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Abstract In this paper, a popular scalarization problem in multiobjective optimiza-
tion, introduced by Benson, is considered. In the literature it was proved that, under
convexity assumption, the set of properly efficient points is empty when the Benson’s
problem is unbounded. In this paper, it is shown that this result is still valid in general
case without convexity assumption.
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1 Preliminaries

In this paper, we consider the following general multiobjective optimization problem
(MOP):

min
x∈X f(x) =

(
f1(x), f2(x), . . . , fm(x)

)
. (MOP)

The set of feasible solutions of this problem is X ⊆ R
n and f : R

n −→ R
m is a

vector-valued objective function.
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The solution notion for (MOP) is defined with respect to an ordering cone which is
used for ordering the criterion space Rm . We use the natural ordering cone defined as

R
m+ = {x ∈ R

m : x j ≥ 0, ∀ j = 1, 2, . . . ,m}.

Utilizing this ordering cone, a feasible solution x̂ ∈ X is called an efficient solution
to (MOP) if

(
f(x̂) − R

m+
) ⋂

f(X) = {f(x̂)}.

One of the solution concepts which plays an important role in multiobjective opti-
mization, from both theoretical and practical points of view, is the proper efficiency
notion [5,11,12]. This concept has been introduced to eliminate the efficient solutions
with unbounded tradeoffs. There are different definitions for proper efficiency in the
literature [2,3,6,9,10]. We use the following ones.

Definition 1 [6] A feasible solution x̂ ∈ X is called a properly efficient solution to
(MOP) in the Geoffrion’s sense, if it is efficient and there is a real number M > 0
such that for all i ∈ {1, 2, . . . ,m} and x ∈ X satisfying fi (x) < fi (x̂) there exists an
index j ∈ {1, 2, . . . ,m} such that f j (x) > f j (x̂) and

fi (x̂) − fi (x)

f j (x) − f j (x̂)
≤ M.

Definition 2 [2] A feasible solution x̂ ∈ X is called a properly efficient solution to
(MOP) in the Benson’s sense, if

cl
(
cone

(
f(X) + R

m+ − f(x̂)
)) ⋂

(−R
m+) = {0},

where cone(A) = {αa : α ≥ 0, a ∈ A} = ⋃
α≥0 αA, and cl(A) is the closure of A.

Definition 3 [9] A feasible solution x̂ ∈ X is called a properly efficient solution to
(MOP) in the Henig’s sense if (f(x̂) −C)

⋂
f(X) = {f(x̂)}, for some convex pointed

cone C satisfying Rm+\{0} ⊆ int (C).

Sincewe are using the natural cone, the above three definitions are equivalent [9,11].
Hereafter, the set of efficient solutions and the set of properly efficient solutions are
denoted by XE and XPE , respectively.Also, settingY = f(X), the set of nondominated
points, denotedbyYN , is definedbyYN = f(XE ); and the set of properly nondominated
points, denoted by YPN , is defined by YPN = f(XPE ).

The setY is calledRm+−closed ifY+R
m+ is closed. Similarly,Y is calledRm+−convex

if Y + R
m+ is convex. If X is a convex set and f1, f2, . . . , fm are convex functions,

then Y is Rm+−convex.
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2 Scalarization

In this section, Benson’s method [1], which is a popular scalarization tool, is dealt
with. One important area of multiobjective programming research concerns the exis-
tence of properly and improperly efficient solutions. Benson’s method [1] gives an
examination of the existence of efficient and properly efficient solutions for multiob-
jective programming problems. Given a feasible solution, x0 ∈ X , the efficiency of x0

is checked utilizing l1−norm, by solving the following single-objective optimization
problem:

max
m∑

k=1

lk

s.t. fk(x0) − lk − fk(x) = 0, k = 1, 2, . . . ,m,

lk ≥ 0, k = 1, 2, . . . ,m,

x ∈ X.

(1)

A linear version of the abovemodel was studied by Ecker andKouada [4]. Some useful
examples clarifying Model (1) can be found in Benson [1] and Giannessi et al. [7].

The vector x0 ∈ X is efficient if and only if the optimal value of Problem (1) is
zero; see [2,5]. If (x̂, l̂) is an optimal solution to Model (1), then x̂ is an efficient
solution; see [2,5]. One of the main questions is that, what happens when Problem (1)
is unbounded. Benson [1] answered this question under convexity assumptions. He
proved the following result. See also Theorem 4.16 in [5].

Theorem A Assume that fk, k = 1, 2, . . . ,m are convex functions and X is a convex
set. If Problem (1) is unbounded, then XPE = ∅.

Ascanbe seen from the above theoremanddiscussion, anyoptimal solution of Problem
(1) yields an efficient solution. Furthermore, in many cases the unboundedness of
Problem (1) shows that no properly efficient solutions exist. In the following, we
prove that this important result holds in all cases (without any convexity assumption).

Theorem 1 If Problem (1) is unbounded, then XPE = ∅.

Proof If x0 ∈ X is efficient, then Problem (1) has a finite optimal value equal to zero
(see [1,5]). Therefore, due to the assumption, we have x0 ∈ X\XE .

By contradiction, assume that there exists x̂ ∈ XPE . Since x̂ ∈ XPE , due to
the Henig proper efficiency, there exists a convex and pointed cone C , such that
R
m+\{0} ⊆ intC and

(f(x̂) − C\{0}) ∩ f(X) = ∅.

According to R
m+\{0} ⊆ intC , we have ei ∈ intC for each i = 1, 2, . . . ,m (vector

ei denotes the i−th unit vector in Rm). Thus there exists ri > 0 such that B(ei ; ri ) =
{y ∈ R

m : ‖y − ei‖ < ri } ⊆ C .
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Now, consider the following system, in which α, θ , and y are variables:

⎧⎪⎨
⎪⎩

f(x0) − αei = f(x̂) − θ(ei + y),

‖y‖ < ri ,

α > 0, θ > 0.

(2)

Set ᾱi := 2r−1
i ‖f(x̂) − f(x0)‖ and ȳ := ri

2 × f(x̂)−f(x0)
‖f(x̂)−f(x0)‖ . The vector

(α, θ, y) = (ᾱi , ᾱi , ȳ)

is a solution to system (2), and ei + y ∈ B(ei ; ri ). Thus

f(x0) − ᾱiei − f(x̂) ∈ −C.

Also, clearly we have

∀α > ᾱi ,−(α − ᾱi )ei ∈ −C\{0}.

Therefore, for each α > ᾱi , we have f(x0) − αei − f(x̂) ∈ −C\{0}, because C is a
convex cone. This implies f(x0) − αei ∈ f(x̂) − C\{0}. Hence, f(x0) − αei /∈ f(X)

due to Henig proper efficiency.
So far, we proved that for each ei , i = 1, 2, . . . ,m, there exists some positive

scalar ᾱi > 0, such that

∀α > ᾱi , f(x0) − αei /∈ f(X). (3)

Nowdefining ᾱ := max1≤i≤m ᾱi ,we show that for anyd ∈ R
m+ satisfying

∑m
i=1 di = 1

and any α > ᾱ, we have f(x0) − αd /∈ f(X).
The cone −C is convex and also, for each i , we have f(x0) − ᾱei − f(x̂) ∈ −C .

Therefore,

m∑
i=1

di

(
f(x0) − ᾱei − f(x̂)

)
∈ −C.

This implies

f(x0) − ᾱd − f(x̂) ∈ −C.

Furthermore, we have d ∈ C , which implies

−(α − ᾱ)d ∈ −C\{0}, ∀α > ᾱ.

Thus

f(x0) − αd − f(x̂) ∈ −C\{0}, ∀α > ᾱ.
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Therefore, due to the proper efficiency of x̂, we get

f(x0) − αd /∈ f(X), ∀α > ᾱ.

Thus, ᾱ provides an upper bound for the objective function of Problem (1). This
contradicts the unboundedness assumption on Problem (1), and completes the proof.

��
Now we consider the following single-objective problem which has been studied

by Guddat et al. [8] as hybrid scalarization method; see also [5].

min
m∑

k=1

λk fk(x)

s.t. fk(x) ≤ fk(x0), k = 1, 2, . . . ,m,

x ∈ X.

(4)

In this problem, λ1, λ2, . . . , λm are positive fixed scalars. This problem is an extension
of Problem (1). Setting λi = 1 for each i = 1, 2, . . . ,m, Model (4) leads to Model
(1).

The vector x0 ∈ X is efficient if and only if x0 ∈ X is an optimal solution to
Problem (4); see [5,8]. It is not difficult to see that the unboundedness of Problem
(4) implies the unboundedness of Problem (1). Therefore, by Theorem 1, we get the
following corollary about the problem of Guddat et al. [8].

Corollary 1 If Problem (4) is unbounded, then XPE = ∅.

Under the R
m+−closedness and R

m+−convexity assumptions, Benson [1] proved
that, the unboundedness of Problem (1) implies XE = ∅. Due to the above discus-
sion, it can be seen that, under Rm+−closedness and R

m+−convexity assumptions, the
unboundedness of Problem (4) implies XE = ∅ as well. Although, in Theorem 1, we
omitted the Rm+−convexity assumption for investigating XPE , the following example
shows that one can not omit this assumption for XE .

Example 1 Let X = {(x1, x2) : x1 < 0, x2 ≤ 0, x2 ≥ 1
x1

} ∪ {(0, 0)} and f1(x) =
x1, f2(x) = x2. HenceY = X isR2+−closed, while it is notR2+−convex. Considering
x0 = (0, 0), Problem (1) is unbounded while XE = {(x1, x2) ∈ X : x2 = 1

x1
}.
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