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Abstract In this paper, we consider a nonsmooth optimization problemwith a convex
feasible set described by constraint functions which are neither convex nor differen-
tiable nor locally Lipschitz necessarily. Utilizing upper regular convexificators, we
characterize the normal cone of the feasible set and derive KKT type necessary and
sufficient optimality conditions. Under some assumptions, we show that the set of
KKT multipliers is bounded. We also characterize the set of optimal solutions and
introduce a linear approximation corresponding to the original problem which is use-
ful in checking optimality. The obtained outcomes extend various results existing in
the literature to a more general setting.

Keywords Convex optimization · Nonsmooth optimization · Convexificator · KKT
conditions · Linear approximation

1 Introduction

Our motivation in this article is recent works of Lasserre (2010) and Dutta and Lalitha
(2013). We consider an optimization problem,

min f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,
(1)
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where f, gi : Rn → R , (i ∈ I := {1, . . . ,m}) are real-valued functions. The set of
feasible solutions of (1) is

K := {x ∈ Rn : gi (x) ≤ 0, i ∈ I }.

The problem in the presence of convex objective function and convex constraint func-
tions has been studied by various scholars; see e.g. Bazaraa et al. (2006), Hiriart-Urruty
and Lemarechal (1993), Rockafellar and Wets (1998) and the references therein. In
the current work, we focus on the case that constraint functions gi are nonconvex,
nondifferentiable and even discontinuous. These cases are important in both theory
and application. In various practical problems, it occurs that some gi function is not
convex while K is convex. For example, K is a convex set if gi ’s are quasiconvex func-
tions. It is simple to observe that K might be convex while gi functions are neither
convex nor quasiconvex. For example,

K = {(x1, x2) ∈ R2 : 1 − x1x2 ≤ 0, x1, x2 ≥ 0},

is convex while the constraint function g1(x1, x2) = 1 − x1x2 is neither convex nor
quasiconvex; see Lasserre (2010). As an interesting applied problem, consider an
optimization model with probabilistic constraints (OMPC) as follows:

min E[h(x, Z)]

s.t. P[ri (x, Z) ≤ 0, i ∈ I ] ≥ p,

where p ∈ (0, 1) is a fixed probability level. x ∈ Rn and Z ∈ R p are respectively
decision and random vectors. Here, E[·] and P[·] stand for expected value and proba-
bility function, respectively, and we assume that these functions are well-defined. The
most important application of OMPC is appeared in portfolio selection (see Dentcheva
2006, p. 50), where h is a return function and ri functions are corresponding to a risk
measure. One of the vital questions in this area is imposing suitable conditions on
ri (·, ·) functions which make the feasible set of OMPC convex. If ri (·, ·) (i ∈ I )
are quasiconcave functions jointly in both arguments, and Z is a random variable
with an α-concave probability distribution (see Dentcheva 2006, p. 53), then the
feasible set {x ∈ Rn : P[ri (x, Z) ≥ 0, i ∈ I ] ≥ p} is convex; see Dentcheva
(2006, Sect. 2.2.3). See also Luedtke and Ahmed (2008) and Nemirovski and Shapiro
(2006).

As another practical example, Marcille et al. (2012) proposed a model for resource
allocation for ad hoc networks which minimizes a convex function over a convex
feasible set with nonconvex constraint functions (see Marcille et al. 2012, Prob-
lem 1 and Lemma 1). They provided associated KKT conditions, invoking the
Lasserre’s (2010) results, leading to an optimal resource allocation algorithm. More
examples of problems with nonconvex constrain functions and convex feasible set
can be found in the literature, see e.g. problems with fractional constrains (Schaible
1981) and financial models under cash-subadditive risk measures (Cerreia-Vioglio
et al. 2011) among others.
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Lasserre (2010) considered the convexity of K without any convexity assumption
on gi functions and obtained KKT optimality condition under Slater constraint qual-
ification and a non-degeneracy condition on gi ’s. He investigated only differentiable
problems; and then Dutta and Lalitha (2013) extended Lasserre’s work and derived
KKT conditions when gi ’s are locally Lipschitz and regular in the sense of Clarke
et al. (1998). Martínez-Legaz (2015) dealt with the problem with tangentially convex
constraint functions and a pseudoconvex objective function. In these studies, objective
and constraint functions are assumed to be continuous and at least directionally differ-
entiable, while in the present paper we are going to work with discontinuous functions.
Optimizationmodels with appeared nonsmooth and even discontinuous functionsmay
arise in various fields, including batch production (Imo and Leech 1984) and switch-
ing regression (Tishler and Zang 1979). See also Moreau and Aeyels (2000) and the
references therein.

In the present article, we follow the problem without locally Lipschitz assump-
tion; and we use convexificators in the presence of nonsmooth data (nondifferen-
tiable/discontinuous appearing functions). The concept of convexificator has been
introduced to apply for each function, leading to sharpen results in nonsmooth
optimization. Convexificators enjoy nice properties including mean value theorem,
calculus rules, optimality conditions, etc, under mild assumptions. However, in gen-
eral, we do not have some calculus rules such as exact chain rule; see Jeyakumar and
Luc (1999) for more details.

The convexificator notion has been studied in several recent studies, including
Demyanov and Rubinov (1995), Dutta and Chandra (2004), Jeyakumar and Luc
(1999), Luc (2002) and Luu (2014), for characterizing the optimality. In the first
part of the work, a main result is obtained showing that the normal cone of K can
be represented with respect to the upper regular convexificators of gi ’s under some
conditions. Afterwards, KKT type optimality conditions are derived from this rep-
resentation, leading to an extended version of some main results provided in Dutta
and Lalitha (2013), Lasserre (2010) andMartínez-Legaz (2015). Furthermore, a result
is proved to get KKT conditions from FJ conditions. We prove the boundedness of
the set of KKT multipliers and derive a characterization for the solution set. Finally,
we build a linear semi-infinite problem to check the optimality of a given feasible
solution.

The rest of the paper unfolds as follows. After providing some preliminar-
ies in Sect. 2, we briefly review convexificator notion and its relationship with
other well-known generalized gradients in Sect. 3. This section addresses some
constraint qualifications as well. The characterization of convexity of the feasi-
ble set and its normal cone are given in Sect. 4. Deriving KKT conditions from
the characterization of normal cone, getting KKT conditions from FJ conditions,
and establishing the boundedness of the set of KKT multipliers are presented in
Sect. 5. Finally, in Sect. 6 we obtain some results to characterize the set of opti-
mal solutions; and with a linear approximation, we relate main problem with a linear
semi-infinite optimization problem to check the optimality of a given feasible solu-
tion.
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2 Preliminaries

In this section we provide some preliminaries.
For a set Ω ⊆ Rn , we use the notations coΩ , int Ω , bd Ω and cl Ω to denote the

convex hull, the interior, the boundary and the closure of Ω , respectively. Throughout
the paper, the considered norm ∥.∥ is the Euclidean norm, i.e., ∥.∥ = ∥.∥2 and we use
the convention ∞ − ∞ = ∞.

A nonempty setC ⊆ Rn is called a cone if for each x ∈ C and each scalar λ ≥ 0, we
have λx ∈ C . A cone C is said to be pointed whenever C ∩ (−C) = {0}. For a convex
set Ω ⊆ Rn , the cone of feasible directions, the tangent cone and the normal cone of
Ω at x̄ ∈ cl Ω , denoted by DΩ(x̄), TΩ(x̄) and NΩ(x̄), respectively, are defined as

DΩ(x̄) =
{
d ∈ Rn : ∃δ > 0 s.t. x̄ + λd ∈ Ω, ∀λ ∈ (0, δ)

}
,

TΩ(x̄) = cl
{
u − x̄
t

: t > 0, u ∈ Ω

}
,

NΩ(x̄) = {ζ ∈ Rn : ⟨ζ, y − x̄⟩ ≤ 0, ∀y ∈ Ω}.

The polar cone of a set Ω ⊆ Rn is defined by

Ω◦ = {d ∈ Rn : ⟨d, x⟩ ≤ 0, ∀x ∈ Ω}.

If Ω is convex, then cl DΩ(x̄) = TΩ(x̄) and T ◦
Ω(x̄) = NΩ(x̄). The convex cone

generated by Ω ⊆ Rn is defined as follows:

cone(Ω):=
{
y∈Rn : ∃m ∈ N; y =

m∑

i=1

λi yi , λi ≥ 0, yi ∈ Ω, i = 1, 2, . . . ,m
}
.

If Ω1, . . . ,Ωl ⊆ Rn are convex sets, then it can be shown that

cone
( l⋃

i=1

Ωi

)
=

{ l∑

i=1

λi di : di ∈ Ωi , λi ≥ 0, i = 1, 2, . . . , l
}
.

3 Convexificator and CQs

The upper Dini directional derivative, defined below, plays a central role in this work.
Hereafter, we assume that h(x̄) is finite for a given x̄ ∈ Rn .

Definition 1 Let h : Rn → R . The upper Dini directional derivative of h at x̄ in
direction d ∈ Rn is defined by

h+(x̄; d) := lim sup
t↓0

h(x̄ + td) − h(x̄)
t

.
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If h : Rn → R is locally Lipschitz, then upper Dini directional derivative exists
finitely.

The directional derivative of h at x̄ ∈ Rn in direction d ∈ Rn , denoted by h′(x̄; d),
is defined as

h′(x̄; d) := lim
t↓0

h(x̄ + td) − h(x̄)
t

.

Definition 2 (Jeyakumar and Luc 1999) The function h : Rn → R is said to have
an upper regular convexificator (URC) ∂∗h(x̄) at x̄ if ∂∗h(x̄) ⊆ Rn is closed and, for
each d ∈ Rn ,

h+(x̄; d) = sup
η∈∂∗h(x̄)

⟨η, d⟩. (2)

See Jeyakumar and Luc (1999) for properties and applications of URCs.

Definition 3 (Clarke et al. 1998) Let h : Rn → R be Lipschitz near x̄ ∈ Rn . The
Clarke generalized directional derivative of h at x̄ in the direction d ∈ Rn , denoted by
h◦(x̄; d), is defined as

h◦(x̄; d) := lim sup
y→x̄
t↓0

h(y + td) − h(y)
t

.

Definition 4 (Clarke et al. 1998) Let h : Rn → R be Lipschitz near x̄ ∈ Rn . The
Clarke generalized gradient of h at x̄ , denoted by ∂Clh(x̄), is defined as

∂Clh(x̄) := {ζ ∈ Rn : h◦(x̄; d) ≥ ⟨ζ, d⟩, ∀d ∈ Rn}.

Remark 1 If h is locally Lipschitz at x̄ with a URC ∂∗h(x̄) at this point, then due to
the inequality h+(x̄; d) ≤ h◦(x̄; d), one has

sup
ζ∈co(∂∗h(x̄))

⟨ζ, d⟩ = sup
ζ∈∂∗h(x̄)

⟨ζ, d⟩ ≤ max
η∈∂Clh(x̄)

⟨η, d⟩, ∀d ∈ Rn .

Now, from Hiriart-Urruty and Lemarechal (1993, Theorem V.3.3.1), we have

∂∗h(x̄) ⊆ co(∂∗h(x̄)) ⊆ ∂Clh(x̄).

This inclusion relation shows that one may obtain a URC smaller than Clarke gener-
alized gradient. Notice that hunting smaller subdifferential sets is an important issue
in optimization from a numerical standpoint.

As mentioned in the preceding section, related results in various papers have been
obtained for directionally differentiable functions. Moreover, in someworks, the func-
tions in question are assumed to be regular (i.e. h′(x̄; d) exists and equals to h◦(x̄; d)
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for any d ∈ Rn). However, even Lipschitz functions are not always directionally
differentiable. For example, look at h : R → R defined by

h(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ (−∞, 0] ∪ [1,∞)

−2x + 2
3n , if x ∈

[
2

3n+1 ,
1
3n

)
, n ∈ N ∪ {0}

2x − 2
3n+1 , if x ∈

[
1

3n+1 ,
2

3n+1

)
, n ∈ N ∪ {0}

This function is Lipschitz on R with a Lipschitz constant k = 2, while it is not
directionally differentiable at x̄ = 0 (see Jeyakumar and Luc 2008, p. 7). However,

h+(x̄; d) =

⎧
⎨

⎩

d, d > 0,

0, d ≤ 0,

which implies that ∂∗h(x̄) = {0, 1} is a URC of h at x̄ . It is seen that ∂∗h(x̄) !
∂Clh(x̄) = [−2, 2].

According to the discussion and example above, even for locally Lipschitz func-
tions, the URC notion may provide sharper results than Clarke generalized gradient.

The class of functions that admit a URC is rich. Gâteaux differentiable functions
and regular functions in the sense of Clarke et al. (1998) are important members
of this class. Tangential subdifferential (of a tangentially convex function) is also a
URC (see Martínez-Legaz 2015, Definition 5). Moreover, if h : Rn → R is locally
Lipschitz, then the Clarke’s generalized gradient (Clarke et al. 1998) and the Michel
and Penot (1992) subdifferential are upper semi regular convexificators (Dutta and
Chandra 2002). In the present study we use URC as a strong tool for working with
discontinuous and nondifferentiable functions.

Now we recall some constraint qualification conditions from the literature.
Let

K = {x ∈ Rn : gi (x) ≤ 0, i ∈ I }, (3)

where gi : Rn → R for each i ∈ I is not necessarily continuous or differentiable.

Definition 5 We say that the Slater Constraint Qualification (SCQ) holds for (1) if
there exists x ∈ K such that gi (x) < 0 for all i ∈ I .

Lasserre (2010), Dutta and Lalitha (2013) and Martínez-Legaz (2015) use SCQ.
Since in their work, the constraint functions are continuous, SCQ implies int K ̸= ∅.
However, we use int K ̸= ∅ for our results because we do not assume continuity.

For a given x̄ ∈ K , set

I (x̄) := {i ∈ I : gi (x̄) = 0}.

Assumption 1 Hereafter, given x̄ ∈ K we assume I (x̄) ̸= ∅, and gi , i ∈ I (x̄) has a
URC ∂∗gi (x̄) at x̄ .
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Definition 6 We say that the Linear Independent Constraint Qualification (LICQ)
holds at x̄ ∈ K if

0 =
∑

i∈I (x̄)
λiζi & ζi ∈ co(∂∗gi (x̄)) ⇒ λi = 0, i ∈ I (x̄).

Definition 7 We say that the Constraint Qualification (CQ) holds at x̄ ∈ K if

0 /∈ co

⎧
⎨

⎩
⋃

i∈I (x̄)
co(∂∗gi (x̄))

⎫
⎬

⎭ .

Definition 8 We say that the generalized Lasserre Constraint Qualification (GLCQ)
holds at x̄ ∈ K if 0 /∈ ∂∗gi (x̄) for each i ∈ I (x̄).

It is not difficult to show that LICQ ⇒ CQ ⇒ GLCQ, but the opposite statements
are not true generally.

4 Convexity and characterization of normal cone

In this section, we characterize the convexity of the feasible set K and its normal cone
at a given point x̄ ∈ K , which K is as represented in (3). It is shown that the normal
cone is the closure of convex cone generated by ∪i∈I (x̄)∂∗gi (x̄).

The following theorem characterizes the convexity of K using URCs. This theorem
extends Lasserre (2010, Lemma 2.2), Dutta and Lalitha (2013, Proposition 2.2) and
Martínez-Legaz (2015, Proposition 6). We assume

{x ∈ K : gi (x) < 0, ∀i ∈ I } ∩ bd K = ∅. (4)

If constraint functions are continuous, then this condition automatically holds.

Theorem 1 Let int K ̸= ∅ and GLCQ hold. Furthermore, assume that K is closed
and (4) holds. Then K is convex if and only if for every i ∈ I and every x ∈ K with
gi (x) = 0, there exists ζ ∈ ∂∗gi (x) such that ⟨ζ, y − x⟩ ≤ 0 for each y ∈ K.

Proof Assume that K is convex. By indirect proof, assume that there exist i ∈ I and
x ∈ K with gi (x) = 0 such that for each ζ ∈ ∂∗gi (x), ⟨ζ, y− x⟩ > 0 for some y ∈ K .
Hence, g+i (x; y − x) > 0 which leads to gi (x + t (y − x)) > 0 for some sufficiently
small t > 0. This contradicts the convexity of K .

Converse: Let x̄ be any boundary point of K . Due to (4), there exists some j ∈ I
such that g j (x̄) = 0. Hence, by assumption, there exists ζ ∈ ∂∗g j (x̄) such that
⟨ζ, y − x̄⟩ ≤ 0 for each y ∈ K . Since GLCQ holds, we have ζ ̸= 0. Thus, ζ is the
normal vector of a non-trivial supporting hyperplane to the set K at x̄ . Now, since
int K ̸= ∅, by Theorem 1.3.3 in Schneider (1994), K is convex. ⊓7

Theorem 2 is devoted to characterization of the normal cone of K at a given point
x̄ ∈ K .
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Assumption 2 In the rest of this section, we consider K as a convex set as defined in
(3) where gi ’s are not necessary locally Lipschitz, continuous or convex.

Theorem 2 Let x̄ ∈ K. If gi for i /∈ I (x̄) is upper semicontinuous at x̄ , int K ̸= ∅
and GLCQ holds at x̄ , then

NK (x̄) = cl cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
.

Proof As NK (x̄) is a closed convex cone, to justify the inclusion

cl cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
⊆ NK (x̄),

it is sufficient to show that ∂∗gi (x̄) ⊆ NK (x̄) for each i ∈ I (x̄).
Let i ∈ I (x̄)be arbitrary. Since K is convex, for each x ∈ K wehave g+i (x̄; x−x̄) ≤

0, leading to

⟨ζ, x − x̄⟩ ≤ 0, ∀x ∈ K ,∀ζ ∈ ∂∗gi (x̄).

Hence, according to the definition of normal cone of a convex set, we have ∂∗gi (x̄) ⊆
NK (x̄). Therefore,

cl cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
⊆ NK (x̄). (5)

Set

Γ (x̄) := ∪i∈I (x̄)∂∗gi (x̄).

To show the converse inclusion, we claim thatΓ ◦(x̄) ⊆ TK (x̄). Let y ∈ int K be arbi-
trary. There exists some ϵ > 0 such that for each d ∈ Rn with ∥d∥ ≤ 1, y + ϵd ∈ K .
Hence, form the convexity of K , for each i ∈ I (x̄) and d ∈ Rn with ∥d∥ ≤ 1,

g+i (x̄; ϵd + y − x̄) ≤ 0.

Therefore,

⟨ζ, y − x̄⟩ ≤ −ϵ⟨ζ, d⟩, ∀d ∈ Rn; ∥d∥ ≤ 1,∀i ∈ I (x̄),∀ζ ∈ ∂∗gi (x̄).

By setting d = ζ
∥ζ∥ , we get

⟨ζ, y − x̄⟩ ≤ −ϵ∥ζ∥, ∀i ∈ I (x̄),∀ζ ∈ ∂∗gi (x̄).

Hence, because of 0 /∈ ∂∗gi (x̄) and the closedness of ∂∗gi (x̄), we have

g+i (x̄; y − x̄) = sup
ζ∈∂∗gi (x̄)

⟨ζ, y − x̄⟩ ≤ −ϵ inf
ζ∈∂∗gi (x̄)

∥ζ∥ < 0.

Therefore,
g+i (x̄; y − x̄) < 0, ∀y ∈ int K , ∀i ∈ I (x̄). (6)
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Let d ∈ Γ ◦(x̄) and y ∈ int K . From (6) and the definition of URC, we have

g+i (x̄; d + t (y − x̄)) ≤ g+i (x̄; d)+ tg+i (x̄; y − x̄) < 0, ∀t > 0,∀i ∈ I (x̄).

Therefore, for sufficiently small λ values, gi
(
x̄ +λ(d+ t (y− x̄))

)
≤ 0 for each t > 0

and i ∈ I (x̄). On the other hand, considering t > 0, for each i /∈ I (x̄), due to the upper
semicontinuity assumption, gi

(
x̄+λ(d+t (y− x̄))

)
≤ 0 for sufficiently smallλ values.

Hence d + t (y − x̄) ∈ DK (x̄) for each t > 0. This implies d ∈ cl DK (x̄) = TK (x̄).
Therefore,

Γ ◦(x̄) ⊆ TK (x̄).

Now, we have

NK (x̄) = T ◦
K (x̄) ⊆ Γ ◦◦(x̄) = cl cone(Γ (x̄)).

Therefore, according to (5), NK (x̄) = cl cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
and the proof is com-

pleted. ⊓7

Remark 2 Under the assumptions of Theorem 2, if cone(Γ (x̄)) is closed, then by
mentioned theorem and because of

cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
= cone

(
∪i∈I (x̄)co(∂∗gi (x̄))

)
,

for each d ∈ NK (x̄),

d ∈
∑

i∈I (x̄)
λi co(∂∗gi (x̄)),

for someλi ≥ 0, (i ∈ I (x̄)). Furthermore, due to (6), 0 /∈ co(∂∗gi (x̄)) for any i ∈ I (x̄).
So, cone(Γ (x̄)) is closed provided that ∂∗gi (x̄) is bounded for each i ∈ I (x̄).

For sake of convenience and getting sharper results, in some theorems we use a
base of the cone generated by a convexificator instead of the convexificator. Given a
cone C , a set B ⊆ C is called a base of C if 0 /∈ B and for each c ∈ C\{0} there are
unique b ∈ B and t > 0 such that c = tb.

Let assumptions of Theorem 2 hold and cone(∂∗gi (x̄)) be closed for each i ∈ I (x̄).
From (6), we have

⟨ζ, y − x̄⟩ < 0, ∀y ∈ int K , ∀ζ ∈ cone(∂∗gi (x̄)) \ {0}, ∀i ∈ I (x̄). (7)

Therefore, cone(∂∗gi (x̄)) is a closed pointed cone, and it has a closed convex bounded
base Bi (see Luc 1989, Remark 1.6), leading to

cone
(
∪i∈I (x̄)∂∗gi (x̄)

)
= cone

(
∪i∈I (x̄)Bi

)
.
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Corollary 1 Under assumptions of Theorem 2, if cone(∂∗gi (x̄)) is closed for each
i ∈ I (x̄), then

NK (x̄) = cone
(
∪i∈I (x̄)Bi

)
.

There are known ways for obtaining the base Bi ; see e.g. Luc (1989, Proposition
1.10). The representation given in Corollary 1 will help us to prove the boundedness
of KKT multipliers in the next section.

5 KKT condition

5.1 KKT via FJ

We start this section by recalling FJ and KKT point notions.

Definition 9 (i) We say that x̄ ∈ K is a Fritz John (FJ) point for (1) if there exist
λ0, λ1, . . . , λm ≥ 0 not all zero, such that

0 ∈ λ0co(∂∗ f (x̄))+
m∑

i=1

λi co(∂∗gi (x̄)), (8)

λi gi (x̄) = 0, ∀i ∈ I. (9)

(ii) We say that x̄ ∈ K is a KKT point for (1) if it is a FJ point with λ0 = 1.

Dutta andChandra (2002, Theorem3.3) derived a necessary FJ optimality condition
for (1) in terms of convexificators. Theorem 3 shows that KKT conditions are derived
if one adds int K ̸= ∅ and GLCQ to the assumptions imposed by Dutta and Chandra
in Dutta and Chandra (2002, Theorem 3.3).

Theorem 3 Let x̄ ∈ K be a FJ point. If int K ̸= ∅ and GLCQ holds, then x̄ is a KKT
point.

Proof Assume λ0 = 0 in (8). Then 0 = ∑m
i=1 λiζi , for some ζi ∈ co(∂∗gi (x̄)), i =

1, 2 . . . ,m. Thus

0 =
∑

i∈J

λi ⟨ζi , y − x̄⟩, ∀y ∈ K ,

where J := {i ∈ I : λi > 0} ⊆ I (x̄). For each i ∈ I (x̄) and y ∈ K , as K is convex,
g+i (x̄; y − x̄) ≤ 0 which implies ⟨ζi , y − x̄⟩ ≤ 0. Thus

⟨ζi , y − x̄⟩ = 0, ∀y ∈ K , ∀i ∈ J.

Since there exists some x̂ ∈ int K , for any v ∈ Rn and t > 0 sufficiently small we
have x̂ + tv ∈ K ; and hence

⟨ζi , x̂ + tv − x̄⟩ = 0, ∀i ∈ J.

123



Optimality conditions in optimization problems…

Therefore, ⟨ζi , x̂ − x̄⟩ + ⟨ζi , tv⟩ = 0 which leads to

⟨ζi , v⟩ = 0, ∀i ∈ J.

Hence for each v ∈ Rn and for each i ∈ J , ⟨ζi , v⟩ = 0. This implies ζi = 0 for
each i ∈ J . Therefore, 0 ∈ co(∂∗gi (x̄)) for all i ∈ J . On the other hand, invoking
GLCQ and int K ̸= ∅, by a manner similar to the proof of Theorem 2, Eq. (6) is
derived, leading to 0 /∈ co(∂∗gi (x̄)) for any i ∈ J . This contradiction shows λ0 > 0
and without loss of generality one may take λ0 = 1. ⊓7

5.2 KKT without FJ

In Dutta and Lalitha (2013), Lasserre (2010) and Martínez-Legaz (2015), the authors
investigated KKT conditions at optimal solutions of (1). To this end, they consider FJ
conditions and then they impose some constraint qualifications to get KKT conditions.
Their manner can be summarized in the following diagram:

Minimizer ⇒ FJ ⇒ KKT

Now we are going to use the characterization of NK (x̄), proved in Theorem 2,
to get KKT conditions without using FJ conditions. The diagram below clarifies our
manner:

Minimizer + (NK characterization) ⇒ KKT

Theorem 4 Assume that f has a URC ∂∗ f (x̄) at x̄ ∈ K. If x̄ is an optimal solution
of (1), then

0 ∈ cl
(
co(∂∗ f (x̄))+ NK (x̄)

)
.

Proof We claim
sup

η∈∂∗ f (x̄)
⟨η, d⟩ ≥ 0, ∀d ∈ DK (x̄). (10)

By indirect proof suppose f +(x̄; d) = sup
η∈∂∗ f (x̄)

⟨η, d⟩ < 0 for some d ∈ DK (x̄). This

implies the existence of some t > 0 satisfying x̄ + td ∈ K and f (x̄ + td) < f (x̄),
which contradict the optimality of x̄ . From (10), we have

sup
η∈∂∗ f (x̄)

⟨η, d⟩ ≥ 0, ∀d ∈ cl DK (x̄) = TK (x̄).

Therefore,

sup
η∈co(∂∗ f (x̄))

⟨η, d⟩ + ITK (x̄)(d) ≥ 0, ∀d ∈ Rn,
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where ITK (x̄)(·) stands for the indicator function (ITK (x̄)(d) equals to zero if d ∈
TK (x̄) and∞ otherwise). ByHiriart-Urruty and Lemarechal (1993, Example V.2.3.1),
ITK (x̄)(d) = supη∈NK (x̄)⟨η, d⟩ for each d. Thus

sup
η∈co(∂∗ f (x̄))+NK (x̄)

⟨η, d⟩ ≥ 0, ∀d ∈ Rn .

Now, invoking Hiriart-Urruty and Lemarechal (1993, Theorem V.3.3.1), we have

0 ∈ cl
(
co(∂∗ f (x̄))+ NK (x̄)

)
,

and the proof is completed. ⊓7

Corollary 2 Assume that x̄ ∈ K, int K ̸= ∅, GLCQholds, and f has a boundedURC
∂∗ f (x̄) at x̄ . Furthermore, assume that gi for i /∈ I (x̄) is upper semicontinuous at x̄ .
If x̄ is an optimal solution of (1) and cone(Γ (x̄)) is closed, then there exist λi ≥ 0,
i ∈ I (x̄) such that

0 ∈ co(∂∗ f (x̄))+
∑

i∈I (x̄)
λi co(∂∗gi (x̄)).

Proof It results from Theorem 4 and Remark 2. ⊓7

Theorem 4 and Corollary 2 present necessary optimality conditions. In Theorem
5, we obtain a sufficient optimality condition in the presence of an asymptotic pseu-
doconvex objective function. Along the lines of Yang (2005) we use the following
generalized definition of pseudoconvexity w.r.t convexificators.

Definition 10 Assume that h : Ω ⊆ Rn → R ∪ {∞} admits a URC at x̄ ∈ Ω . The
function h is said to be asymptotic pseudoconvex (a-pseudoconvex in brief) at x̄ if for
every y ∈ Ω ,

(
{ζk} ⊆ co(∂∗h(x̄)), lim

k→∞
⟨ζk, y − x̄⟩ ≥ 0

)
⇒ h(y) ≥ h(x̄).

This function is called a-pseudoconvex on Ω if it is a-pseudoconvex at any point of
Ω .

Theorem 5 Assume that f is a-pseudoconvex with a URC ∂∗ f (x̄) at x̄ ∈ K. If there
exist λi ≥ 0, i ∈ I (x̄) such that

0 ∈ co(∂∗ f (x̄))+
∑

i∈I (x̄)
λi co(∂∗gi (x̄)), (11)

then x̄ is an optimal solution of (1).

Proof According to the first part of the proof of Theorem 2, Eq. (11) implies 0 ∈
co(∂∗ f (x̄))+ NK (x̄). Hence, −η ∈ NK (x̄) for some η ∈ co(∂∗ f (x̄)), which implies
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⟨η, y − x̄⟩ ≥ 0, ∀y ∈ K .

Now, the proof is completed due to the a-pseudoconvexity of f at x̄ . ⊓7
Corollary 3 Let x̄ ∈ K. Assume gi for i /∈ I (x̄) is upper semicontinuous at x̄ ,
int K ̸= ∅ and GLCQ holds at x̄ . Furthermore, assume that f has a bounded URC
∂∗ f (x̄). If x̄ is an optimal solution of (1) and for each i ∈ I (x̄), cone(∂∗gi (x̄)) is
closed, then there exist λi ≥ 0, i ∈ I (x̄) such that

0 ∈ co(∂∗ f (x̄))+
∑

i∈I (x̄)
λi Bi ,

where Bi is a convex compact base of cone(∂∗gi (x̄)). If f is a-pseudoconvex at x̄ , this
condition is sufficient for optimality.

Proof Apply Corollary 1, Theorem 4, and Theorem 5. ⊓7
As mentioned before, in the current subsection, KKT conditions are gotten from

optimality directly, in contrast to Dutta and Lalitha (2013, Theorem 2.4), Lasserre
(2010, Theorem 2.3), and Martínez-Legaz (2015, Theorem 9). Furthermore, here we
have used upper regular convexificator instead of usual gradient [used in Lasserre
(2010)], the Clarke generalized gradient [used in Dutta and Lalitha (2013)], and the
tangential subdifferential [used in Martínez-Legaz (2015)]. Moreover, here gi func-
tions are not assumed to be locally Lipschitz or directionally differentiable. It is worth
mentioning that Dutta and Lalitha (2013, Theorem 2.4), Lasserre (2010, Theorem 2.3),
and Martínez-Legaz (2015, Theorem 9) result from Corollary 2 and Theorem 5.

We conclude this subsection with an example. In the following example, the con-
straint function g is not locally Lipschitz while the feasible set is closed and convex.

Example 1 Consider

min f (x1, x2) s.t. g(x1, x2) ≤ 0,

where f (x1, x2) = −x1 − x2 and

g(x1, x2) =

⎧
⎨

⎩

x1 + x2, x1, x2 ≤ 0,

√|x1| +
√|x2|, otherwise

Set K = {(x1, x2) : g(x1, x2) ≤ 0}. It can be seen that

g+((0, 0); (v1, v2)) =

⎧
⎨

⎩

v1 + v2, v1, v2 ≤ 0,

+∞, otherwise

Two sets ∂∗ f (0, 0) = {(−1,−1)} and ∂∗g(0, 0) = {(1+ t, 1+ 1
t ) : t > 0}∪ {(1, 1)}

are URCs for f and g at x̄ = (0, 0), respectively. Furthermore, (0, 0) /∈ ∂∗g(0, 0). On
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the other hand, (1, 1) ∈ ∂∗g(0, 0). Hence, (0, 0) ∈ ∂∗ f (0, 0)+ ∂∗g(0, 0). Therefore,
(0, 0) is a KKT point and hence it is an optimal solution.

5.3 Boundedness of KKT multipliers

This subsection is devoted to a result about boundedness of the set of KKTmultipliers.
The boundedness of KKTmultipliers is very useful in sketching numerical algorithms
and duality results (Li and Zhang 2010; Nguyen et al. 1980).Without loss of generality
assume that I (x̄) = {1, . . . , s} ⊆ I . Set

M(x̄) :=
{

(λ1, . . . , λs) ≥ 0 : 0 ∈ co(∂∗ f (x̄))+
s∑

i=1

λi Bi

}

,

where Bi is a convex compact base of cone(∂∗gi (x̄)).

Theorem 6 Let x̄ ∈ K. Assume that int K ̸= ∅, GLCQ holds at x̄ , objective function
f has a bounded URC ∂∗ f (x̄). Then M(x̄) is a bounded set.

Proof By the indirect proof, without loss of generality, assume that there is a sequence
{(λk1, . . . , λks )}k∈N ⊆ M(x̄) such that λk1 → ∞ as k → ∞. For each k ∈ N, there
exist ηk ∈ co(∂∗ f (x̄)) and ζ k

i ∈ Bi such that

0 = ⟨ηk, y − x̄⟩ +
s∑

i=1

λki ⟨ζ k
i , y − x̄⟩, ∀y ∈ int K .

By amanner similar to the second part of the proof of Theorem2,we have ⟨ηi , y− x̄⟩ <
0 for each i ∈ I (x̄) and each ηi ∈ ∂∗gi (x̄). Thus

0 ≤ ⟨ηk, y − x̄⟩ + λk1⟨ζ k
1 , y − x̄⟩.

Since co(∂∗ f (x̄)) and B1 are compact, by working with subsequences if necessary
one may assume ηk → η ∈ co(∂∗ f (x̄)) and ζ k

1 → ζ1 ∈ B1 as k → ∞. Hence, by
k → ∞,

0 ≤ ⟨ηk, y − x̄⟩
λk1

+ ⟨ζ k
1 , y − x̄⟩ → 0+ ⟨ζ1, y − x̄⟩ < 0.

This contradiction proves the theorem. ⊓7

6 Characterizations of the solution set

6.1 Convexificators at optimality

In this subsection, we characterize the solution set of optimization problem (1) in terms
of convexificators invoking KKT type conditions obtained in Sect. 5. Mangasarian
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(1988) first introduced several characterizations of the solution set of a convex opti-
mization problem.After that,many attemptswere performed on this subject, especially
for making the convexity requirements on objective function weaker and for gener-
alizing the results to nonsmooth case; see e.g. Burke and Ferris (1991), Dinh et al.
(2006), Zhao and Yang (2013), and the references therein.

Assume that the solution set of (1), denoted by

S := {x ∈ K : f (x) ≤ f (y), ∀y ∈ K },

is nonempty. First we obtain some inclusion characterizations.

Proposition 1 Let x̄ ∈ S be given. Assume that S is convex. Then we have

S ⊆ S1 := {x ∈ K : co(∂∗ f (x̄)) ∩ −NK (x̄) ⊆ −NK (x)},

S ⊆ S2 := {x ∈ K : co(∂∗ f (x)) ∩ −NK (x) ⊆ −NK (x̄)}.

Furthermore, for any convex set A satisfying S ⊆ A ⊆ K, we have

S ⊆ A1 := {x ∈ A : co(∂∗ f (x̄)) ∩ −NA(x̄) ⊆ −NA(x)},

S ⊆ A2 := {x ∈ A : co(∂∗ f (x)) ∩ −NA(x) ⊆ −NA(x̄)}.

Proof We prove only S ⊆ S1. The proof for other inclusions is similar. Let x ∈ S
be arbitrary. By convexity of S, for sufficiently small t > 0, x̄ + t (x − x̄) ∈ S. This
implies f +(x̄; x − x̄) = 0, leading to ⟨η, x − x̄⟩ ≤ 0 for each η ∈ ∂∗ f (x̄). Therefore,
⟨η, x − x̄⟩ = 0 for each η ∈ co(∂∗ f (x̄))∩ −NK (x̄). Let y ∈ K be arbitrary. For each
η̄ ∈ co(∂∗ f (x̄)) ∩ −NK (x̄), we have

⟨η̄, y − x⟩ = ⟨η̄, y − x̄⟩ + ⟨η̄, x̄ − x⟩ ≥ 0.

Hence, η̄ ∈ −NK (x) and the proof is completed. ⊓7

Convexity of S assumed in this subsection holds if f is quasiconvex. If f is
continuous and a-pseudoconvex, then this function is quasiconvex (Yang 2005, Defi-
nitions 3.1 and 3.2 and Theorem 3.1) and hence S is convex.

Proposition 2 provides a full characterization of the solution set S.

Proposition 2 Let x̄ ∈ S be given. Assume that S is convex, co(∂∗ f (x̄))+ NK (x̄) is
closed, and f is a-pseudoconvex with URC on K . Then S = S3 = S4 = S5, where

S3 := {x ∈ K : ∃ζ ∈ co(∂∗ f (x)), ⟨ζ, x̄ − x⟩ = 0},

S4 := {x ∈ K : ∃ζ ∈ co(∂∗ f (x)), ⟨ζ, x̄ − x⟩ ≥ 0},

S5 := {x ∈ K : ∃ζ ∈ co(∂∗ f (x)) s.t. ∀η ∈ ∂∗ f (x̄), ⟨η, x − x̄⟩ ≤ ⟨ζ, x̄ − x⟩}.
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Proof It is clear that S3 ⊆ S4. Furthermore, from a-pseudoconvexity, we get S4 ⊆ S.
We establish S ⊆ S3, S ⊆ S5, and S5 ⊆ S4.

S ⊆ S3: Let x ∈ S. By Theorem 4 and closedness of co(∂∗ f (x̄)) + NK (x̄), there
exists some ζ ∈ co(∂∗ f (x)) ∩ −NK (x), and similar to the proof of Proposition 1 we
get ⟨ζ, x̄ − x⟩ = 0.

S ⊆ S5: Let x ∈ S. Similar to the preceding part there exists some ζ ∈ co(∂∗ f (x))
satisfying ⟨ζ, x̄ − x⟩ = 0. As S is convex and x̄ ∈ S, we have f +(x̄, x − x̄) = 0. Thus
for each η ∈ ∂∗ f (x̄), ⟨η, x − x̄⟩ ≤ 0 = ⟨ζ, x̄ − x⟩.

S5 ⊆ S4: Let x ∈ S5. Since x̄ ∈ S and K is convex, f +(x̄; x − x̄) ≥ 0. Hence, due
to x ∈ S5, there exists some ζ ∈ co(∂∗ f (x)) such that

0 ≤ f +(x̄; x − x̄) = sup
η∈∂∗ f (x̄)

⟨η, x − x̄⟩ ≤ ⟨ζ, x̄ − x⟩.

⊓7

6.2 Linear approximation

In this subsection, we obtain a linear semi-infinite problem (Goberna and López 1998)
to check the optimality of a given feasible solution of (1). To the best of our knowledge,
Soleimani-damaneh (2008, 2010) is the first scholar who dealt with this problem under
locally Lipshchitz data.

Let x̄ be a feasible solution of (1). Assume that f has a URC at x̄ as ∂∗ f (x̄). Let
η̄ ∈ co(∂∗ f (x̄)). Consider the following linear semi-infinite programming problem:

inf
x∈K1

f (x̄)+ ⟨η̄, x − x̄⟩, (12)

where

K1 =
{
x ∈ Rn : ⟨ζi , x − x̄⟩ ≤ 0, ∀i ∈ I (x̄),∀ζi ∈ ∂∗gi (x̄)

}
.

Theorems 7 and 8 study the relationships between Problems (1) and (12).

Theorem 7 Assume that ∂∗ f (x̄) is bounded, intK ̸= ∅ and GLCQ holds at x̄ . Fur-
thermore, assume that gi for i /∈ I (x̄) is upper semicontinuous at x̄ . If x̄ is an optimal
solution of (1) and cone(Γ (x̄)) is closed, then x̄ is an optimal solution of (12) for
some η̄ ∈ co(∂∗ f (x̄)).

Proof From Corollary 2, there exist λi ≥ 0, i ∈ I (x̄) such that

0 ∈ co(∂∗ f (x̄))+
∑

i∈I (x̄)
λi co(∂∗gi (x̄)).

Therefore,
0 = η̄ +

∑

i∈I (x̄)
λi ζ̄i , (13)
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for some η̄ ∈ co(∂∗ f (x̄)) and ζ̄i ∈ co(∂∗gi (x̄)). Let x ′ be a feasible solution to (12)
corresponding to η̄. By (13),

f (x̄)+ ⟨η̄, x ′ − x̄⟩ = f (x̄) −
∑

i∈I (x̄)
λi ⟨ζ̄i , x ′ − x̄⟩ ≥ f (x̄).

Therefore, x̄ is an optimal solution for (12) corresponding to η̄. ⊓7
Now, we are going to prove the converse of Theorem 7.

Theorem 8 Assume that f is a-pseudoconvex with a URC ∂∗ f (x̄) at x̄ . If x̄ is a
optimal solution to (12) for some η̄ ∈ co(∂∗ f (x̄)), then x̄ is a optimal solution to (1).

Proof Let x ∈ K be arbitrary. According to the convexity of K , for each i ∈ I (x̄),
g+i (x̄; x − x̄) ≤ 0. Hence,

⟨ζ, x − x̄⟩ ≤ 0, ∀i ∈ I (x̄),∀ζ ∈ ∂∗gi (x̄),

which leads to x ∈ K1. Therefore, K ⊆ K1 which implies NK1(x̄) ⊆ NK (x̄).
Since x̄ solves (12) for some η̄ ∈ co(∂∗ f (x̄)), the objective function f (x̄)+⟨η̄, x−

x̄⟩ is linear (w.r.t. x), and the feasible set K1 is convex, we have 0 ∈ η̄ + NK1(x̄).
Hence,

⟨η, y − x̄⟩ ≥ 0, ∀y ∈ K .

Therefore, x̄ solves (1), because of a-pseudoconvexity assumption on f . ⊓7

6.3 An example

To illustrate our results, we look at a specific model arising in stochastic programming
with probabilistic constraints. Assume that A is a s×n matrix andC ⊆ Rn is a convex
set. Consider the following optimization problem:

min{ f (x) : x ∈ C, F(Ax) ≥ p},

where p ∈ (0, 1) is given and F(·) is corresponding to a probability distribution func-
tion; see Henrion and Römisch (1999, pp. 55–56) for more detail about applications
of this model.

Example 2 Consider

min
{
f (x) : F(x) ≤ 1

2

}
,

where

f (x) =

⎧
⎨

⎩

−x + 3, x < 1
1, x = 1,
−x + 2, x > 1,

and the probability distribution function F is given by

123



A. Kabgani et al.

F(x) =

⎧
⎨

⎩

0, x ≤ 0
1
2 x, 0 ≤ x ≤ 1,
1, x > 1

The function F is not convex or concave while

K = {x : F(x) ≤ 1
2
} = (−∞, 1]

is a convex set. Both F and f are discontinuous at x̄ = 1 while two sets ∂∗F(x̄) =
[ 12 ,∞) and ∂∗ f (x̄) = (−∞,−1] are URCs of these functions at x̄ , respectively.

Let y ∈ K . Let {ηk}k∈N ⊆ ∂∗ f (x̄) be such that limk−→∞ ηk(y − x̄) ≥ 0. Due to
ηk ≤ −1, this implies y ≤ x̄ and then f (y) ≥ f (x̄). Therefore, f is a-pseudoconvex
at x̄ . Furthermore, int K ̸= ∅. Moreover, F(x̄) = 1

2 and 0 /∈ ∂∗F(x̄), leading to
GLCQ at x̄ . Thus, according to Theorem 2,

NK (x̄) = cl cone(∂∗F(x̄)) = [0,∞)

and one may consider B = {1} as a convex compact base for this closed pointed
convex cone. Since 0 = η + λζ with η = −1 ∈ ∂∗ f (x̄), λ = 1, and ζ = 1 ∈ B, by
Theorem 5 (sufficient part in Corollary 3), x̄ is an optimal solution.

Notice that here the objective function is quasiconvex and hence the solution set
S is convex. Now consider x̂ ∈ K , x̂ ̸= x̄ . We have x̂ < 1 and f is differentibale
at x with f ′(x) = −1. Hence, f ′(x̂)(x̂ − x̄) ̸= 0 which implies x̂ /∈ S because of
Proposition 2. Therefore, S = {x̄}.
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