follows from the
continuity of f that f(u, x) ∈ Y (u) and f(u, x) 5 y. Hence y ∈ Y (u) + Rp+, which
shows Y + Rp+ is closed around (ū, ȳ).

Claim 3. Y has the domination property around (ū, ȳ).

In fact, we know that Y has locally bounded sections at (ū, ȳ). Therefore, when
(u, y) ∈ gphY is sufficiently close to (ū, ȳ), the set Y (u) ∩ (y − Rp+) is nonempty and
compact. Consequently, it admits efficient points. Any efficient point of this section
is also an efficient point of Y (u) and dominates y.

Claim 4. DY (ū, ȳ)(0) ∩ −Rp+ = {0}.
Let w ∈ DY (ū, ȳ)(0) be a nonzero vector, say w = limk→∞(yk − ȳ)/tk for some

(uk, yk) ∈ gphY converging to (ū, ȳ) and tk > 0 converging to 0 such that limk→∞(uk−
ū)/tk = 0. We may find xk ∈ X̂(uk, yk) that converge to some x̄ ∈ X̂(ū, ȳ). Since X
is pseudo-Lipschitz at (ū, x̄), there exists x̃k ∈ X(ū) such that ‖xk − x̃k‖ 5 `‖uk − ū‖
for some ` > 0 and for all k = 0. Set ỹk = f(ū, x̃k). Then

lim
k→∞

ỹk − ȳ
tk

= lim
k→∞

(
f(ū, x̃k)− f(uk, xk)

tk
+
yk − ȳ
tk

)
= w,

because ‖f(ū, x̃k)− f(uk, xk)‖ 5 κ(‖uk − ū‖+ ‖x̃k − xk‖) 5 κ(1 + `)‖uk − ū‖, where
κ is a Lipschitz constant of f near (ū, x̄), which yields

lim
k→∞

f(ū, x̃k)− f(uk, xk)

tk
= 0.

We deduce that w ∈ TY (ū)(ȳ). Since ȳ is a properly efficient point of Y (ū) we conclude
that w 6∈ −Rp+.

Claim 5. Y∞(ū) ∩ −Rp+ = {0}.
Let w ∈ Y∞(ū) be a nonzero vector, say w = limk→∞ tkyk, with tk > 0 converging

to 0 and yk ∈ Y (uk) with uk → ū and ‖yk‖ → +∞. According to the proof of Claim 3,
we find some ỹk ∈ V (uk) such that {ỹk}k is a bounded sequence. Then

w = lim
k→∞

tkyk = lim
k→∞

tk(yk − ỹk) ∈ lim sup

(u,y)
gphV−−−→(ū,ȳ)

cone(Y (u)− y).

In view of Lemma 2, w 6∈ −Rp+ and Claim 5 is established.
To complete the proof it remains to apply Theorem 10 and Lemma 16.

Remark 5. In a number of papers devoted to sensitivity analysis of vector op-
timization problems (see [5, 11, 12, 23] for instance), the derivative (called the S-
derivative)

DSF (ū, x̄)(d) :=
{
v ∈ Rn :v = lim

k→∞
tk(xk − x̄) with tk > 0, (uk, xk) ∈ gphF,

uk → ū, tk(uk − ū, xk − x̄)→ (d, v)
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is frequently considered for a mapping F : Rq ⇒ Rn at (ū, x̄) ∈ gphF . This derivative
is very large, even larger than the contingent derivative in many nonconvex cases.
Therefore, conditions involving it in computation of derivatives of the efficient value
mapping are sometimes exceedingly restrictive. For instance, the condition

DSF (ū, x̄)(0) = {0}

implies existence of a number γ > 0 and of a neighborhood U of ū such that

F (u) ⊆ {x̄}+ γ‖u− ū‖Bn for all u ∈ U.

In particular, the condition DSX(ū, x̄)(0) = {0} used in [5, Proposition 4.1] leads to
the fact that lim supu→ūX(u) = {x̄}, which, in particular, tells us that the feasible
solution set of P(ū) must be a singleton whenever X is lower semi-continuous at ū.
Note further that condition DSY (ū, ȳ)(0)∩−Rp+ = {0} used in [11, 23] to establish es-
timates for contingent derivatives implies both conditions (ii) and (iii) of Theorem 10.
The converse is not true except for the convex case.

Remark 6. An important result of [12, Theorem 4.2] for the proto-derivative was
expressed in terms of the S-derivative. It states that, under the following conditions,
DadjV (ū, ȳ)(d) ⊆WMin[DadjY (ū, ȳ)(d)]:

(i) f is continuously differentiable at (ū, x̄), where x̄ ∈ X̂(ū, ȳ);
(ii) X is semi-differentiable at (ū, x̄);
(iii) DSX̂((ū, ȳ), x̄)(0, 0) = {0}.

Actually, this result is true when f is locally Lipschitz and regular at (ū, x̄). In fact,
according to Remark 3, condition (iii) implies existence of a constant γ > 0 and
neighborhoods U of ū and W of ȳ such that

X̂(u, y) ⊆ {x̄}+ γ(‖u− ū‖+ ‖y − ȳ‖)Bn for all u ∈ U, y ∈W.

This, in its turn, implies both conditions (ii) and (iii) of Lemma 16, by which the
mapping Y is semi-differentiable at (ū, ȳ). In particular, Y is proto-differentiable and
its proto-derivative coincides with the lower semi-derivative at (ū, ȳ). It remains to
apply (10) to conclude.

We now give an example for which Theorem 4.2 of [12] is not applicable because
condition (iii) discussed in Remark 4 is not satisfied, while our approach works and
gives

DadjV (ū, ȳ)(d) = DlowV (ū, ȳ)(d) = Min[DlowY (ū, ȳ)(d)] ⊆WMin[DlowY (ū, ȳ)(d)],

the last inclusion being evident.

Example 19. Let X : R ⇒ R be given by X(u) =: {x ∈ R : 0 5 x 5 1} and let
f : R×R→ R be given by f(u, x) = 1. Then V is proto-differentiable (strictly semi-
differentiable) at (ū, ȳ) = (0, 1) while DSX̂((ū, ȳ), x̄)(0, 0) 6= {0} for each x̄ ∈ X̂(ū, ȳ).

Remark 7. An interesting case is when the feasible set is unperturbed (see e.g.,
[4, 17]). Conditions for semi-differentiability of V in such a case are much simplified.

Recall that a set K ⊆ Rn is derivable at x if TK(x) = T adjK (x).

Corollary 20. Let ȳ ∈ V (ū) be a uniformly efficient point of Y at ū. Assume
the following conditions:

(i) f is locally Lipschitz, regular at (ū, x̄) for every x̄ ∈ X̂(ū, ȳ);
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(ii) X(u) = K for all u in some neighborhood of ū, where K ⊆ Rn is compact,
derivable at every point x̄ ∈ X̂(ū, ȳ) and satisfies

TK(x̄) ∩ {v ∈ Rn : f ′((ū, x̄); (0, v)) = 0} = {0}.

Then V is semi-differentiable at (ū, ȳ) and its semi-derivative is given by the formula

DlowV (ū, ȳ)(d) = Min {∇uf(ū, ȳ)d+∇xf(ū, ȳ)v : v ∈ TK(x̄)} .

Proof. Because K is derivable, the constant mapping X is semi-differentiable and
its derivative is given by DX(ū, x̄)(d) = DlowX(ū, x̄)(d) = TK(x̄). The corollary is
now immediate from Theorem 18.

Remark 8. In the convex case, in which X is graph convex and f is convex,
the following corollary strengthens the main result of [26, Theorem 5.3], in which
the author gives the formula for the contingent derivative under the same conditions
except for (ii), where it is requested that ȳ be normally efficient (hence uniformly
efficient in this case).

Corollary 21. Assume that X is graph-convex, f is convex and continuously
differentiable, and the following conditions hold:

(i) ū ∈ int(domY );
(ii) ȳ is a uniformly efficient point of Y at ū;
(iii) X(u) is closed for every u in a neighborhood of ū;
(iv) X̂ is calm at ((ū, ȳ), x̄), where X̂(ū, ȳ) = {x̄}.

Then V is semi-differentiable at (ū, ȳ) and its semi-derivative is given by the formula

DlowV (ū, ȳ)(d) = Min {∇uf(ū, ȳ)d+∇xf(ū, ȳ)v : v ∈ DlowX(ū, x̄)(d)} .

Proof. Since X is graph convex and closed-valued and ū ∈ int(domX), the map-
ping X is continuous (closed and lower semi-continuous) at ū and pseudo-Lipschitz at
(ū, x̄) (see [21, Theorem 9.34 and Example 9.52]). In order to apply Theorem 18 we
have only to prove that f has locally bounded level sets at (ū, ȳ) because condition
DX(ū, x̄)(0)∩Ker∇xf(ū, x̄) = {0} is equivalent to (iv), as we have already mentioned
in the proof of Corollary 17. Let us consider the mapping

X̃(u, y) := X(u) ∩ {x ∈ Rn : f(u, x) ∈ y − Rp+} for (u, y) ∈ Rq × Rp.

Direct verification shows that this mapping is graph convex and closed at (ū, ȳ).
Moreover, because ȳ is an efficient point of Y (ū), we have X̃(ū, ȳ) = X̂(ū, ȳ) =
{x̄}. We show that X̃ is locally bounded at (ū, ȳ). Indeed, suppose to the con-
trary that for some sequence {(uk, yk)}k converging to (ū, ȳ), there exists xk ∈
X̃(uk, yk) such that limk→∞ ‖xk‖ = ∞. We may assume without loss of general-
ity that limk→∞ xk/‖xk‖ = v for some v 6= 0. Since X is lower semi-continuous at ū,
there exists wk ∈ X(uk) with wk → x̄. Since X(uk) is convex, when k is sufficiently
large, we have wk + xk−wk

‖xk−wk‖ ∈ X(uk) and the closedness of X implies

lim
k→∞

wk +
xk − wk
‖xk − wk‖

= x̄+ v ∈ X(ū).

By convexity of f , one has also

f

(
uk, wk +

xk − wk
‖xk − wk‖

)
5

(
1− 1

‖xk − wk‖

)
f(uk, wk) +

1

‖xk − wk‖
f(uk, xk).
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By passing to the limit when k tends to ∞ in the latter inequality, we deduce that

f(ū, x̄+ v) 5 f(ū, x̄).

Because ȳ = f(ū, x̄) is an efficient point of Y (ȳ) we deduce that ȳ = f(ū, x̄+ v). This
contradicts the fact that X̃(ū, ȳ) = {x̄}. It is then clear that f has closed and locally
bounded level sets at (ū, ȳ). The proof is complete.

By using Corollary 20 it is easy to construct examples for which the results of
[26] cannot apply, while Theorem 21 is suitable. For instance, if f is the identity
function on the set X(u) := [0, 1] × [0, 1] in R2 for every u ∈ R, then the point
ȳ = (0, 0) is uniformly efficient. In view of Corollary 20 the marginal mapping V is
semi-differentiable (it is a constant singleton). Since ȳ is not normally efficient, we
cannot apply [26, Theorem 5.3] to obtain its contingent derivative.

We recall that an efficient solution x̄ of P(u) is strict if there is no other efficient
solution x such that f(u, x) = f(u, x̄). In other words x̄ is a strict efficient solution if
X̂(ū, f(ū, x̄)) is a singleton.

Corollary 22. Let x̄ ∈ S(ū) be a strict efficient solution with ȳ = f(ū, x̄) uni-
formly efficient. Assume the following conditions:

(i) f is continuously differentiable at (ū, x̄) and ∇xf(ū, x̄) is an injection on
DX(ū, x̄)(d) for every d ∈ Rq and has locally bounded level sets at (ū, ȳ);

(ii) X is closed around ū, pseudo-Lipschitz and semi-differentiable at (ū, x̄).
Then S is semi-differentiable at (ū, ȳ) and its semi-derivative is given by the formula

DlowS(ū, x̄)(d)

:= {v ∈ DlowX(ū, x̄)(d) : ∇uf(ū, x̄)d+∇xf(ū, x̄)v ∈ DlowV (ū, ȳ)(d)} .

Proof. First, we observe that due to the injection hypothesis of ∇xf(ū, x̄) on
DX(ū, x̄)(0), condition (iii) of Theorem 18 is satisfied. The other conditions being
already stated in the corollary, we conclude that V is semi-differentiable at (ū, x̄). To
prove semi-differentiability of S, let (d, v) ∈ gphDS(ū, x̄), say v = limk→∞(xk− x̄)/tk,
d = limk→∞(uk − ū)/tk, with (uk, xk) ∈ gphS and tk > 0 converging to 0. By setting
ȳ = f(ū, x̄), we have

w := ∇uf(ū, x̄)d+∇xf(ū, x̄)v ∈ gphDV (ū, ȳ) = gphDlowV (ū, ȳ).

Let dk ∈ Rq converging to d and sk > 0 converging to 0 be arbitrary and given. We
wish to find x̄k ∈ S(ū+ skdk) such that limk→∞(x̄k − x̄)/sk = v. Indeed, due to the
semi-differentiability of V , we find ȳk ∈ V (ū+ skdk) such that limk→∞(ȳk − ȳ)/sk =
w. Choose any x̄k ∈ S(ū + skdk) such that ȳk = f(ū + skdk, x̄k) and {x̄k}k is
bounded (which is possible given the local bounded level sets of f). We show that the
sequence {x̄k}k is the one we are looking for. In fact, condition (iii) of Theorem 18
implies that the sequence {(x̄k − x̄)/sk}k is bounded. Let {(x̄νk − x̄)/sνk}k be a
subsequence converging to some limit v̄ ∈ DX(ū, x̄)(d). Then w = ∇uf(ū, x̄)d +
∇xf(ū, x̄)v̄. Hence, ∇xf(ū, x̄)v = ∇xf(ū, x̄)v̄. In view of (i), v̄ = v proving the
semi-differentiability of S. The formula of the semi-derivative of S is clear.

Remark 9. As far as we know, the only result that exists on differentiability
of S was given in [12, Theorem 3.1] for proto-differentiability under the following
hypotheses: (a) f is continuously differentiable at (ū, x̄) and ∇xf(ū, x̄) is strictly
monotone on Rn in the sense that 〈∇xf(ū, x̄)(v1 − v2), v1 − v2〉 > 0 for all v1 6= v1;
(b) DSX̂(ū, x̄)(0, 0) = {0}; and (c) V is proto-differentiable at (ū, x̄). Notice that
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the strict monotonicity of ∇xf(ū, x̄) implies that p = n and ∇xf(ū, x̄) is positive
definite. It is rather restrictive, especially in applications, where most of practical
problems have two or three objective components while the number of decision variable
components may be very large. Condition (b), as we already discussed in Remark 2,
implies that x̄ is a strict efficient solution. Actually the argument of the proof of
Corollary 22 can also be applied to establish the formula for the proto-derivative under
the condition that x̄ be strictly efficient instead of (b), which is a much stronger result
than [12, Theorem 3.1].

Example 23. Let X : R⇒ R3 be given by X(u) =: {x ∈ B3 : x1−x2 = 2u,−x2 5
0} and let

f(u, x) =

(
u2 + 1 u+ 1 1

1 u2 u− 1

)
x.

At ū = 0, x̄T = (0 0 0) is strictly efficient. On account of Lemma 3, f(ū, x̄) = 0 is
uniformly efficient. In view of (R4) (see section 5), X is pseudo-Lipschitz and semi-
differentiable at the given point and DlowX(ū, x̄)(d) = {v : v1 − v2 = 2d,−v2 5 0}.
We show that ∇xf(ū, x̄) is injective on DX(ū, x̄)(d) for every d ∈ R. Indeed, let
v1, v2 ∈ DX(ū, x̄)(d) with ∇xf(ū, x̄)v1 = ∇xf(ū, x̄)v2. Then,(

1 1 1
1 0 −1

)
(v1 − v2) = 0,(

1 −1 0
)

(v1 − v2) = 0.

We deduce that v1 = v2. All hypotheses of Corollary 22 are fulfilled at (ū, x̄) and
so S is semi-differentiable at the given point. Moreover, due to this corollary and
Theorem 18, DlowS(ū, x̄)(d) is equal to the set of feasible points of the following
multiobjective problem for each d ∈ R:

min

(
1 1 1
1 0 −1

)
v

s.t. v1 − v2 = 2d,

− v2 5 0.

In this example ∇xf(ū, x̄) is not a square matrix, and so [12, Theorem 3.1] cannot be
applied.

5. Problem with general constraint. In this section we consider the problem
P(u), in which the constraint set X(u) is given by

X(u) = {x ∈ C : g(u, x) ∈ K},(22)

where the sets C ⊂ Rn and K ⊂ Rm are closed and g : Rq×Rn → Rm is a continuously
differentiable function. The constraint qualification (CQ) at (ū, x̄) is the following:

NK(g(ū, x̄)) ∩ {∇xg(ū, x̄)(TC(x̄))}+ = {0}.

We will need the following result ([21, Example 9.51]).
(R4) Let C and K be regular at x̄ and g(ū, x̄), respectively, that is, TC(x̄) = T clC (x̄)

and TK(g(ū, x̄)) = T clK (g(ū, x̄)). If (CQ) holds at (ū, x̄), thenX is both strictly
semi-differentiable and pseudo-Lipschitz there and its strict semi-derivative
is given by

DlowX(ū, x̄)(d) = {v ∈ TC(x̄) : ∇ug(ū, x̄)d+∇xg(ū, x̄)v ∈ TK(g(ū, x̄))} .
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Theorem 24. Let ȳ ∈ V (ū) be a uniformly efficient point. Assume the following
conditions:

(i) C ⊂ Rn is nonempty compact and regular at x̄ with x̄ ∈ X̂(ū, ȳ), and K ⊆ Rm
is nonempty closed and regular at g(ū, x̄);

(ii) f and g are continuously differentiable and g satisfies (CQ) at every (ū, x̄)
with x̄ ∈ X̂(ū, ȳ);

(iii) {v ∈ TC(x̄) : ∇xg(ū, x̄)v ∈ TK(g(ū, x̄))} ∩ Ker∇xf(ū, x̄) = {0} for x̄ ∈
X̂(ū, ȳ).

Then V is semi-differentiable at (ū, ȳ) and

DlowV (ū, ȳ)(d) =
⋃

x̄∈X̂(ū,ȳ)

{∇uf(ū, x̄)d+∇xf(ū, x̄)v : v ∈ TC(x̄),∇xg(ū, x̄)v ∈ TK(g(ū, x̄))}.

Proof. We wish to apply Theorem 18. First, we observe that in view of (R4),
the mapping X is pseudo-Lipschitz and semi-differentiable at (ū, x̄) with x̄ ∈ X̂(x̄, ȳ)
because g is continuously differentiable and satisfies (CQ) at (ū, x̄). Moreover, since
C is compact, f has locally bounded and closed level sets, and X is closed around
ū. It remains to verify (iii) of Theorem 18. According to (R4) and as X is semi-
differentiable, we have DX(ū, x̄)(0) = {v ∈ TC(x̄) : ∇xg(ū, x̄)v ∈ TK(g(ū, x̄))}.
Therefore, (iii) of Theorem 18 is immediate from (iii). The proof is complete.

Let us consider a particular case when K = −Rp+ and C is compact and regular.
The constraint g(u, x) ∈ K becomes the system of inequalities gi(u, x) 5 0, i =
1, . . . ,m, where g1, . . . , gm are the components of g. The feasible set mapping is given
by

X(u) = {x ∈ C : gi(u, x) 5 0, i = 1, . . . ,m}.(23)

The active index set at (ū, x̄) ∈ gphX is given by

I(ū, x̄) := {i ∈ {1, . . . ,m} : gi(ū, x̄) = 0}.

The constraint qualification (CQ) at (ū, x̄) ∈ gphX is the known Mangasarian–
Fromovitz constraint qualification.

Corollary 25. Let ȳ ∈ V (ū) be a uniformly efficient point. Assume the follow-
ing conditions:

(i) f and g are continuously differentiable and g satisfies (CQ) at every (ū, x̄)
with x̄ ∈ X̂(x̄, ȳ);

(ii) {v ∈ TC(x̄) : ∇xgi(ū, x̄)v 5 0, i ∈ I(ū, x̄)} ∩Ker∇xf(ū, x̄) = {0}.
Then V is semi-differentiable at (ū, ȳ) and

DlowV (ū, ȳ)(d) =
⋃

x̄∈X̂(ū,x̄)

{∇uf(ū, x̄)d+∇xf(ū, x̄)v : v ∈ TC(x̄),∇xgi(ū, x̄)v 5 0,

i ∈ I(ū, x̄)}.

Proof. An application of Theorem 24 yields the result.

6. Problem over a union of convex polyhedral sets. We consider the prob-
lem of minimizing a linear function over a union of polyhedral set described at the
end of section 3:

min C(u)x

s.t. x ∈ X(u),
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where C(u) is a p× n-matrix, X(u) =
⋃m
i=1Xi(u) with Xi(u) = {x ∈ Rp : Ai(u)x 5

bi(u)}, in which Ai(u) is an mi × n-matrix and bi(u) is an mi-vector for each u ∈ Rq
and i = 1, . . . ,m. Here, it is assumed that all functions C(.), Ai(.), and bi(.) are
continuously differentiable. We set Yi(u) := C(u)Xi(u) and Vi(u) := MinYi(u). The
next theorem provides sufficient conditions for semi-differentiability of the marginal
mapping V .

Theorem 26. Let ȳ ∈ V (ū). Assume the following conditions:
(i) for each i ∈ {1, . . . ,m} there exists xi with Ai(ū)xi < b(ū);

(ii) for each i ∈ {1, . . . ,m} with ȳ ∈ Yi(ū), there is a unique efficient solution
x̄i ∈ Xi(ū) such that ȳ = C(ū)x̄i and

(24) {λ ∈ −Rp+ : CT (ū)λ ∈ N co
Xi(ū)(x̄i)} ⊆ − int(Rp+) ∪ {0};

(iii) for each i ∈ {1, . . . ,m} with ȳ 6∈ Yi(ū) one has

(25) {v : C(ū)v 5 0} ∩ {v : Ai(ū)v 5 0} = {0}.

Then V is semi-differentiable at (ū, ȳ) and

DlowV (ū, ȳ)(d) = Min
⋃

i∈{1,...,m}:
ȳ=C(ū)x̄i

{C ′(ū; d)x̄i + C(ū)v : v ∈ DlowXi(ū, x̄i)(d)} .

Proof. In order to apply Theorem 18, we show that ȳ is a uniformly efficient
point. To this end we check the hypotheses of Corollary 6. Clearly condition (i) of
Corollary 6 is the same as (i). Condition (ii) of Corollary 6 follows from (25) for those
i with ȳ 6∈ Yi(ū), and from the uniqueness of x̄i in (ii) for those i with ȳ ∈ Yi(ū).
Condition (iii) of Corollary 6 is obtained from (25), and finally (24) is exactly (iv)
of Corollary 6. It remains to check the hypotheses (i)–(iii) of Theorem 18. First,
C has locally bounded level sets because, otherwise, we may find some y ∈ Rp,
(uk, xk) ∈ gphX such that limk→∞ uk = ū, limk→∞ ‖xk‖ = +∞ and C(uk)xk 5 y
for all k = 1. Without loss of generality we may assume that xk ∈ Xi(uk) for all
k and some i ∈ {1, . . . ,m}, and limk→∞ xk/‖xk‖ = v for some v 6= 0. Then we
obtain C(ū)v 5 0 and Ai(ū)v 5 0. The two latter inequalities contradict (ii) if
i is such that ȳ ∈ Yi(ū), and (25) if i is such that ȳ 6∈ Yi(ū). Second, it follows
from (ii) that X̂(ū, ȳ) = {x̄i : i ∈ {1, . . . ,m} such that ȳ = C(ū)x̄i}. Moreover,
since Ai and bi are continuous, the mappings Xi are closed around ū. In view of
(i), the constraint qualification (CQ) is satisfied, and hence Xi are pseudo-Lipschitz
and semi-differentiable at x̄i. We deduce that X is closed around ū, pseudo-Lipshitz,
and semi-differentiable at (ū, x), x ∈ X̂(ū, ȳ). Finally, the uniqueness of x̄i in (ii) is
equivalent to the condition that

Ker(C(ū)) ∩ {v : Aji (ū)v 5 0, j ∈ Ii(ū, x̄)} = {0},

where Aji (ū) stands for the jth row of Ai(ū). This, in its turn, implies condition (iii)

of Theorem 18 because DXi(ū, x̄)(0) ⊆ {v : Aji (ū)v 5 0, j ∈ Ii(ū, x̄)}. It remains to
apply Theorem 18 to complete the proof.

We end this section with an example to illustrate Theorem 26.

Example 27. Let X1, X2, X3 : R ⇒ R2 be given by X1(u) =: {x : −ux1 − 2x2 5
(u − 1)2}, X2(u) =: {x : −2x1 − ux2 5 0}, and X3(u) =: {x : 3x1 − ux2 5 −u} and
let

C(u) =

(
u2 u− 1

1− u 2u

)
.
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At ū = 1 and ȳT = (0 0), we have ȳ ∈ C(ū)X1(ū)∩C(ū)X2(ū) while ȳ /∈ C(ū)X3(ū).
It is verified that all conditions of Theorem 26 hold at the given point. Thus, V is
semi-differentiable at the given point and, for each d ∈ R,

DlowV (ū, ȳ)(d) = cone

{(
−1
1

)
,

(
1
−4

)}
.
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