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Abstract In this paper, we study the Jeans analysis in
the context of energy–momentum-squared gravity (EMSG).
More specifically we find the new Jeans mass for non-rotating
infinite mediums as the smallest mass scale for local perturba-
tions that can be stable against its own gravity. Furthermore,
for rotating mediums, specifically for rotating thin disks in
the context of EMSG, we find a new Toomre-like criterion
for the local gravitational stability. Finally, the results are
applied to a hyper-massive neutron star, as an astrophysical
system. Using a simplified toy model we have shown that,
for a positive (negative) value of the EMSG parameter α, the
system is stable (unstable) in a wide range of α. On the other
hand, no observational evidence has been reported on the
existence of local fragmentation in HMNS. Naturally, this
means that EMSG with positive α is more acceptable from
the physical point of view.

1 Introduction

Recent statistical analyses of astrophysical and cosmological
datasets have once again confirmed the concordance ΛCDM
model [1–4]. Despite its successes, the model shows some
shortcomings. On one side, the fundamental nature of the two
most important energy density components, namely Dark
Energy (DE) and Dark Matter (DM), is still unknown [5–8].
Many candidates have been proposed without being able to
solve the puzzle [9–25]. On the other hand, it is well known
that General Relativity (GR) is not a Quantum Theory of
gravity and it cannot provide a description of the Universe
at the quantum scales needed to solve the fine-tuning of ini-
tial conditions [26–28]. As a consequence, many modified
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theories of the gravity have been proposed to solve the puz-
zle [29–37]. Nevertheless, having alternative explanations
demands to test the modified gravity models and other basic
tenets of the ΛCDM cosmology at all scales, both in the
strong and weak field regime. In particular, let us remember
that the constraints at the Solar System scale must be matched
by any theory of gravity under consideration [38–40].

Here, we will compute the weak field limit of energy–
momentum-squared-gravity (EMSG), recently introduced by
[41,42], to study the collapse of a self-gravitating system. The
main idea behind EMSG is to resolve the Big Bang singu-
larity in a non-quantum description. It is important to men-
tion that, GR inherently leads to the singularity in the early
universe. On the other hand, as already mentioned, in the
early universe, i.e., at the Planck scale, the quantum gravity
effects play an important role. Therefore GR predicts space-
time singularity in a physical situation in which its viability
is seriously doubted. EMSG’s action functional is obtained
by adding scalar terms proportional to TμνTμν (where Tμν is
the energy–momentum tensor) to the Einstein-Hilbert action,
and it leads to interesting cosmological behaviours This kind
of corrections, naturally induce squared contributing terms
like ρ2, p2 and ρp to the Friedman equations governing the
background cosmological evolution. Where ρ and p are the
energy density and pressure of the cosmic fluid. As a con-
sequence, there are bouncing cosmological solutions in this
model, and the cosmic scale factor cannot be smaller than a
minimal length scale. In other words, there is a finite maxi-
mum energy density. This directly means that EMSG can pre-
vent the Big Bang singularity in a completely non-quantum
way. More importantly, EMSG does not alter the cosmolog-
ical evolution. Its only effect is to resolve the singularity (for
more details we refer the reader to [41]). However, it is should
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be stressed that EMSG’s effects can appear also in the stellar
configurations. For example, it is shown in [43] that EMSG
can lead to more massive neutron stars than in GR. This fact
is satisfactory in the sense that there are difficulties in GR
for explaining the internal structure of massive neutron stars,
especially their high mass, using ordinary equations of state
(for more details see [44] and [45]).

The study of the collapse of a self-gravitating system is
somehow the first test to do to probe any modified theory of
gravity. Indeed, Jeans Instability for a spherically symmetric
self-gravitating systems causes the collapse of a gas cloud
under the gravitational force giving rise to the formation of
self-gravitating structure such as stars and galaxies among
the others [46]. For stability, the cloud must be in hydrostatic
equilibrium, and this physical condition holds only on certain

scales determined by the so-called Jeans length, λ2
J = c2

s
2Gρ

where cs is the sound speed, G is the Newton’s gravitational
coupling constant and ρ is the matter density. All perturba-
tions having wavelengths larger than it are unstable. On the
contrary, smaller wavelengths are stable. Since such a scale
is strongly dependent by the underlying theory of gravity, it
has been used to probe several modified theories of gravity
[47–50].

Besides the stability criteria for spherically symmetric
perturbations, [51] investigated the stability condition of all
local axisymmetric perturbations introducing the dimension-
less parameter Q = csκ

πGΣ
, where κ is the epicyclic frequency

and Σ is the surface density of the system. Thus, any cloud or
disk is stable if the condition Q > 1 holds. As it was for Jeans
instability, it has been shown that also the Toomre’s criterion
can be used to check the validity of several modified theories
of gravity [52–54]. Generalizing both criteria for the local
stability in the framework of EMSG could provide a very
remarkable tool to describe the dynamics of self-gravitating
system such as the collapse of spherical clouds, the collapse
of massive star into Black Hole and/or the accretion disks
around a massive object, leading to new results that could
potentially be used to retain/rule out the theory.

The paper is organized as follows: in Sect. 2 we briefly
introduce the EMSG and derive its field equations. In Sect. 3
we perform the weak field limit of EMSG. In particular, we
write down the modified Poisson’s equation. In Sect. 4, we
give the modified continuity and Euler equation for EMSG.
In Sects. 5 and 6, we compute the Jeans’s length and the
Toomre parameter for EMSG, respectively. In both cases we
compute and analyze the dispersion relation particularizing
our calculation to specific cases of the EMSG. In Sect. 7,
we analyze the stability of an exponential disk to recover the
Toomre’s criteria and, then, in Sect. 8 we apply our calcula-
tions to the case of Hyper Massive Neutron Stars (HMNS).
Finally, in Sect. 9 we summarize our results and conclusions.

2 Field equations of EMSG

As in any other theory of gravity, the starting point of the
EMSG is the action

S = 1

2γ

∫
f (R, T2)

√−g d4x +
∫

LM
√−g d4x, (1)

where γ = 8πG/c4, G Newton’s constant, c is the speed
of light,

√−g is the determinant of metric tensor, LM is the
matter Lagrangian density, T2 = TμνTμν , and Tμν is the
energy–momentum tensor [41]. Notice that, we use the met-
ric signature (−,+,+,+). Working in the metric formula-
tion of the theory, it is straightforward to vary the action with
respect to the metric and find the following field equations

fR Rμν − 1

2
gμν f = γ Tμν −

[
fQθμν + (gμν��−∇μ∇ν) fR

]
,

(2)

where f = f (R, T2), fR = ∂ f/∂R and fQ = ∂ f/∂Q,
the �� is the usual d’Alembert operator, and for simplicity in
notation we have defined Q ≡ T2. On the other hand, the
tensor θμν is defined as the variation of Q with respect to the
metric tensor, namely θμν = δQ/δgμν . For a perfect fluid
the energy–momentum tensor and θμν are written as follows
(for more details see [55,56])

Tμν =
(
ρ + p

c2

)
uμuν + gμν p, (3)

and

θμν = −
(

ρ2c2 + 4pρ + 3
p2

c2

)
uμuν (4)

Q = ρ2c4 + 3p2 (5)

where ρ and p are the energy density and pressure of the
perfect fluid, respectively. Moreover uμ is the four velocity
of the fluid. Before moving on to discuss the weak field limit
of the theory, let us take the trace of field Eq. (2). The result
is written as

fR R − 2 f = γ T − ( fQθ + 3�� fR), (6)

where θ = gμνθμν . Now, we have all the equations needed
to perform the weak field limit of EMSG.

3 Weak field limit of EMSG

Let us compute the first order perturbations of the field equa-
tions around the Minkowski space time in order to find the
governing equations for the Newtonian self-gravitating disk
in the context of EMSG. To do so we write the line element
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in the Cartesian coordinate (ct, x, y, z) using the perturbed
metric, i.e. gμν = ημν+hμν where |hμν | � |gμν |, as follows

ds2 = −
(

1 + 2 Φ

c2

)
c2dt2+

(
1 + 2 Ψ

c2

)
(dx2+dy2+dz2).

(7)

The corresponding first order perturbations in other quan-
tities can be written as

Q = Q0 + δQ, (8)

R = R0 + δR, (9)

θμν = θ0
μν + δθμν, (10)

f = f 0 + f 0
RδR + f 0

QδQ, (11)

fR = f 0
R + f 0

RRδR + f 0
RQδQ, (12)

fQ = f 0
Q + f 0

RQδR + f 0
QQδQ, (13)

where the suffix “0” indicates the background quantities, and
fXY = ∂2 f/∂X∂Y . For the Minkowski background we have
T 0

μν = 0 and consequently Q0 = 0. We assume that the
function f (R, Q) is chosen in a way that if T 0

μν = 0 in the
background then the background Ricci scalar R0 = 0 and
f 0 = f (0, 0) = 0. In this case, using the definitions of Tμν

and θμν , it is straightforward to verify that

δTμν � ρu0
μu

0
ν, (14)

δθμν � −ρ2c2u0
μu

0
ν, (15)

where commonly we have assumed that in the weak field
limit p/ρc2 � 1. Furthermore one should note that the back-
ground velocity four-vector is given by u0

μ = (−c, 0, 0, 0)

Now, let us substitute perturbed quantities in given Eqs. (8)–
(13) into Eqs. (2) and (6). Keeping only the first order terms,
Eq. (6) takes the following form

f 0
RR��δR + f 0

RQ��δQ = γ

3
δT − f 0

Q

3
δθ + f 0

R

3
δR + 2 f 0

Q

3
δQ,

(16)

where δT and δθ are perturbations in T and θ respectively.
Hereafter, for brevity in notation and prevent confusion with
temporal components of the tensors, we drop the “0” suffix.
Now we use Eq. (16) to linearize the time-time component
of the field Eq. (2) as follows

δR0
0 = γ

fR

(
δT 0

0 −1

3
δT

)
− fQ

fR

(
δθ0

0 − δθ

3
+ δQ

6

)
+ δR

6
, (17)

using a standard gauge it is straightforward to show that
δR0

0 = −∇2Φ/c2. To be precise, the standard gauge is also
commonly called standard gauge of post-Newtonian theory
(for more details see Sec. 8.3.7 in [57]). In particular, this
gauge condition allow us to simplify the perturbed field equa-
tions at first order. Using this gauge condition we obtain two

results: firstly we eliminate the higher order time derivatives
of metric tensor, and secondly the Poisson equations can be
solved more easily.

On the other hand, in principle, we can consider the per-
turbed Ricci scalar as a function of ρ and p, i.e. δR =
δR(ρ, p). To see this fact more clearly, let us conve-
niently assume that fRQ = 0. We will use this assump-
tion everywhere in this paper. This means that we only
deal with models that can be recast in the following form

f (R, Q) = f1(R) + f2(Q). (18)

In this case, keeping in mind that ��δR = ∇2δR, we rewrite
Eq. (16) as

∇2δR − M2δR = H(ρ, p), (19)

where the mass M2 is defined as

M2 = fR
3 fRR

, (20)

and the function H is

H(ρ, p) = 1

3 fRR

[
γ δT − fQ(δθ − 2δQ)

]
. (21)

It should be noted that it is natural to expect that fR in
the background is unity. However for the sake of com-
pleteness we keep it as a free parameter in the calcu-
lations. Furthermore let us define new parameter α as

α = fQ
γ

. (22)

Consequently, for the general form for f (R, Q) in Eq. (18)
with fRR 	= 0, we can integrate Eq. (19) to obtain δR in
terms of ρ and p

δR = χ

∫
e−M|r−r′|

|r − r′|
[
−δT (r′)+α(δθ(r′)−2δQ(r′))

]
d3r′,

(23)

where for convenience, we have defined χ ≡ γM2

4π fR
.

Therefore, using Eq. (17), the modified version of Pois-
son’s equation in EMSG can be written as

∇2Φ = γ c4

2
ρ̃, (24)

where we have defined the density ρ̃ as

123



  150 Page 4 of 20 Eur. Phys. J. C           (2020) 80:150 

ρ̃ = − 2

fR

(
δT 0

0 − 1

3
δT

)
+ 2α

fR

(
δθ0

0 − δθ

3
+ δQ

6

)
− δR

3γ c2 .

(25)

On the other hand by using Eqs. (14) and (15) we have

δT 0
0 � −ρc2, δT � −ρc2, δQ = δθ = δθ0

0 � ρ2c4,

(26)

where we have applied the condition p � ρc2 in the weak
field limit. In GR we have fQ = 0. Moreover in this case
we have δR = −γ δT . Consequently it is easy to show that
ρ̃ = ρ, and Eq. (24) recovers the standard Poisson’s equation.
For another special case, the EMSG model studied in [41] is
given by f (R, Q) = R − ηT2 = R − ηQ. For this model
we have fRR = 0, fR = 1, and fQ = −η = αγ . Moreover
from Eq. (16), one may simply verify that δR = −γ (δT +
α(2δQ − δθ)). Therefore Eq. (25) gives

ρ̃ = ρ(1 + 2αρc2), (27)

in this special case, the effects of EMSG can be included in
the effective density and pressure defined as, see [43]

ρeff = ρ + αc2

2

(
8ρ

p

c2 + ρ2 + 3
p2

c4

)
, (28)

peff = p + αc4

2

(
ρ2 + 3

p2

c4

)
, (29)

More specifically, it has been shown in [43] that the governing
equations of EMSG, are completely similar to GR and the
only difference is that ρ and p are replaced with ρeff and peff .
In this case, in the weak field limit we can rewrite Eq. (27) as
ρ̃ = ρeff + 3peff/c2. In other words the Poisson’s equation,
as one may expect, takes the following form

∇2Φ = γ c4

2

(
ρeff + 3

peff

c2

)
. (30)

This is similar to the corresponding equation in GR, where
we take into account pressure as a source for gravity (see [58]
for more details).

Now before moving on to discuss the Euler equation, let us
summarize the weak field limit and write the modified Pois-
son’s equation for two different categories, namely EMSG
models with fRR = 0 and fRR 	= 0. For the first case, using
Eqs. (16) and (24)–(26), we arrive at

∇2Φ = γ c4

2 fR

(
ρ + 2αρ2c2

)
, (31)

and similarly for the second case, using Eqs. (16) and (23)–
(26), we find a more complicated Poisson’s equation

∇2Φ = γ c4

6 fR

[
4ρ + 5αρ2c2

−M2

4π

∫
e−M|r−r′|

|r − r′|
(
ρ(r′) − αρ2(r′)c2

)
d3r ′].

(32)

4 Hydrodynamics equations in weak-field limit

To find the Newtonian limit of the hydrodynamics equations,
one can take the covariant derivative of the field Eq. (2) as
below
(∇μ fR

)
Rμν+ fR

(∇μRμν

)−1

2
gμν

(∇μ f
) = γ∇μ

(
Tμν

)
+ (��∇ν − ∇ν��) fR − ∇μ

(
fQθμν

)
. (33)

To simplify the third term in the above equation, we recall
that f (R, Q) = f1(R) + f2(Q). Therefore one can easily
verify that

gμν∇μ f = gμν

(
fR∇μR + fQ∇μQ

)
. (34)

Also, the fifth term can be simplified as below [59]

(��∇ν − ∇ν��) fR = Rμν∇μ fR . (35)

Using the Bianchi identity, and after some manipulations,
one can find the perturbed form of Eq. (33) as

∇μ
(
δTμν

) = α

(
∇μ

(
δθμν

) − 1

2
ημν∇μ (δQ)

)
, (36)

where δQ = δTμνδTμν . Note that, the background quantities
are shown without the “0” index here. To achieve the hydro-
dynamics equations in the Newtonian limit, one can ignore
the terms containing the pressure compared with the simi-
lar terms containing the density. In fact, the pressure plays
role in the relativistic situations, which are not, of course, of
interest in this study.

Let us look at the order of magnitudes. What we have
assumed is: firstly, as mentioned before, the pressure can
be ignored comparing with the density in our background
system. Secondly, the gravitational field assumed to be weak.
And finally, the velocities inside the background are slow.
Using a small parameter ε, these assumptions can read

p

ρc2 � v2

c2 � Φ

c2 ∝ ε2 (37)

On the other hand, considering the Newtonian form of the
Euler’s equation, one can see that ∂v/∂t � (v · ∇)v � ∇Φ

and, therefore
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∂

∂t
� v · ∇ ∝ ε (38)

Moreover, remembering the smallness of α, some terms con-
taining a multiplication of α and ε should be treated carefully.
In fact, one can consider the same order of magnitude for
these parameters, and keep the terms only up to O(ε2). It
is worth mentioning that, the parameter ε is only a useful
gadget to track the order of magnitudes. After finding the
hydrodynamics equation, one can truly assume that ε → 1.

Now, keeping in mind that uμ = (c, v), and by finding
δTμν , δθμν , and δQ, one can easily decompose the Eq. (33)
to the temporal and spacial components. It is worth men-
tioning that, during the simplification of the components, the
terms containing αε2 can be ignored. Furthermore, the terms
including a temporal derivative multiplied by ε2 or αε can
be ignored. After some manipulations one can show that the
t-component of the Eq. (33), can be written as

(1 + αρc2)
∂ρ

∂t
+ ε

{
(1 + αρc2)ρ∇ · v

+ (1 + 2αρc2)v · ∇ρ
}

= 0, (39)

then one may simply rewrite this equation as

∂ρ

∂t
+ ∇ · (ρv) = − αρc2

1 + αρc2 v · ∇ρ (40)

this equation, is the continuity equation in the weak-field
limit of the f (R, Q) gravity. It is not difficult to show that,
in terms of the effective quantities defined in Eqs. (28) and
(29), the continuity equation in the Newtonian limit can be
written as

∂ρeff

∂t
+ ∇ ·

[(
ρeff + peff

c2

)
v
]

= 0. (41)

Now, from the spacial components of Eq. (33) and using
Eq. (40) after some manipulations one can find the Euler’s
equation in the weak-field limit of this theory. To do so we
obtain ∂ρ/∂t from Eq. (40) and ignore the O(ε3) terms.
Then we substitute the result into the spatial components of
Eq. (33). Therefore Euler’s equation in the weak-field limit
reads

ε2(v · ∇)v + ε

(
∂v
∂t

+ ∇Φ + ∇ p

ρ

)
+ αc4∇ρ = 0. (42)

This equation can be written in terms of the effective quan-
tities to. The result is

∂v
∂t

+ (v · ∇)v + ∇Φ + ∇ peff

ρeff
= 0. (43)

Now, we have a complete set of differential equations in the
weak field limit governing the dynamics of a self-gravitating

fluid. Using Eqs. (40), (42), the Poisson’s Eq. (31) (or 32),
and also an equation of state, one can investigate the gravita-
tional stability of a self gravitating fluid in the context of the
f (R, Q) gravity.

5 Jeans analysis in the EMSG

Let us focus on a static, infinite, homogeneous, spherically
symmetric fluid in the context of the EMSG. The question is
when such a system can be locally fragmented under its own
gravity? To find the answer, one should find the dispersion
relation by linearizing the Poisson’s Eq. (31) or (32) for the
cases fRR = 0 and fRR 	= 0 respectively, and also the hydro-
dynamics Eqs. (40) and (42). The physical quantities are con-
sidered to be asX = X0+X1, whereX1 � X0 and the “0” (1)
index indicates the background (perturbed) quantities. For a
static background system we have v0 = 0. Moreover, homo-
geneity implies that, ρ0 and p0 are constant. Also, we set
the gravitational potential of the background to be constant.
However these assumptions do not satisfy the background
equations. Therefore, to avoid the underlying ambiguity, one
may assume that the Poisson’s equation can describe only
the perturbed system. This assumption is known as the Jeans
swindle and is widely used even in the standard Newtonian
[46], and post-Newtonian [60] cases. The resulting first order
equations can be easily found as follows

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (44)

∂v1

∂t
+ ∇Φ1 + ∇ p1

ρ0
+ αc4∇ρ1 = 0, (45)

∇2Φ1 = γ c4

2 fR

(
ρ1 + 4αc2ρ0ρ1

)
, (46)

when fRR 	= 0 then the last equation should be replaced by

∇2Φ1 = γ c4

6 fR

[
4ρ1 + 10αc2ρ0ρ1 + H

]
, (47)

where H is defined as

H = −M2

4π

∫
e−M|r−r′|

|r − r′|
(
ρ1(r′) − 2αc2ρ0ρ1(r′)

)
d3r ′.

(48)

Now, taking the temporal derivative of Eq. (44) and the diver-
gence of Eq. (45), and also using the Poisson’s Eq. (46), one
can easily find the following result for the case of fRR = 0

1

ρ0

∂2ρ1

∂t2 − γ c4(1 + 4αc2ρ0)

2 fR
ρ1 −

(
c2
s

ρ0
+ αc4

)
∇2ρ1 = 0.

(49)
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Similarly for the case of fRR 	= 0 one may simply find

1

ρ0

∂2ρ1

∂t2 − γ c4

6 fR

[
4ρ1 + 10αc2ρ0ρ1 + H

]

−
(
c2
s

ρ0
+ αc4

)
∇2ρ1 = 0. (50)

In the spherical coordinates system (r, θ, ϕ), using the
Fourier form for the first-order perturbations as ρ1 =
ρa exp (i (k · r − ωt)), one can simplify the dispersion rela-
tions. Therefore, Eq. (50) can be straightforwardly integrated
setting r − r′ = R. Without loss of generality, one can
assume that the wavenumber k is along with the z axis. So,
after some manipulations it can be seen

H = −M2

4π
(1 − 2αc2ρ0)ρ1

∞∫

0

π∫

0

2π∫

0

e−MR

R
e−ikR cos θ

×R2 sin θdRdθdϕ = − (1 − 2αc2ρ0)

1 + k2

M2

ρ1. (51)

Finally, the dispersion relation can be found as

ω2 − (c2
s + αc4ρ0)k

2 + γ c4ρ0

2 fR

×
{

(1 + 4αc2ρ0) = 0, fRR = 0
1
3

(
4 + 10αc2ρ0 − (1−2αc2ρ0)M2

M2+k2

)
=0, fRR 	= 0

(52)

Now, let us investigate these two different cases with more
detail.

5.1 The case fRR = 0

Let us introduce two quantities that encode the modifications
of the dispersion relations:

C2
s = c2

s + αc4ρ0, (53)

G = G

fR
(1 + 4αc2ρ0). (54)

Thus, the first expression in the dispersion relation (52) can
be recast as

ω2 − C2
s k

2 + 4πGρ0 = 0. (55)

This equation is similar to its Newtonian counterpart. In other
words, turning the EMSG correction terms off, the Newto-
nian dispersion relation will be reproduced. From Eqs. (53)–
(55) it is clear that EMSG for fR = 1 and α > 0 (α < 0)
increases (decreases) both the sound speed and the gravi-
tational strength effectively. However, these quantities have
completely opposite impacts on the stability of the system.
Therefore at the first sight it is not trivial to argue the final out-
come of EMSG’s corrections on the stability of the system.

Nevertheless, it is important to mention that in our pertur-
bative analysis we assumed that |αc2ρ| � 1. Therefore, it
is clear from Eq. (54) that the EMSG effects do not change
the effective gravitational strength significantly. On the other
hand, the effective sound speed can be influenced substan-
tially. One should note that we are working in a regime where
the characteristic energy scale is high enough to allow EMSG
effects to play role. In such a situation, since the sound speed
c2
s is not necessarily much smaller than c, the correction term

in (53) is not negligible. In other words, the ratio of two
terms in the right hand side of (53), i.e., |αρc2| c2

c2
s

, should

not be considered as a very small ratio. Consequently, if
we consider the sound speed as the representative of pres-
sure content of the system, then one may accordingly infer
that EMSG influences the effective pressure in the system.
Now it make sense to conclude from (53) that if α > 0
(α < 0) then EMSG stabilizes (destabilizes) the fluid. In the
following we compute a new Jeans wavenumber to clarify
this issue.

By setting ω = 0 in Eq. (55), we can obtain the border
of stability. In this case, the new Jeans wavenumber in the
context of EMSG can be obtained as

k2
J E = 4πGρ0

fRC2
s

= k2
J f

−1
R

(1 + 4αc2ρ0

1 + αc4ρ0
c2
s

)
(56)

where k2
J = 4πGρ0/c2

s is the standard Jeans wavenumber.
Now, we can recast the dispersion relation in Eq. (55) in

a more useful form by introducing the following variables:

ω̃ = ω√
4πGρ0

, (57)

k̃ = k

kJ
. (58)

Thus, after some calculations, we obtain

ω̃2 −
(

1 + αρ0
c4

c2
s

)
k̃2 + 1 + 4αc2ρ0

fR
= 0. (59)

Let us note that, once again, turning off the EMSG’s correc-
tion terms the Newtonian case is obtained.

Also, the standard Jeans wavelength, and Jeans mass can

be introduced as λJ = 2π/kJ , and MJ = 4π
3 ρ0

(
λJ
2

)3

respectively, whereMJ is defined as the mass inside a sphere
with radius λJ/2. It can be shown that, the modified versions
of the Jeans wavelength and mass respectively are

λ2
J E = λ2

J

( 1 + αρ0
c4

c2
s

1 + 4αc2ρ0

)
fR . (60)

and

123



Eur. Phys. J. C           (2020) 80:150 Page 7 of 20   150 

MJ E = MJ

(
λJ E

λJ

)3

= MJ f
3/2
R

( 1 + αρ0
c4

c2
s

1 + 4αc2ρ0

) 3
2
. (61)

The fluid system can be more unstable (stable) in the con-
text of EMSG than the Newtonian case, whenever MJ E <

MJ (MJ E > MJ ). Equation (61) shows that, deviations
from the standard case directly depends on the sign and value
of the free parameter α. It is obvious that, negative (posi-
tive) values of α make the system more unstable (stable) in
the context of EMSG with respect to the Newtonian case.
Another less interesting point is that higher values for fR
leads to higher Jeans masses. In other words, by increasing
fR the system is stabilized. This is expected since fR reduces
the effective gravitational constant, i.e., Gef f ∝ G/ fR , and
consequently weakens the destabilizing behaviour of gravi-
tational force. However, we know that this parameter cannot
deviate from unity significantly.

Before moving on to close this subsection it is inter-
esting to mention that in the original EMSG model [41],
α = −η < 0. On the other hand this model leads to bounc-
ing cosmological solutions and prevents the big bang singu-
larity. As we showed, negative α destabilizes the local per-
turbations and supports the local gravitational collapse. This
behaviour seems completely in disagreement with the “sta-
bilizing” behaviour of the theory in the early universe. How-
ever, one should note that here we present a non-relativistic
description, while in the early universe we deal with a com-
pletely relativistic situation.

5.2 The case fRR 	= 0

For sake of completeness, we also compute the Jeans scale
for the more general case fRR 	= 0. In this case, we can recast
the second relation in the dispersion relation in Eq. (52) in
term of the variable in Eqs. (57) and (58):

ω̃2 + 1

3 fR

[
(4 + 10αc2ρ0) − 1 − 2αc2ρ0

1 + k̃2k2
JM−2

]

−
[

1 + αc4ρ0

c2
s

]
k̃2 = 0. (62)

Then, one can simply find the modified version of the Jeans
wavenumber by setting ω̃2 = 0 in this equation, and solve
for k̃2. In this case we found two solutions. One of these solu-
tions recovers the standard Jeans wavenumber. This solution,
without any expansion with respect to α, reads

k2
J E = 1

6C2
s fR

[
2c2

s k
2
J (5αc2ρ0 + 2) − 3C2

s fRM2

+
√

(c2
sK1+3 fRM2αc2ρ0)2+(6cskJMCs)2 fRK2

]

(63)

where we have defined

K1 = 3 fRM2 − 2k2
J (5αc2ρ0 + 2), (64)

K2 = G fR
G

, (65)

and we have chosen the solution which reproduces the stan-
dard Jeans wavenumber in the limiting case M → ∞ or
equivalently fRR → 0. It is worth mentioning that the limit
M → 0 does not recover the Newtonian results.

As our final remark in this section, one should take this
case, i.e., fRR 	= 0, with more care. As already mentioned,
our analysis in this paper can be considered as a modifica-
tion to the so-called metric f (R) gravity theory. In order to
make f (R) gravity suitable for explaining the cosmic speed
up, it seems necessary to include a very small scalar mass
M. Otherwise the extra scalar degree of freedom intrinsic
in f (R) gravity is not light enough to propagate in cosmic
scales. Therefore it will not be effective for explaining the
late time cosmic acceleration. However it is well-known in
the relevant literature that if we take small M, then the the-
ory will have serious problems in the weak field limit and
cannot recover the Newtonian gravity , for a review see [32].
This is exactly what we see in our calculations for the Jeans
wavenumber. In other words, we see that at the limitM → 0
Eq. (63) does not recover the Newtonian Jeans wavenumber.

To address the above mentioned problem, it is necessary
to take into account screening behaviour of f (R) gravity
theory [61]. Investigating stability issues in the presence of
screening effects, can be considered as a separate study. In
this paper we continue our analysis without including the
screening effects in the calculations for fRR 	= 0, and put
emphasis on the fRR = 0 case which does not suffer from
the above mentioned problem. Therefore, hereafter we only
discuss the fRR = 0.

6 Toomre’s criterion in EMSG

So far we have studied the stability of an infinite homoge-
neous medium without rotation. Nevertheless, the stability
of rotating systems in EMSG is interesting in the sense that
in high energy systems like HMNS, where we expect that
EMSG contributions to be significant, the differential rota-
tion is one of the main ingredients of the system. For simplic-
ity, we restrict ourselves to rotating thin disks. On the other
hand, for such a system there is already a well-known stabil-
ity criterion in the standard Newtonian description known as
Toomre’s stability criterion [51]. In this case, one may sim-
ply compare the stability criteria based on EMSG with the
Newtonian one.

To study the gravitational stability of a thin self-gravitating
fluid disk, one should find the dispersion relation of propa-
gating perturbations. This task can be addressed by partic-
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ularizing the hydrodynamics equations of EMSG, given in
Sect. 4, for a thin disk. One may conveniently assume that
ρ = Σδ(z), where Σ is the surface density and δ is the
Dirac’s Delta function. Then the continuity Eq. (40) takes
the following form

∂Σ

∂t
+ ∇ · (Σv) = − αΣδ(z)c2

1 + αΣδ(z)c2 v · ∇Σ (66)

It is clear that the right-hand-side diverges on the plane of
the disk. This is not the case in Newtonian gravity. In fact,
at z = 0 we have αΣδ(z)c2 → ∞. This means that our lin-
earized analysis based on the main assumption that αρc2 � 1
is obviously violated. To skip this complexity and keep the
analysis self-consistent, it is useful to assume a finite thick-
ness for the disk. To do so, we simply assume that the den-
sity does not change in the vertical direction and is given by
ρ(r, ϕ) = Σ(r, ϕ)/ l [51], where l is a small thickness of
the disk and appears as a constant in our calculations. This
method leads to a powerful estimation for the effect of the
thickness on the stability of the disk [62]. For |z| > l/2 the
matter density vanishes ρ = 0, and the only constraint on the
thickness is l � αΣc2 everywhere on the disk. This condi-
tion guarantees the validity of our perturbative analysis. For
a more careful way to include the thickness of the disk, we
refer the reader to [63] and [64]. Note that we are interested to
the effects of EMSG and not the full analysis of the thickness.
Therefore, it turns out that following the Toomre’s method
[51] is helpful here. Finally for completeness, we will shortly
discuss the generalization of the other method, i.e., [63], in
EMSG.

Now for our disk with finite thickness, the continuity equa-
tion and the Euler’s equation read

∂Σ

∂t
+ ∇ · (Σv) � −αc2Σ

l
v · ∇Σ, (67)

∂v
∂t

+ (v · ∇)v + ∇Φ + ∇ p

Σ
+ αc4

l
∇Σ = 0. (68)

Note that in the Euler’s equation the p is a pressure defined
as force per unit length. On the other hand the Poisson’s
equation for the case fRR = 0 is given by the following
equation

∇2Φ = γ c4Σ

2l fR

(
1 + 2αc2

l
Σ

)
. (69)

In order to have a closed set of differential equations, we
assumed the equation of state (EOS) to be barotropic,i.e.,
p = p(Σ). To study the stability of a disk we have to achieve
the modified version of Toomre’s criterion in the context of
EMSG. To do so, one should linearize the hydrodynamics
Eqs. (67)–(69) in the cylindrical coordinate system (r, ϕ, z).

Equations (67) and (68) in the cylindrical coordinate are

∂Σ

∂t
+ 1

r

∂

∂r
(Σrvr ) + 1

r

∂

∂ϕ

(
Σvϕ

) + ∂

∂z
(Σvz) (70)

= −αc2Σ

l

(
vr

∂Σ

∂r
+ vϕ

r

∂Σ

∂ϕ

)
,

(71)

∂vr

∂t
+ vr

∂vr

∂r
+ vϕ

r

∂vr

∂ϕ
− v2

ϕ

r
+ vz

∂vr

∂z
(72)

= − ∂

∂r
(Φ + h) − αc4

l

∂Σ

∂r
, (73)

∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vϕ

r

∂vϕ

∂ϕ
+ vϕvr

r
+ vz

∂vϕ

∂z
(74)

= −1

r

∂

∂ϕ
(Φ + h) − αc4

lr

∂Σ

∂ϕ
, (75)

∂vz

∂t
+ vr

∂vz

∂r
+ vϕ

r

∂vz

∂ϕ
+ vz

∂vz

∂z
(76)

= − ∂

∂z
(Φ + h) − αc4

l

∂Σ

∂z
, (77)

for more details we refer the reader to [46].
Let us find the perturbed form of Eqs. (70)–(75). We

recall that, the physical quantities are considered to be as
X = X0 + X1, where X1 � X0 and the “0” (1) index rep-
resents the background (perturbed) quantity. Moreover, the
background is assumed to be static and axis-symmetric, and
the initial radial and vertical velocities vanish everywhere
throughout the disk i.e., vr0 = vz0 = 0. The only non-zero
velocity component is vϕ0. We assume that vϕ0 is a function
of radius and does not change in the z direction. Of course,
one can show that such barotropic equilibrium state with the
density ρ(r, ϕ) = Σ(r, ϕ)/ l does not exists. Therefore, for
the background system we are using a generalized version
of the so-called Jeans-swindle. Consequently although we
do not care about the validity of the background system, the
linear perturbations should satisfy all the linearized equa-
tions. The linearized versions of the continuity equation and
also the radial, azimuthal and the vertical components of the
Euler’s equation read (the linearized Poisson’s equation is
discussed in the next subsection)

∂Σ1

∂t
+ 1

r

∂

∂r
(Σ0rvr1)+Ω

∂Σ1

∂ϕ
+ Σ0

r

∂vϕ1

∂ϕ
(78)

+Σ0
∂vz1

∂z
=−αc2Σ0

l

(
vr1

∂Σ0

∂r
+Ω

∂Σ1

∂ϕ

)
, (79)

∂vr1

∂t
+ Ω

∂vr1

∂ϕ
− 2Ωvϕ1 = − ∂

∂r
(Φ1 + h1) − αc4

l

∂Σ1

∂r
, (80)

∂vϕ1

∂t
+ Ω

∂vϕ1

∂ϕ
+ κ2

2Ω
vr1 = −1

r

∂

∂ϕ
(Φ1 + h1) − αc4

l r

∂Σ1

∂ϕ
, (81)

∂vz1

∂t
+ Ω

∂vz1

∂ϕ
= − ∂

∂z
(Φ1 + h1) − αc4

l

∂Σ1

∂z
, (82)

where Ω = vϕ0/r is the rotational frequency and vr and vϕ

are the radial and azimuthal components of velocity respec-
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tively. Moreover, κ = √
4Ω2 + 2rΩΩ ′ is the epicyclic fre-

quency and also h1 is defined as h1 = c2
sΣ1/Σ0. It should be

noted that the prime stands for derivative with respect to r .
It is worth mentioning that, by turning the correction terms
(containing α) off, the Newtonian hydrodynamics equations
will be reproduced. Hereafter we define a new parameter α∗
as

α∗ = α

l
. (83)

Now, by applying the WKB approximation one can study
the local stability of the disk and benefit an elegant simplifi-
cation as well. The general form of the perturbed quantities
can be written as X1 = Xa exp (i (k · r + mϕ − ωt)), where
ω is the oscillation frequency, k is the wavenumber, andm is a
positive integer which determines the symmetry of the distur-
bances. For a tightly wound density wave, one can show that
|kr/m| � 1, therefore, using the WKB approximation the
terms containing 1/r can be neglected comparing with the
analogous terms containing k. This directly means that our
description works only for local perturbations and one cannot
use it for global stability of the disk. It is also necessary to
mention that in order to recover the standard Toomre’s crite-
rion and regarding to the small thickness of the disk, we study
perturbations propagating the x − y plane. This means that
the vertical component of k is zero. Finally, using Eq. (78),
the continuity equation can be written as follows

[ω−mΩ(1+α∗c2Σ0)]Σa −kΣ0vra + iΣ0
∂vaz

∂z
= 0. (84)

Moreover, considering Eqs. (80) and (81), the solutions
for coefficients of Fourier expansions of perturbed velocity
components can be found as below

vra = (mΩ − ω)k

Δ

(
Φa + ha + α∗c4Σa

)
, (85)

vϕa = −2Bik

Δ

(
Φa + ha + α∗c4Σa

)
, (86)

vza = i

mΩ − ω

∂Φa

∂z
, (87)

where rotation Oort’s constant B and Δ are defined as below

B(r) = −1

2

(
Ω + d(Ωr)

dr

)
, (88)

Δ = κ2 − (mΩ − ω)2. (89)

In order to find the dispersion relation, the next step is
to find the potential of a WKB spiral pattern Σ1 =
Σa exp (i(k · r + mϕ − ωt)) to determineΦa in terms ofΣa .

6.1 The gravitational potential of a thick WKB density
wave in Newtonian gravity and EMSG

Now let us calculate the gravitational potential of a WKB
density wave in the context of EMSG. The linearized version
of the modified Poisson’s Eq. (69) is

∇2Φ1 = γ c4

2l fR
(1 + 4α∗c2Σ0)Σ1 = 4πG

l
Σ1 (90)

where we have used the definition G = G/ fR(1+4α∗c2Σ0)

introduced in (54) and replaced α with α∗. Let us note that
all the calculations in this subsection also hold in Newto-
nian gravity, we just need to set G → G. We know that
the density wave Σ1 in the WKB approximation at arbi-
trary location r on the disk, can be considered a plane wave
propagating in the radial direction. Therefore, without loos-
ing of generality we take k along x̂. So finding the poten-
tial of a WKB wave reduces to finding the potential of a
plane density wave in EMSG. Consequently, one may write
Σ1 = Σa exp i(kx − ωt). For this plane wave we guess the
potential has the following functional form

Φ1(x, z, t) = Φae
i(kx−ωt) f (z). (91)

Substituting the above solution into Eq. (90), we get the fol-
lowing differential equation for the function f (z)

d2 f

dz2 − k2 f (z) = 4πG
l

Σa

Φa
. (92)

This equation holds for |z| < l/2. On the other hand we
know that for |z| > l/2 the potential is given by

Φout = Φae
i(kx−ωt)e−k|z|. (93)

Note that hereafter we restrict ourselves to trailing density
waves with k > 0. Eq. (92) can be simply integrated to
obtain f (z), and the integration constants will be fixed using
the following matching conditions

Φ1(z = ±l/2) = Φout (z = ±l/2). (94)

Thus, we obtain

Φa f (z) = cosh(kz)sech(kl/2) − 1

k2

4πG
l

Σa (95)

+(1 − tanh(kl/2))cosh(kz)Φa . (96)

On the other hand, we expect that at the plane of the disk
(z = 0) and in the limit l → 0, the standard thin disk potential
should be recovered. Therefore let us choose Φa as follows

Φa = − sinh kl
2

kl
2

2πG
k

Σa, (97)
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it is clear that at the limit l → 0 the standard thin disk den-
sity wave, Φa = − 2πG

k Σa [46], is recovered. Combining
Eqs. (96) and (97) we find the final form of the potential as

Φ1 = −
e− 1

2 k(l+2z)
(

2e
kl
2 +kz − e2kz − 1

)

kl

2πG
k

Σ1, (98)

and at z = 0 we have

Φ1 = −1 − e− kl
2

kl/2

2πG
k

Σ1 = −F(kl)
2πG
k

Σ1. (99)

The reduction factor F(kl) = 1−exp (−kl/2)
kl/2 is exactly the

coefficient derived in [51]. This reduction coefficient can be
interpreted as a decrease in the surface density. Consequently,
it is well-established in the literature that thickness of the disk
has stabilizing effects.

6.2 The dispersion relation and the Toomre’s parameter

It is straightforward to show that the vertical average value
of ∂Φ1

∂z , namely its integration over (−l/2, l/2), vanishes.

Therefore, we use the approximation ∂Φ1
∂z � 0. Conse-

quently, we have vza � 0. This assumption is another reason
for taking Toomre’s method as an estimation and not a pre-
cise calculation. Now, substituting Eqs. (99) and (85) into
Eq. (84), and confining ourselves to the plane z = 0, we find
the following dispersion relation for axisymmetric (m = 0)
density waves

ω2 = κ2 + C2
s k

2 − F(kl)2πGΣ0k, (100)

where the effective sound speed C2
s = c2

s +α∗c4Σ0 is defined
in (53), again replacing α with α∗. At the limit α∗ → 0, we
have Cs = cs and G = G. Therefore, as expected, the disper-
sion relation (100) reduces to the standard one in Newtonian
gravity [62]. As we already mentioned, for α∗ > 0, EMSG
effects can be interpreted as an increase in the sound speed
and in the gravitational constant as well. Increase in the sound
speed, stabilizes the system while increase in the gravita-
tional strength promotes the instability. Therefore, a careful
analysis is required to discriminate between these opposite
features. To do so, let us find the generalized version of the
Toomre’s criterion in EMSG.

Using the dispersion relation (100), the stability condition
ω2 > 0 takes the following form

Q(X)2 > −
4X2

(
β + e− β

X − 1
)

β
, (101)

where the dimensionless wavelength X is defined as X =
kcrit/k and kcrit = κ2/(2πGΣ0). Furthermore the β parame-
ter as the representative of the thickness of the disk is defined

as β = kcritl/2. Before discussing the effects of EMSG, let
us briefly review the impact of thickness on the stability of
the disk. Our discussion here is true in both Newtonian grav-
ity and EMSG. It is straightforward to verify that for β ≥ 1,
the right hand side of (101) gets negative. This means that all
the perturbations would be stable. Note that for large β, the
characteristic length of the system in the vertical direction
increases. Therefore, one may expect the ordinary Jeans’s
criterion accounts for the stability of the system. At this limit
Eq. (100) is written as

ω2 � C2
s k

2 − 4πGρ + κ2, (102)

if we ignore the angular momentum in the system, i.e.,
κ = 0, then the well-known dispersion relation already
derived in Jeans analysis of an infinite medium is recov-
ered, see Eq. (55). If the combination of the last two terms
in the right hand side of (102) gets positive, or equivalently
if β ≥ 1, the all the wavelengths will be stable.

The other more interesting case is β ≤ 1. In this case
we directly use the dispersion relation (101) to find the sta-
bility criterion for each wavelength X . The boundary of
stability, namely the minimum value required for Q(X)

to stabilize the wavelength X is shown in Fig. 1. In this
figure, darker colors show larger values of β. Moreover,
the inner surface of each curve supposed to be the unsta-
ble area. Therefore, it is clear that, the larger values of
β decrease the instability area. In other words, this figure
directly shows that increasing the β parameter, increases
the stability of the disk. As we mentioned, from this per-
spective, both Newtonian and EMSG behave in a similar
way.

So far we considered the stabilizing effects of the disk
thickness. Now, let us investigate our main purpose in this
section: impact of EMSG on the stability of self-gravitating
disks. To do so, one should note that Q in (101) has been
written in terms of effective parameters Cs and G. Further-
more the epicycle frequency κ is different from Newtonian
case in the sense that it includes EMSG corrections. There-
fore for comparison with Newtonian gravity, it is helpful to
rewrite (101) in terms of the Newtonian Toomre’s parame-
ter Q = κNcs/πGΣ0. Where κN is the epicycle frequency
obtained using the Newtonian gravitational force. For a given
matter density Σ0, let us express the epicycle frequency as

κ2 = κ2
N + δκ2, (103)

where δκ2 is the corrections to κ2
N induced by EMSG. We

expect this correction be proportional to α∗. Accordingly we
have X = XN + δX and β = βN + δβ, where δX and
δβ are also proportional to α∗. Now, we rewrite Eq. (101)
as
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Fig. 1 Curves from up to down belongs to β = 0.01, 0.3, 0.6, 0.8,
0.96. This shows that thickness of the disk seriously stabilizes the disk.
Of course, one should note that we have used an estimative way in our
analysis

Q(XN )2 > −
4X2

N

(
βN fR + e

− βN
XN − 1

)

βN fR
+α∗Δ+O(α∗2),

(104)

where Δ is a complicated function of δβ, δκ , δX , βN , XN and
κN . So we avoid to write it here. This term includes all the
corrections introduced by EMSG. It is difficult to specify the
sign of α∗Δ. We know that if α∗Δ < 0 (> 0) then EMSG sta-
bilizes (destabilizes) the disk. Furthermore we need a known
surface density Σ0 to calculate all the functions in Eq. (104)
and quantify the differences of EMSG and Newtonian grav-
ity. In the next section we study an exponential toy model in
order to describe the EMSG impact on the stability of disks.

Before closing this section it is worthy to mention that
we used an estimative method to find the Toomre’s criterion.
Interestingly we found that the reduction factor F in the dis-
persion relation is the same as in Newtonian gravity. On the
other hand, we know that a more precise method to include
the thickness of the disk in Newtonian gravity leads to a dif-
ferent reduction factor as F = (1 + kl/2)−1 [63]. Based
on what happened in out estimative method, one may expect
that the above mentioned reduction factor appears in EMSG
as well. In this case the dispersion relation may be written as

ω2 = κ2 + C2
s k

2 − 2πGΣ0
k

1 + kl/2
. (105)

However, we continue working with the estimative method
explained comprehensively in this section.

7 Exponential fluid disk in the context of the EMSG

Here, we are going to achieve a modified version of the
Toomre’s criterion using a common toy model. In fact, this
model could help us to compare the results in the context of
EMSG and Newtonian gravity. The EMSG effects appear in
the frequency parameter κ and effective parameters Cs and
G. Consequently, as mentioned earlier, it seems that, it is not
straightforward to compare the new criterion with the stan-
dard one. However, by specifying the surface density profile
Σ0, one can compare both theories.

The exponential surface density profile is widely used to
model wide variety of astrophysical systems. In this section
we take the following exponential model as a toy model to
clarify some differences between EMSG and GR in the weak
field limit

Σ0 = Σpe
−2y . (106)

Here, y = r/2Rd is a dimensionless radius and Σp and
Rd are the central density and a characteristic length scale
respectively. Taking such a density profile, by solving the
Poisson’s equation in the Newtonian regime, one can show
that the gravitational potential of a razor thin disk reads

Φ0(y, z = 0) = −2πGΣp Rd y [I0(y)K1(y) − I1(y)K0(y)]

(107)

where In and Kn for n = 0, 1, are modified Bessel functions
of the first and second kinds, respectively (For more details
see [46]). We need to find the gravitational potential of a disk
with a small thickness in the context of EMSG. It is clear
that, Eq. (69) can be written as

∇2Φ0 = 4πG

l fR

(
Σ0 + 2α∗c2Σ2

0

)
. (108)

Note that, we will assume fR = 1 in the following. However,
it can be recovered in the results by replacing G by G/ fR . It
is clear from Eq. (108) that in order to find the potential in
EMSG, we can simply add the Newtonian potentials of two
separate disks with small thicknesses l, and mass densities
Σ0/ l and 2α∗c2Σ2

0 / l. Therefore all we need is to find the
gravitational potential of a thick disk with exponential func-
tionality in the radial direction in Newtonian gravity. To do
so, we find the gravitational potential of a thin disk along the
z axis and then integrate over thin disks to find the gravita-
tional potential of a thick disk. Let us begin with finding the
Newtonian gravitational potential of a razor thin and expo-
nential disk, with the density profile given by Eq. (106). The
gravitational potential for the field points that situated on the
z axis could be found as
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Φout(r = 0, z) = −G
∫

Σ0d A

|r − r′|
= −GΣp

∫ ∞

0

∫ 2π

0

e−r/Rd r ′dr ′dϕ√
r ′2 + z2

, (109)

the integral can be simply solved, see [65], to give

Φout(y = 0, z) = π2GΣp |z|
(

H−1

( |z|
Rd

)
+ Y1

( |z|
Rd

))
,

(110)

where, H and Y denotes the Struve function and the Bessel
function of the second kind respectively. Note that, both of
these functions are well-behaved. On the other hand, the grav-
itational potential on the surface of the disk plane is given by
Eq. (107), i.e., Φin(y, z = 0) = Φ0(y, z = 0). It is worth
mentioning that, since the potential Φ is a continues function,
it is easy to show that

lim
y→0

Φin(y, z = 0) = lim
z→0

Φout(y = 0, z) = −2πGΣp Rd .

(111)

Now, the gravitational potential of a razor thin disk all over
the space could be found combining Eqs. (110) and (111)
obtaining

Φout(y = 0, z) = −2πGΣp Rd

×
(

−π |z|
2Rd

)(
H−1

( |z|
Rd

)
+ Y1

( |z|
Rd

))
,

(112)

where, the first term at the right hand side, denotes Φin at
y → 0 limit. Therefore, regarding Eqs. (111) and (112)
and keeping in mind that the gravitational potential can
be separated in terms of vertical and radial coordinates as
Φ(y, z) = f1(z) f2(y) , one can find the gravitational poten-
tial of a thin disk over the whole space as follows

Φ(y, z) = −2πGΣp Rd (y [I0(y)K1(y) − I1(y)K0(y)])

×
(

−π |z|
2Rd

) (
H−1

( |z|
Rd

)
+ Y1

( |z|
Rd

))
.

(113)

It can be shown that for the z → 0 limit, the potential of
Eq. (107) will be reproduced.

In the next step, we are going to describe the calculation
of the gravitational potential of a thick disk. Here, the density
profile of the thick disk assumed to be

ρ0(y, z) = Σ0(y)ζ(z), (114)

where Σ0(r) is an exponential function as in (106) and
ζ(z) = 1/ l. We have chosen this special form for ζ(z) to be

completely self-consistent with our calculations in the previ-
ous section. Of course one can use more realistic functions
like ζ(z) ∝ e−μz .

As already mentioned, a thick disk can be considered as a
set of many infinitesimal thin layers with thicknesses dz′. The
potential of each layer that situated at the vertical distance
dz′ from the disk, at the field point (y, z) reads

dΦ̃0(y, z) = dz′Φ(y, z − z′)ζ(z′). (115)

By adding the contributions of all layers, the result will be

Φ̃0(y, z) =
∫ ∞

−∞
dz′Φ(y, z − z′)ζ(z′). (116)

It should be noted that, since we are interested in the gravi-
tational effects inside the disk, let us restrict ourselves to the
equatorial plane z = 0. So, using Eqs. (113) and (116), one
can see

Φ̃0(y, z = 0) =
∫ +l/2

−l/2

dz′

l
(−2πGΣp Rd)

× (y [I0(y)K1(y) − I1(y)K0(y)])

×
(

−π
∣∣z′∣∣

2Rd

) (
H−1

(∣∣z′∣∣
Rd

)
+ Y1

(∣∣z′∣∣
Rd

))
.

(117)

Finally, after some manipulations, the integral can be analyt-
ically solved. The result reads

Φ̃0(y) = πc2ηy(I1(y)K0(y) − I0(y)K1(y))

2ξ

×
(

8πG2,0
1,3

(
ξ2

16

∣∣∣∣ 1
1
2 , 3

2 , 0

)

−ξ2
2F3

(
1, 1; 1

2
,

3

2
, 2;− ξ2

16

))
, (118)

where, the functionsG and F that appears in this equation are
the MeijerG and the generalized hypergeometric functions
respectively. Also, the dimensionless constants η and ξ are
defined as

η = GRdΣp/c
2, ξ = l/Rd . (119)

It should be noted that, since the density falls off much faster
along the z axis than in the radial direction within the plane,
the galactic disks assumed to be thin [46]. Although we have
not restricted our analysis to galactic disks, we will keep the
thin disk approximation in the subsequent sections. So, the
Eq. (118) could be expanded for the small values of ξ . By
keeping only the linear terms of ξ , the result reads
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Φ̃0(y) � −1

2
πc2(ξ − 4)ηy(I1(y)K0(y) − I0(y)K1(y)).

(120)

Again, as expected, it is clear that, turning off the contribu-
tion of thickness, the potential of a razor thin disk will be
reproduced (see the Eq. 107).

Now, to find the complete form of the gravitational poten-
tial in the context of EMSG, one can apply the following
replacements to Eq. (120),

y → 2y, Rd → Rd

2
, Σp → 2α∗c2Σ2

p. (121)

The overall result is as follows

Φ̃0(y) = πc2ηy

2

( − 4A(ξ − 2)(I1(2y)K0(2y)

− I0(2y)K1(2y)) − (ξ − 4)(I1(y)K0(y)

− I0(y)K1(y))
)

(122)

where A is a dimensionless parameter defined as

A = α∗Σpc
2. (123)

Hereafter we remove the tilde sign over the potential Φ0.
Now, as the next step, one can find the epicycle frequency

κ . Using the radial component of Eq. (68), i.e., Eq. (73), it
can be shown that, the rotational frequency reads

Ω2 = 1

4R2
d y

(
∂Φ0

∂y
+ 1

Σ0

∂p0

∂y
+ α∗c4 ∂Σ0

∂y

)
. (124)

Using this equation one can find an analytic expression for
the epicycle frequency in terms of radius. Now, following
notation of the previous section, the epicycle frequency can
be written as

κ2 = κ2
N + δκ2 (125)

where κ2
N is the Newtonian part of the epicycle frequency

and δκ2 is defined to parameterize the EMSG corrections.
These functions are given by the following expressions

κ2
N = c2

2R2
d

(
Γ μe−2(Γ −1)y(2(Γ − 1)y − 3)

y
+ πη(ξ − 4)

× ((y I0(y)+I1(y))K1(y)−(2I0(y)+y I1(y))K0(y))

)

(126)

δκ2 = c2A
2R2

d

(
8πη(ξ − 2)((2y I0(2y) + I1(2y))K1(2y)

− 2(I0(2y) + y I1(2y))K0(2y)) + e−2y(2y − 3)

y

)

(127)

The new dimensionless parameter μ is a representative of the
sound speed and defined as follows

μ = KΣΓ −1
p

c2 . (128)

In fact, the nature of this definition could be explored by
picking an EOS. Here we have used the polytropic EOS

p = KΣΓ
0 , (129)

where Γ is the polytropic index. Then, it is straightforward
to show that the sound speed could be written as

c2
s = KΣΓ −1

p Γ e−2y(Γ −1) = c2μΓ e−2y(Γ −1). (130)

Now we are in a position to define the modified version of
the Toomre’s criterion.

7.1 Toomre’s criterion for an exponential disk in EMSG

First, we want to emphasis that the main aim of this paper is to
study the role of EMSG. On the other hand, the effect of thick-
ness has been studied in Sect. 6.2 in order to overcome some
technical difficulties. So, assuming l = ξ Rd , where ξ � 1,
one can easily expand the dispersion relation of Eq. (100)
up to O(ξ). Note that, although this simplification may not
include all the real physical properties, it can provide a way
to track the footprints of the EMSG effects. Considering this
point, the Eq. (100 could be written as following

ω2 = κ2 +
(
C2
s + πGRdξΣ0

2

)
k2 − 2πGΣ0k + O(ξ2).

(131)

One can see that, replacing the effective quantities Cs , and G,
with the Newtonian values, and also ignoring the thickness
l (or equivalently setting ξ = 0), the Newtonian dispersion
relation will be reproduced. As we already mentioned, disk
thickness has stabilizing effects. This fact is clearly seen in
the dispersion relation (131where the thickness parameter
ξ appears with a positive sign on the right hand side. Of
course one should take this description more carefully in the
sense that thickness also appears in κ . On the right hand
side (hereafter RHS) of Eq. (131) all the quantities are real,
therefore ω2 will be real too. So, if ω2 > 0, then ω is real
and the disk is stable. On the other hand, there will be some
growing modes, if ω2 < 0 and therefore, the disk will be
unstable. Since the RHS of Eq. (131) is a quadratic function
of k, and also, the coefficient of k2 is positive (note that the
correction terms assumed to be smaller than the main terms),
one can seek for a k at which the RHS is minimum. This
wavenumber reads
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kmin = πGΣ0

C2
s

− π2G2ξ RdΣ
2
0

2C4
s

. (132)

If the RHS of the Eq. (131) is positive for kmin, it will be posi-
tive for all other wavenumbers. Now we substitute kmin from
Eq. (132) into the RHS of Eq. (131), and expand the result
for small values of ξ . Furthermore, considering the definition
of the modified Toomre’s parameter Q = Csκ/πGΣ0, one
can write the stability condition ω2 > 0 as follows

1 − 1

Q2 + ξ Rdκ
2

2πGΣ0Q4 > 0. (133)

This inequality can be rewritten as a condition on the mag-
nitude of Q

Q(= QN + AQc) > 1 − κ2ξ Rd

4πGΣ0
, (134)

where, QN (Qc) is the Newtonian (correction) part of the
modified Toomre’s parameter.1 It is clear that, removing the
small corrections appeared as the coefficients of ξ and A,
leads to the standard Toomre’s criterion. Now, regarding to
the definitions C2

s = c2
s +α∗c4Σ0, and G = G(1+4α∗c2Σ0)

, and using Eq. (125), one can express the new Toomre’s cri-
terion (134) in terms of the Newtonian quantities. As men-
tioned before, holding this inequality guaranties the stabil-
ity of the fluid disk against all unstable modes. In fact, the
expanded form of this relation is rather complicated to be
written here. However it has been written in the appendix A.
Finally, the Toomre’s criterion in the context of EMSG reads

QN > 1 + C (Γ,A, η, μ, y, ξ) . (135)

Furthermore, C (Γ,A, η, μ, y, ξ) includes all the corrections
introduced by EMSG to the local stability criterion of the
rotating gaseous disks. This is one of the most important
results of this paper.

Using Eq. (135), one can compare the stability of the fluid
disk in the context of Newtonian gravity and EMSG. In fact,
whenever C < 0 (C > 0), the fluid disk will be more stable
(unstable) in the context of EMSG. To see this fact more
clearly we refer to the Fig. 2. It should be noted that, assuming
1+C (Γ,A, η, μ, y, ξ) = RHS, the stability condition (135)
can be written as QN − RHS > 0. Therefore, in summary,
to compare the Newtonian gravity and the EMSG, we will
study the signature of C. Moreover, the pure effects of the
parameters in the context of EMSG should be tracked using
the stability condition QN − RHS > 0. These situations

1 Note that, we have picked an solution which reproduce the Newtonian
criterion after removing the EMSG correction terms. Moreover, the
solutions are expanded about ξ = 0 and A = 0 whenever needed.

are plotted in Fig. 2. The left panel at the first row shows
the effect of thickness parameter ξ on the correction term C.
In fact, for a given μ and η parameters, increasing ξ makes
this term bigger (but with a minus sign), and so the RHS
of Eq. (135) will be smaller. Therefore, one can see that,
increasing ξ leads to stability in system. This is in harmony
with the mentioned role for β in previous section. Moreover,
the left panel at the second row confirms this role as well.
In this panel we have shown QN − RHS at radius y = 2
for fixed values of stability parameters η and μ. This panel
shows that increasing ξ , supports the stability of the system.

To study the effect of A, or equivalently the free param-
eter α of EMSG, one can see the top right panel in Fig. 2.
This panel shows that for a positive (negative) value of this
parameter, increasing the magnitude of A makes the disk
more stable (unstable). It is clear that, in this situation, the
RHS of Eq. (135) will be smaller (bigger) and the Toomre’s
criterion will be supported (opposed). This behavior is com-
pletely consistent with that explained in Sect. 5.1 for an infi-
nite medium. As we saw in the Jeans analysis, a positive
(negative) α stabilizes (destabilizes) an infinite non-rotating
fluid medium. This fact also can be seen in the left panel at
the second row of Fig. 2 where we investigated the stability
at a fixed radius y = 2.

It could be also interesting to investigate the role of each
parameters η and μ here. As mentioned before, considering
Eq. (130), it is clear that, μ shows the strength of the pres-
sure in fluid disk. Therefore, in general, it is expected for this
parameter to induce stabilizing effects. For another parameter
η, the situation is more complicated. Let us begin our discus-
sion with looking at Eq. (126). In some astrophysical systems,
in Newtonian regime, where the sound speed is much smaller
than the angular velocity vϕ = √

rdΦ0/dr , the first term in
this equation can be ignored. However, it should be noted
that, even in the Newtonian viewpoint there are some astro-
physical systems like advection-dominated accretion flows
[66], where can have cs � vϕ . So, the epicycle frequency in
this case has a coefficient of η, and the Toomre’s parameter
is proportional to

√
μ/η. Therefore, since μ has stabilizing

effect, it seems that η, with a destabilizing effect, can be
considered to be a representative for the gravity in system.
Therefore, these parameters are useful dimensionless quanti-
ties to interpret the results and simplify the stability analysis.

The right panel at the second row of Fig. 2 devoted to
studying the role of η and μ. This panel shows that, increas-
ing η makes the disk more unstable. It may be expected,
because regarding Eq. (122), increasing this parameter sup-
ports the gravitational strength. Moreover, this panel shows
that, increasing μ makes the disk more stable. Again, consid-
ering Eq. (130), it seems that μ is a parameter that measures
the strength of the pressure in system. Therefore, in gen-
eral, it is natural to expect such role here. It should be noted
that, regarding Eq. (126), for y < 3/2(Γ − 1), the first term
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Fig. 2 The correction term C and the Toomre’s criterion in EMSG for various values of the model parameters. Note that, the Toomre’s criterion
of Eq. (135) is written here as QN − RHS. Whenever this expression is positive, the stability condition will be held. Furthermore, we take Γ = 2

could be negative. Therefore, at these radii, a high value of μ

can decrease the magnitude of κN . As a result, increasing μ,
may destabilize the inner radii. This unexpected behaviour
of the pressure can be also seen in [60] and [67]. Therefore,
although these two parameters have been introduced to char-
acterize the role of gravity and pressure, there may be some
exceptions that should be treated carefully.

For the sake of completeness, let us study the growth
rate of the axisymmetric unstable modes. It is not difficult
to rewrite Eq. (135) as

S2 = −q2(1 + H) + 2

Qq − 1, (136)

where S = iω/κ , q = Csk/κ , and H = πGΣ0ξ Rd/2C2
s .

The role of each parameter in the growth rate of the unstable
modes for both theories EMSG and Newtonian gravity can
be seen in Figs. 3, 4 and 5. To have a complete study, all cases
are plotted at two different radii. The role of the theory’s free

parameter A can be found in two top panels of Fig. 3. It is
clear that, increasing A decrease the growth rate and conse-
quently stabilizes the disk. This behavior is in harmony with
those obtained from Fig. 2. Also, the bottom panels of this
figure show that, for both positive and negative values of A,
the disk will be stable with the thickness parameter ξ . More-
over, the role of η and μ in the context of EMSG (Newtonian
gravity) have been illustrated in the Fig. 4 (Fig. 5). These
figures show that, increasing η increases the growth rates. In
other words, as one may expected, this parameter makes the
disk more unstable in both EMSG and Newtonian gravity.
Also, these figures show that, for both theories, increasing
μ, decreases the growth rates and therefore makes the disk
more stable. Note that, regarding the mentioned stabilizing
role of μ, this behavior was expected. Finally, it seems that,
the growth rates are higher at the small radii for both theo-
ries. In some senses, it is expected. In fact at central parts
we expect high surface density and consequently stronger
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Fig. 3 Growth rate of small
perturbations in the fluid disk in
the context of EMSG. It is worth
mentioning that, in all panels of
growth rate figures, the solid
(dashed) curves show y = 1
(y = 3) and we have assumed,
Γ = 2

gravity. Naturally, stronger gravity leads to higher growth
rate.

8 Applying the results to an astrophysical system

As a realistic system, the new Toomre’s criterion can be stud-
ied in HMNSs. An HMNS is a resulting object in the merging
of a neutron star binary. Because of including the strong grav-
itational field, and also fast movements, this system seems
to be a good candidate to track the footprints of the rela-
tivistic effects in local fragmentation. However, the physi-
cal properties of HMNSs are not well known yet because
of their complicated evolution. On the other hand, there are
many attempts to study the main properties of HMNSs using
numerical simulations in GR and also approximative meth-
ods (for example see [68] and [69]).

In this section, using a toy model recently introduced in
[60] and [54], we try to roughly estimate the possibility of
local fragmentation in an HMNS. In these studies, the sta-
bility parameters η and μ are found for an HMNS using

five models of the EOS studied in [68]. In fact, using Table
1 of [60] the gravitational local stability has been studied.
Here, we focus on the model GNH3-M125 only. However,
the behavior of the others are more or less similar. First,
let us study the case A > 0. The Toomre’s criterion in the
context of EMSG for this case is shown in the top side of
Fig. 6. It is clear that, for a positive value of A, the sys-
tem will be stable at outer radii. Furthermore, increasing the
value of A in this case leads to a more stable system. In
this case, the edge of disk could be the most stable part of
the system for a given A. On the other hand, as one can see
in the bottom side of Fig. 6, for negative values of A, it is
possible for (almost all) the system to be unstable. It should
be noted that, the Toomre’s criterion by itself is not enough
to conclude about the occurrence of the instability. In fact,
comparing the dynamical time scales of the system can shed
some light on the stability problem. To ensure about the pos-
sibility of the occurrence of the instability in a fluid system,
one can compare the time scale for the perturbation growth,
i.e., t ∝ 1/|ω|, with the dynamical time scale of the system
(for HMNS it is typically around a millisecond). It is not dif-
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Fig. 4 Growth rate of small
perturbations in the fluid disk in
the context of EMSG

Fig. 5 Growth rate of small
perturbations in the fluid disk in
the context of Newtonian
gravity
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Fig. 6 The Toomre’s criterion (TC), Q− RHS versus the dimension-
less radius y and the model parameter A for GNH3-M125 (for more
details see the Table 1 of [60]). Here Γ = 2

ficult to show that, for the unstable area in the bottom side of
Fig. 6, the perturbation growth timescale for the most unsta-
ble wave-number (see Eq. 132) and the values Rd = 4.105
(for GNH3-M125), ξ = 0.1, is ∼ 10−4 − 10−5 s. Therefore,
the perturbation growth timescale is smaller than the dynam-
ical timescale of an HMNS (∼ 10−3 s). It means that, it may
be possible to occur the local instability in an HMNS system
in the context of EMSG.

Although this is a straightforward and simple outcome
of our stability analysis, it can put a serious constraint on
the viability of EMSG. To the best of our knowledge, no
observational evidence has been reported on the existence of
local fragmentation in HMNS. On the other hand EMSG with
negative α predicts gravitational instability in this system.
Naturally, this means that EMSG with positive α is more
acceptable from physical point of view.

9 Discussion and conclusion

In this paper we studied the local gravitational stability of an
infinite fluid (Jeans analysis) and also a differentially rotat-
ing fluid disk (Toomre’s criterion) in the context of EMSG.
Firstly, by introducing the field equations of the EMSG and

finding the weak field limit of this theory, we derived the
modified version of the Poisson’s equation. Although, two
different cases fRR 	= 0 and fRR = 0 can be studied, we
only focused on the latter case for practical aims. In fact,
the case fRR 	= 0 is totally reminiscent of the weak field
limit of the f (R) gravity. As we already mentioned, in this
case because of an inherent non-linearity and consequently
screening effects, one cannot simply linearize the field equa-
tions, for more details see [61]. We left the Jeans analysis of
this case as a subject for another separate study.

By deriving the hydrodynamics equations and assuming
a polytropic EOS we studied the local gravitational stability.
An infinite homogeneous self gravitating fluid is the first sys-
tem which is studied. In this case, by linearizing the hydrody-
namics equations as well as the Poisson’s equation we found
the dispersion relation, and by setting ω2 = 0 the Jeans
wavenumber could be derived. By achieving the Jeans mass,
we showed that the EMSG could have a stabilizing (desta-
bilizing) effect for a positive (negative) value of the model
parameter α. Moreover, increasing α makes the system more
stable for both cases α > 0 and α < 0.

Afterwards, we considered a fluid disk. Also, to skip some
complexities and keep the analysis self-consistent, we have
assumed a finite thickness for the disk. Then, by achieving
the potential of a WKB density wave, and also using a per-
turbative method, we derived the dispersion relation. Finally,
defining the modified versions of the sound speed, the grav-
itational constant, and the epicyclic frequency, the so-called
Toomre’s criterion is achieved in the context of EMSG. Then,
considering an exponential surface density profile, and also
dimensionless parameters η (related to strength of gravity),
μ (related to the pressure in system), and A (dimensionless
model parameter), the modified version of Toomre’s criterion
can be rewritten in terms of the standard case. It is interest-
ing that, the general form of this criterion could be written as
QN > 1 + C (Γ,A, η, μ, y, ξ), where an additional correc-
tion term is included here. Again, the EMSG may stabilize
or destabilize the disk depending on the sign of the model
parameter. However, in both cases, increasing A will sup-
port the stability of the system. To conduct a more detailed
stability analysis, we studied the rate of growing unstable
modes in the disk. We showed that, for both cases A > 0 and
A < 0, increasing A will makes the disk more stable. More-
over, the growth rate decreases with radius in both EMSG
and Newtonian gravity.

In the last part, using a toy model which has been intro-
duced in [54] and [60], we applied our results to an HMNS.
We showed that, for a negative value of A the local fragmen-
tation could be possible in an HMNS. However, a positive
A, in agreement with the observations and numerical simula-
tions, could exclude (some parts of) the system to be locally
fragmented.
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Appendix A: Expanded form of the Toomre’s criterion in
EMSG

Here one can see the expanded form of Eq. (135). This rela-
tion reads

QN > 1 + C(Γ,A, η, μ, y, ξ)

> 1 + ξC1 + A
(

−C2

C3
+ ξ

8

(
C4 − C5 + C6C7

C8

))
, (A.1)

where

C1 = 1

8

(
− Γ μe−2(Γ −2)y(2(Γ − 1)y − 3)

πηy
− 4e2y((2I0(y)

+ y I1(y))K0(y) − (y I0(y) + I1(y))K1(y))

)
, (A.2)

C2 = eΓ y−(3Γ +1)y
[

2πηy

( (
e4Γ y − 8Γ μe2(Γ +1)y

)

× ((2I0(y) + y I1(y))K0(y) − (y I0(y) + I1(y))

× K1(y)) + 4Γ μe2(Γ +2)y(2(I0(2y) + y I1(2y))

× K0(2y) − (2y I0(2y) + I1(2y))K1(2y))

)
+ Γ μ

×
(
e2(Γ +1)y(Γ y − 3) − 4Γ μe4y(2(Γ − 1)y − 3)

)]
,

(A.3)

C3 = πη

(
8Γ μyπηye2Γ y I1(y)(yK0(y) − K1(y))

− 4πηye2Γ y I0(y)(yK1(y) − 2K0(y)) + Γ μe2y

× (2(Γ − 1)y − 3)

)1/2

, (A.4)

C4 = 4Γ μe−2(Γ −1)y(2(Γ − 1)y − 3)

πηy
+ 3 − 2y

πηy

+ 16((2I0(y) + y I1(y))K0(y) − (y I0(y) + I1(y))

× K1(y)) − 16e2y(I1(2y)(2yK0(2y) − K1(2y))

+ 2I0(2y)(K0(2y) − yK1(2y))) (A.5)

C5 = −2
√

2ey
√
y

(
I1(y)(yK0(y) − K1(y))

(
e2(Γ −1)y

− 8Γ μ
)

+ I0(y)(2K0(y) − yK1(y))
(
e2(Γ −1)y

− 8Γ μ
)

+ 8Γ μe2y(I1(2y)(2yK0(2y) − K1(2y))

+ 2I0(2y)(K0(2y) − yK1(2y)))

)
(A.6)

C6 = 2
√

2
√
ye2Γ y−2(Γ +1)y+y(I1(y)(yK0(y) − K1(y))

+ I0(y)(2K0(y) − yK1(y)))

[
2πηy

((
e4Γ y − 8Γ μ

× e2(Γ +1)y
)
((2I0(y) + y I1(y))K0(y) − (y I0(y)

+ I1(y))K1(y)) + 4Γ μe2(Γ +2)y(2(I0(2y)

+ y I1(2y))K0(2y) − (2y I0(2y) + I1(2y))K1(2y))

)

+Γ μ

(
e2(Γ+1)y(Γ y−3)v −4Γ μe4y(2(Γ −1)y−3)

)]

(A.7)

C7 = 4πηye2Γ y I1(y)(yK0(y) − K1(y)) − 4πηye2Γ y I0(y)

× (yK1(y) − 2K0(y)) + Γ μe2y(2(Γ − 1)y − 3)

(A.8)

C8 =
(
(μΓ )(4πηye2Γ y I1(y)(yK0(y) − K1(y))

− 4πηye2Γ y I0(y)(yK1(y) − 2K0(y)) + Γ μe2y

× (2(Γ − 1)y − 3))
)1/2

. (A.9)

Again, it is clear that, regarding this equation, ignoring
the coefficients of ξ and A, the Standard Toomre’s criterion
QN > 1 will be reproduced.
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