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Abstract:The purpose of this study is to investigate an adaptive control approach for completely nonaffine pure-feedback

systems with linear/nonlinear parameterization. In this approach, the parameter separation technique and the idea of

the positive function of linearly connected parameters are coupled effectively with the combination of backstepping

and time-scale separation. Subsequently, a fast dynamical equation is derived from the original subsystem, where the

solution is sought to approximate the corresponding ideal virtual/actual control inputs. Furthermore, the adaptation

law of unknown parameters can be derived based on Lyapunov theory in the backstepping technique and there is no

need to design a state predictor for this purpose. Therefore, it results in higher accuracy and avoids complexity. The

closed-loop stability and the state regulation of these systems are proved. Finally, the simulation results are provided to

demonstrate the effectiveness of the proposed approach.

Key words: Pure-feedback systems, parametric uncertainties, positive function of linearly connected parameters,

parameter separation, time-scale separation

1. Introduction

In recent years, many different control designs such as feedback linearization, adaptive control, inversion

control, and backstepping have been developed for nonlinear dynamical systems [1,2]. The previous research

concentrated mainly on affine systems and there are limited studies about nonaffine ones. Some of these studies

have used neural networks (NNs) [3,4] or fuzzy logic systems [5,6] for approximating the ideal control input.

According to some other researchers, the original system in nonaffine form is transformed into an affine one,

and then the obtained control input for this affine system can be applied directly to the transformed system

[7,8]. In [9,10], a dynamic inversion method was introduced for controlling nonaffine systems. In this method,

first for derivation of adaptive laws, the state predictor is designed, and then, based on time-scale separation,

the dynamic inversion controller defined as a solution of a fast dynamical equation is approximated.

Among different nonlinear systems, pure-feedback systems can represent more practical processes such as

biochemical processes [11], aircraft flight control systems [2], or mechanical systems [12]. To design a control for

the pure-feedback systems, the backstepping control technique provides a systematic framework [13]. However,

there are two difficulties with the backstepping method for pure-feedback systems: 1) the problem of “explosion

of complexity” due to the repeated differentiations of the virtual control inputs, and 2) the cascade and nonaffine

properties of these systems, which make it difficult to find the explicit virtual/actual control inputs. In [14,15]

affine pure-feedback systems were investigated by an adaptive NN-based control method. Adaptive neural
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backstepping control of completely nonaffine pure-feedback systems was presented in [16] using input-to-state

stability analysis and the small gain theorem. In [14–16] the time derivatives of the virtual control inputs were

either approximated by the NNs, resulting in a complicated controller design, or ignored completely, leading to

poor tracking performance.

In [17,18], the two mentioned problems of the backstepping method for these systems were simultaneously

solved by a combination of backstepping and time-scale separation. In this proposed technique, first by

employing the time-scale separation method, the time derivatives of the virtual/actual control inputs are defined

as solutions of fast dynamic equations, and then their integrals are used as the virtual/actual control inputs.

In the past few years, the control of various pure-feedback systems was considered, such as uncertain

nonaffine pure-feedback systems with unknown dead zone [19], with unknown time delay [20], with hysteresis

input [21], and with output constraints [22]. Despite these efforts, the control problem of completely nonaffine

pure-feedback systems with nonlinear parameterization has remained largely open. These systems were consid-

ered in [18]. For the controller design, first using the series parallel model, a state predictor was designed to

derive the adaptive laws for estimation of the unknown parameters. Backstepping and the singular perturbation

concept were then combined to develop the approximate version of virtual/actual control laws for this state

estimator. Tikhonov’s theorem from the singular perturbation theorem was used for stability analysis. However,

designing the state estimator is not straightforward and it causes the procedure to be much more complicated.

On the other hand, because of the state prediction errors, the control designed for the state estimator is not as

accurate as when it is designed for the original system.

In this paper, an adaptive control scheme for completely nonaffine pure-feedback systems in the presence of

parametric uncertainties, which include both linear and nonlinear parameterization, is investigated. Therefore,

the class of systems considered here is much more general than the systems in [18]. For nonlinearly connected

parameter terms, using a parameter separation technique, the bounding function is obtained, which is linear

in new unknown parameters. For linearly connected parameter terms, a positive function of the parameter

is applied instead of using the parameter itself. By employing the two mentioned techniques directly in a

combination of the backstepping and time-scale separation procedures, the virtual/actual control inputs are

defined as solutions of fast dynamic equations. In contrast to [18], designing a state predictor to derive the

adaptation law, which results in more complexity, is excluded and the adaptation law can be derived directly

using Lyapunov theory in the backstepping procedure. For stability analysis, one of the theorems in singular

perturbation theory is used.

This paper is organized as follows. Preliminary results as well as problem formulation are presented in

Section 2. In Section 3, we develop the controller structure. Finally, the simulation results and some conclusion

remarks are given in Sections 4 and 5.

2. Preliminaries and problem formulation

2.1. Preliminaries on the singular perturbation theory [23]

Consider the problem of solving the state equation

ẋ (t)=f (t,x (t) ,z (t) ,ε) , x (0)=ξ(ε)

εż (t)=g (t,x (t) ,z (t) ,ε) , z (0)=η(ε), (1)
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where ξ(ε) and η(ε) are smooth. It is assumed that the functions f and g are continuously differen-

tiable in their arguments for (t,x, z, ε)∈ [0,∞)×Dx×Dz× [0,ε0] where Dx⊂Rn and Dz⊂Rm are open con-

nected sets, ε0≫0 . If g (t,x, z,0)= 0 has l ≥ 1 isolated real roots z =ha (t,x) , a = 1, 2, . . . , l, for each

(t,x)∈ [0,∞)×Dx when ε = 0 , we say that the model of Eq. (1) is in ‘standard form’. Let us choose one fixed

parameter a ∈ {1, 2, . . . , l} , and drop the subscript a from h from now on. Let v = z− h(t,x) where h(t,x)

denotes a chosen root of l roots satisfying g (t,x, z,0)= 0 . From singular perturbation theory, the ‘reduced

system’ is represented by

ẋ (t)=f (t,x(t),h(t,x (t) ),0) , x (0)=ξ (0) (2)

and the ‘boundary layer system’ with the new time scale τ = t/ε is defined as

dv

dτ
= g (t, x,v + h (t,x (t)) ,0) , v (0)=η0−h(0, ξ0), (3)

where η0= η(0) and ξ0= ξ(0) are treated as fixed parameters. The following theorem is introduced (Theorem

11.2 in [23]).

Theorem 1 Consider the singular perturbation system of Eq. (1) and assume that the following assumptions

are satisfied for all (t,x, ε) ∈ [0,∞)×Br
1 × [0, ε0],

(A1) f (t, 0, 0, ε) = 0 and g (t, 0, 0, ε) = 0 .

(A2) The equation 0 = g (t, x, z, 0) has an isolated root z = h (t, x) such that h (t, 0) = 0.

(A3) The functions f, g, h and their partial derivatives up to order 2 are bounded for z − h(t, x) ∈ Bρ
2 .

(A4) The origin of the boundary layer system dv
dτ =g (t,x,v+h (t,x) ,0) is uniformly exponentially stable

in (t,x) .

(A5) The origin of the reduced system ẋ = f(t, x, h (t, x) , 0) is exponentially stable. Namely, there is a

Lyapunov function V (t, x) for the reduced system that satisfies

c1 ∥x∥2 ≤ V (t, x) ≤ c2 ∥x∥2

∂V

∂t
+

∂V

∂x
f(t, x, h (t, x) , 0) ≤ −c3 ∥x∥2

for some positive constants ci, i = 1, . . . , 3.

Then there exists a positive constant ε∗ such that for all ε <ε∗ , the origin of Eq. (1) is exponentially

stable.

Remark 1 According to the proof of Theorem 1 (Theorem 11.4 in [23]), if assumption (A5) is replaced by

(A5)
′
, which is stated below:

(A5)
′
The origin of the reduced system ẋ = f(t, x, h (t, x) , 0) is asymptotically stable. Namely, there is

a Lyapunov function V (t, x) for the reduced system that satisfies

V (t, x) > 0

1Br = {x ∈ Rn | ∥x∥ ≤ r}
2Bρ = {y ∈ Rm | ∥y∥ ≤ ρ}
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∂V

∂t
+

∂V

∂x
f(t, x, h (t, x) , 0) ≤ −c3 ∥x∥2

then we can conclude that there exists a positive constant ε∗ such that for all ε <ε∗ , the origin of Eq. (1) is

asymptotically stable in Theorem 1.

2.2. Problem statement

Consider the following pure-feedback system with both linear and nonlinear parameterization:

ẋi (t)=fi1 (x̄i (t) ,xi+1 (t))+f i2 (x̄i (t) , θ)+fTi3 (x̄i (t) ,xi+1 (t)) θ, i= 1, . . . ,n−1

ẋn (t)=fn1 (x̄n(t),u(t))+fn2 (x̄n (t) ,θ)+fTn3 (x̄n (t) ,u (t)) θ, (4)

where x̄i= [x1,x2, . . . ,xi]
T∈Ri and u∈R are the system states and control input, respectively. θ∈Rs denotes

an unknown constant vector. (x̄i,θ)∈Dx̄i
×Dθ , (x̄i,xi+1)∈Dx̄i+1

,(x̄n,u)∈Dx̄n×Du , Dx̄i
∈Ri,Dx̄i+1

∈Ri+1,

Dx̄n∈Rn,Dθ∈Rs , and Du∈R are domains containing their respective origins. fi1:Dx̄i+1
→R, fi2:Dx̄i

×Dθ→R ,

f i3:Dx̄i+1
→Rs fn1:Dx̄n×Du→R, fn2:Dx̄n×Dθ→R , fn3:Dx̄n→Rs are continuously differentiable nonlinear func-

tions in their arguments.

Remark 2 As illustrated above, fi3 and fn3 can be developed as the function of xi+1 and u respectively, which

finally leads to a more general expanded class of systems.

The control objective is to design a control law u(t) for the system of Eq. (4) such that the origin of the

system is asymptotically stable.

Assumption 1 (∂fi1/∂xi+1) , (∂fi3/∂xi+1) , (∂fn1/∂u), and (∂fn3/∂u) are bounded away from zero for

x̄i+1∈Ωx̄i+1
⊂Dx̄i+1

and (x̄n,u)∈Ωx̄n,u⊂Dx̄n×Du , where Ωx̄i+1
and Ωx̄n , u are compact sets; that is, (∂fi1/∂xi+1) ,

(∂fi3/∂xi+1) , (∂fn1/∂u) , and (∂fn3/∂u) are either positive or negative. Without losing the generality, we as-

sume
(

∂fi1
∂xi+1

)
>0 ,

(
∂fi3

∂xi+1

)
>0 ,

(
∂fn1

∂u

)
>0 , and

(
∂fn3

∂u

)
>0 .

Lemma 1 For any real-valued continuous function f (x,y) , where x∈Rm , y∈Rn , there are smooth scalar

functions a(x) ≥ 0,b(y) ≥ 0 , c(x) ≥ 1 , and d(y) ≥ 1 , such that

|f(x,y)| ≤a (x)+b (y) (5)

|f(x,y)| ≤c (x)d (y) (6)

and a constructive proof is given in [24].

Remark 3 According to Lemma 1, there exist two smooth functions γi(x̄i) ≥ 1 and Λi (θ)≥ 1 satisfying

|fi2 (x̄i,θ)| ≤γi (x̄i)Λi (θ) , i= 1, . . . ,n. (7)

Let Θ=
n∑

i=1

Λi (θ) be a new unknown constant. Using Remark 3, it is deduced that

|fi2 (x̄i,θ)| ≤γi (x̄i)Θ, i= 1, . . . ,n. (8)
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In order to overcome the nonlinear parameterization problem, using the above parameter separation method,

instead of estimating the unknown parameter θ ∈Rs , the unknown constant Θ , which appears linearly, is

estimated. Moreover, for designing the adaptive controller, in lieu of fi2 (.) and fn2 (.) , the bounding functions

γi(.) and γn(.) can be used.

3. Controller design

The adaptive control is developed by the combination of backstepping, singular perturbation theory, the param-

eter separation method, and the idea of the positive function of linearly connected parameter terms. Similar to

the backstepping method, this design procedure contains n steps. Employing the time-scale separation concept,

the virtual control laws αi , i = 1, . . . , n − 1 are obtained. At each step, the parameter separation method

and the idea of the positive function of linearly connected parameters are applied. Finally, the actual control

law u is designed at step n and in addition the update law of unknown parameters is derived. The design

procedure is presented in the following. Let us introduce the change of coordinates z1=x1 and zi=xi−αi−1

where i = 2, . . . , n

Step 1. We start with the first equation of Eq. (4) by considering x2 as the control variable. The

derivative of z1 is given as

ż1 (t)=f11 (x1, z2+α1)+f12 (x1, θ)+fT13 (x1,z2+α1) θ (9)

Then α1 as the first virtual controller can be specified as the solution of

f11 (x1, z2+α1)+f12 (x1,θ)+fT13 (x1,z2+α1) θ= −k1z1 (10)

resulting in the asymptotically stable closed-loop dynamics ż1= −k1z1 for the first subsystem. k1 > 0 is the

first control gain. However, in Eq. (10), because of the nonaffine property of the nonlinear functions, α1 cannot

be explicitly computed. According to the following fast dynamics based on the time-scale separation concept,

an approximate virtual controller is designed:

ε1α̇1= −sign

(
∂Q1

∂α1

)
Q1(z̄2, α1, Θ̂, θ̂), (11)

with the initial condition α1 (0)=α1,0 , ε1≪ 1 , z̄2= [z1, z2]
T

Q1

(
z̄2, α1,Θ̂,θ̂

)
=k1z1+f11 (x1, z2+α1)+sat (z1/µ) γ1 (x1) Θ̂+fT13 (x1,z2+α1)Ξ(θ̂) (12)

where according to Remark 3, γ1 (z1) is the scalar function, Θ̂ is an estimate of Θ , θ̂ is an estimate of θ ,

µ ≪ 1 is the constant, and Ξ(θ̂) ∈Rs is a positive function of θ̂ whose derivative is bounded away from zero;

that is, (∂Ξ(θ̂)/∂θ̂) is either positive or negative.

Let α1=h1(z̄2, Θ̂, θ̂) be an isolated root of Q1

(
z̄2, α1,Θ̂,θ̂

)
= 0 . Then the reduced system is defined as

ż1=−k1z1+f12 (x1,θ)−sat (z1/µ) γ1 (x1) Θ̂+fT13 (x1,x2)
(
θ −Ξ

(
θ̂
))

z1 (0)=z1,0 (13)
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and the boundary layer system can be represented by

dy1

dτ1
= −sign

(
∂Q1

∂α1

)
Q1

(
z̄2,y1+h1

(
z̄2,Θ̂,θ̂

)
,Θ̂,θ̂

)
(14)

where y1=α1−h1(z̄2, Θ̂, θ̂) and τ1=t/ε1

Considering the control Lyapunov function V1=
1
2z

2
1 and using the reduced system of Eq. (13), it is

deduced that

V̇1≤ −k1z
2
1+ |z1| |f12 (x1,θ)| −z1sat (z1/µ) γ1 (x1) Θ̂+z1f

T
13 (x1,x2)

(
θ −Ξ

(
θ̂
))

≤ −k1z
2
1+ |z1| γ1 (x1) Θ̃ + z1f

T
13 (x1,x2) θ̃, (15)

where Θ̃= Θ−Θ̂, θ̃= θ −Ξ
(
θ̂
)
. In the above equation, sat(z1/µ) for µ ≪ 1 is approximated to sign(z1).

Step i (i = 2, . . . , n − 1). The derivative of zi is expressed as

żi=fi1 (x̄i(t),xi+1(t))+fi2 (x̄i (t) ,θ)+fTi3 (x̄i(t),xi+1(t)) θ−α̇i−1 (16)

Similar to Step 1, we should find αi such that

fi1 (x̄i, zi+1+αi)+fi2 (x̄i, θ)+fTi3 (x̄i, zi+1+αi) θ−α̇i−1= −kizi (17)

where ki> 0 is the ith positive control gain. In this step, the time derivative of the virtual control input

α̇i−1 appears, which has been designed in the previous step, α̇i−1= −sign
(

∂Qi−1

∂αi−1

)
Qi−1(z̄i, , αi−1, Θ̂, θ̂)/εi−1 .

Therefore, the “explosion of complexity” arising from the calculation of this term is avoided.

To overcome the nonaffine property, the ith approximate virtual controller can be designed as the

following ith fast dynamics:

εiα̇i= −sign

(
∂Qi

∂αi

)
Qi

(
z̄i+1, αi,Θ̂,θ̂

)
(18)

where αi (0)=αi,0 , εi≪ 1 , z̄i+1=[z1, . . . ,zi+1]
T
, and

Qi

(
z̄i+1, αi,Θ̂,θ̂

)
=kizi +f i1 (x̄i,zi+1+αi)+sat (zi/µ) γi (x̄i) Θ̂+ (x̄i,zi+1+αi)Ξ(θ̂)−α̇i−1. (19)

Let αi=hi(z̄i+1Θ̂, θ̂, ) be an isolated root of Qi

(
z̄i+1, αi,Θ̂,θ̂

)
= 0 . Then the reduced system is defined as

żi=−kizi +fi2 (x̄i,θ)−sat (zi/µ) γi (x̄i) Θ̂+fTi3 (x̄i,xi+1)
(
θ −Ξ

(
θ̂
))

zi (0)=zi,0 (20)

and the boundary layer system can be represented by

dyi

dτi
= −sign

(
∂Qi

∂αi

)
Qi

(
z̄i+1,yi+hi

(
z̄i+1,Θ̂,θ̂

)
,Θ̂,θ̂

)
(21)

513



ASADI and TOOSSIAN SHANDIZ/Turk J Elec Eng & Comp Sci

where yi=αi−hi(z̄i+1, Θ̂, θ̂) and τi= t/εi . Considering the control Lyapunov function Vi=Vi−1+
1
2z

2
i and

using the reduced system of Eq. (20), it is deduced that

V̇i≤

i−1∑
j=1

−kjz
2
j + |zj| γj (x̄j) Θ̃+zjf

T
j3 (x̄j,xj+1) θ̃

−kiz
2
i + |zi| |fi2 (x̄i, θ)|

−zisat (zi/µ) γi (x̄i) Θ̂+zif
T
i3 (x̄i,xi+1)

(
θ −Ξ

(
θ̂
))

≤
i∑

j=1

−kjz
2
j + |zj| γj (x̄j) Θ̃+zjf

T
j3 (x̄j,xj+1) θ̃ (22)

Step n. In the last step, the actual control input u appears and is at our disposal. We derive the zndynamics:

żn=fn1 (x̄n,u)+fn2 (x̄n,θ)+fTn3 (x̄n,u) θ−α̇n−1, (23)

And we now obtain an approximate actual control input via time-scale separation to satisfy

fn1 (x̄n,u)+fn2 (x̄n,θ)+fTn3 (x̄n,u) θ−α̇n−1= −knzn, (24)

as

εnu̇= −sign

(
∂Qn

∂u

)
Qn(z̄n,u, Θ̂, θ̂), (25)

with the initial condition u (0)=u0, εn≪ 1and

Qn

(
z̄n,u,Θ̂,θ̂

)
=knzn+fn1 (x̄n,u)+sat (zn/µ) γn (x̄n) Θ̂+fTn3 (x̄n,u)Ξ(θ̂)−α̇n−1 (26)

z̄n=[z1, . . . ,zn]
T
. Here, kn is the nth control gain.

Let u =hn(z̄n, Θ̂, θ̂) be an isolated root of Qn(z̄n, u, Θ̂, θ̂)= 0 . Then the reduced system is defined as

żn=−knzn +fn2 (x̄n,θ)−sat (zn/µ) γn (x̄n) Θ̂+fTn3 (x̄n,u) (θ −Ξ
(
θ̂
)
)

zn (0)=zn,0, (27)

and the boundary layer system can be represented by

dyn

dτn
= −sign

(
∂Qn

∂u

)
Q

n

(
z̄n,yn+hn

(
z̄n,Θ̂,θ̂

)
,Θ̂,θ̂

)
(28)

where yn=u−hn(z̄n, Θ̂, θ̂) and τn=t/εn . We choose the Lyapunov function Vn=Vn−1+
1
2z

2
n+

1
2 Θ̃

2+1
2 θ̃

TΓ−1θ̃ ,

where Γ is a positive definite matrix. The resulting derivatives of Vn is given as

V̇n≤

n−1∑
j=1

−kjz
2
j + |zj| γj (x̄j) Θ̃+zjf

T
j3(x̄j,xj+1)θ̃

−knz
2
n + |zn| |fn2 (x̄n,θ)| −
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znsat (zn/µ) γn (x̄n) Θ̂+znf
T
n3 (x̄n,u) θ̃−Θ̃

˙̂
Θ−θ̃TΓ−1 ˙̂θ ∗ 3

∂Ξ
(
θ̂
)

∂θ̂

≤ (
n∑

j=1

−kjz
2
j )+

 n∑
j=1

|zj| γj (x̄j)− ˙̂
Θ

 Θ̃−

θ̃T[Γ−1 ˙̂θ ∗ 3
∂Ξ

(
θ̂
)

∂θ̂
−

n−1∑
j=1

fj3(x̄j,xj+1)zj−fn3 (x̄n,u) zn]. (29)

Finally, we can eliminate the Θ̃ and θ̃T terms from Eq. (29) by designing the adaptation law as

˙̂
Θ=

n∑
j=1

|zj| γj (x̄j), (30)

˙̂
θ = Γ[

n−1∑
j=1

fj3(x̄j ,xj+1)zj + fn3 (x̄n,u) zn]

/
4 ∂Ξ(θ̂)

∂θ̂
. (31)

Therefore, the derivative of Vn is

V̇n≤
n∑

j=1

−kjz
2
j . (32)

By using LaSalle’s theorem, this Lyapunov function guarantees the asymptotic stability of the origin of the

reduced system of Eqs. (13), (20), and (27).

Remark 4 The unknown parameters for each subsystem of the system of Eq. (4) are considered as a constant

vector; that is, θ ∈Rs , while it was considered as a constant scalar for each subsystem in [18].

Remark 5 In [18], first a state predictor is developed for deriving adaptive laws of unknown parameters and

then the combination of time-scale separation and backstepping is applied to this state estimator for obtaining the

virtual/actual controls. In this paper, designing the state predictor is excluded and a combination of time-scale

separation and backstepping is applied on the original system for deriving the virtual/actual controls.

For the stability analysis of this proposed control system, we present the following theorem using

Theorem 1.

Theorem 2 Consider the singular perturbation problem of the pure-feedback system of Eq. (4) and the con-

trollers of Eqs. (11), (18), and (25). Assume that the following conditions are satisfied for all (z̄i+1, αi−hi(z̄i+1,

Θ̂, θ̂)) ∈ Dz̄i+1
×Dyi

for some domains Dz̄i+1
⊂Ri+1 and Dyi

⊂ R , which contain their respective origins, where

i = 1, . . . ,n, z̄n+1=z̄n, Dz̄n+1=Dz̄n , and αn= u .

3This product is defined as the element-by-element multiplication of array
˙̂
θ by

∂Ξ(θ̂)

∂θ̂
.

4This calculation is defined as the element-by-element division of array Γ[
n−1∑
j=1

fj3 (x̄j ,xj+1) zj + fn3 (x̄n,u))zn] by
∂Ξ(θ̂)

∂θ̂
.
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B1) fi1 (0,0)= 0,fi2 (0,θ)= 0, fi3 (0,0)= 0,Qi

(
0, 0,Θ̂,θ̂

)
= 0

B2) On any compact subset of Dz̄i+1
×Dyi

, the equation 0 =Qi(z̄i+1, αi, Θ̂, θ̂) has an isolated root

αi=hi(z̄i+1, Θ̂, θ̂) such that hi(0, Θ̂, θ̂) = 0

B3) The functions Qihi and their first partial derivatives with respect to their arguments are bounded.

B4) (z̄i+1,yi) 7→ (∂Qi/∂αi) (z̄i+1yi+hi(z̄i+1, Θ̂, θ̂),Θ̂, θ̂) is bounded below by some positive constant for all

z̄i+1∈Dz̄i+1
. Therefore, the origins of Eqs. (14), (21), and (28) are exponentially stable.

Then there exists a positive constant ε∗ such that for all ε <ε∗ , the origin of Eq. (4) is asymptotically

stable .

Proof For using Theorem 1, it should be verified that the conditions in Theorem 2 satisfy assumptions (A1)–

(A5). First, assumptions (B1)–(B3) directly imply that assumptions (A1) and (A3) hold, respectively. Second,

we show from assumption 1 that assumption (A4) holds. The exponential stability of the boundary layer system

of Eqs. (14), (21), and (28) can be easily obtained locally by linearization with respect to yi . Using assumption

1 and (B4) yields

sign

(
∂Qi

∂αi

)
=sign

(
∂fi1
∂αi

+
∂(fTi3)

∂αi
Ξ(θ̂)

)
>0. (33)

This confirms that the boundary layer system has a locally exponentially stable origin.

Finally, since in the previous section we showed the asymptotic stability of the origin of the reduced

system of Eqs. (13), (20), and (27), by considering Remark 1, assumption (A5)
′
is satisfied.

According to Theorem 1 and Remark 1, there exists a constant ε∗i> 0 such that for 0<ε <ε∗ , the origins

of the systems of Eqs. (9), (11), (16), (18), (23), and (25) are asymptotically stable. It follows that zi→ 0 and

αi→ 0 as t → ∞ . Since x1=z1 and xi=zi+αi−1 , it can be concluded that the origin of the pure-feedback

system of Eq. (4) is asymptotically stable.

Remark 6 The idea of using positive function Ξ(θ̂) instead of θ̂ is just for satisfying Eq. (33).

4. Simulation results

Consider the following pure-feedback system:

ẋ1 = x2 +
x3
2

5
+ ln

(
1 + (θ1x1)

2
)
+ θ1e

x2 + θ2x
2
1,

ẋ2 = 0.01u+
u3

7
+ x

2

2
u+

θ2x
2
1

(1+θ1x2)
2
+x2

2

+θ1x1x2 + θ2u
3. (34)

θ1 and θ2 are unknown linearly/nonlinearly connected parameters. The control object is to design an adaptive

control law u(t) such that the origin of the system is asymptotically stable. To obtain the bounding function of

the nonlinearly connected parameter term, a direct calculation gives
∣∣∣ θ2x

2
1

(1+θ1x2)
2+x2

2

∣∣∣ ≤ |θ2| (1+θ21)x
2
1 . On the other

hand, by the mean value theorem,
∣∣∣ln(1 + (θ1x1)

2
)∣∣∣≤ |x1| |θ1| . We define γ1 (x1) = |x1| , γ2 (x1, x2) = x2

1 ,

and Θ = |θ1|+ |θ2| (1 + θ21).

516



ASADI and TOOSSIAN SHANDIZ/Turk J Elec Eng & Comp Sci

In order to show the effectiveness of the proposed approach, the simulation results are evaluated for

different parameter values in two cases.

Case 1: Here, the unknown parameters are taken as θ1= 1.6 and θ2= 2.5. The initial conditions are

set to x1 (0) = 0.5, x2 (0) = −1, u (0) = 0, Θ̂ (0) = 1, θ̂1 (0) = 2, θ̂2 (0) = 3. The design parameters for the

proposed control system are adopted as follows: k1 = k1 = 2, µ = 0.00001, ε1 = ε2 = 0.01. Furthermore,

Γ =

[
1 0
0 1

]
, Ξ

(
θ̂1

)
= 1+tanh

(
θ̂1

)
, Ξ

(
θ̂2

)
= 1+tanh

(
θ̂2

)
are chosen. The adaptation laws are designed

as:
˙̂
Θ = |z1| γ1 (x1) + |z2| γ2 (x1, x2) (35)

˙̂
θ1 = (z1e

x2 + z2x1x2)/(1− tanh2(θ̂1)), (36)

˙̂
θ2 = (z1x

2
1 + z2u

3)/(1− tanh2(θ̂2)), (37)

where Q1 and Q2 are defined in Eqs. (12) and (19), respectively.

Case 2: In this case, the unknown parameters, initial conditions, and positive functions parameters are

chosen as: θ1= 1, θ2= 0.5 , x1 (0) = 2, x2 (0) = −2, u (0) = 0, Θ̂ (0) = 0.1θ̂1 (0) = 0.1, θ̂2 (0) = 0, Ξ
(
θ̂1

)
=

exp
(
θ̂1

)
, Ξ

(
θ̂2

)
= exp

(
θ̂2

)
and the other design parameters are similar to case 1.

The simulation results in Figures 1 and 2 show transient response of states, actual control effort u(t),

and adaptive parameters for case 1. Furthermore, transient response of states, control effort, and adaptive

parameters for case 2 are illustrated in Figures 3 and 4. These figures indicate that, despite the linear and

nonlinear parameterization and the nonaffine property of this system, the stability of the closed-loop system

as well as asymptotic state regulation, with satisfactory dynamic performance of the system states and control

input, can be achieved by the proposed approach.

Figure 1. Transient response of the states x1 (dashed-

dotted line) and x2 (dashed line), and control input u

(solid line).

Figure 2. Adaptive parameters θ̂1 (dashed-dotted line),

θ̂2 (dashed line), and Θ̂ (solid line).
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Figure 3. Transient response of the states x1 (dashed-

dotted line) and x2 (dashed line), and control input u

(solid line).

Figure 4. Adaptive parameters θ̂1 (dashed-dotted line),

θ̂2 (solid line), and Θ̂ (dashed line).

5. Conclusion

In this paper, an adaptive control method has been developed for completely nonaffine pure-feedback systems in

the presence of parametric uncertainties. These uncertainties include nonlinear parameterization, which has been

known as a challenging problem in the field of nonlinear adaptive control, and linear parameterization, which

makes the class of systems much more general. By combination of backstepping and the singular perturbation

concept, and coupling it effectively with the parameter separation technique and taking into account the idea of

the positive function of linear connected parameters, virtual/actual control inputs as well as the adaptation law

of unknown parameters have been derived. The proposed control approach can overcome the linear/nonlinear

parameterization and nonaffine property. The stability proof is carried out by presenting the theorem in singular

perturbation theory and the asymptotic stability of the origin of these systems is achieved. The simulation results

show that the proposed approach works reasonably well.
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