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Abstract This paper presents some novel discussions
on fully decentralized and semi-decentralized control
of fractional-order large-scale nonlinear systems with
two distinctive fractional derivative dynamics. First,
two decentralized fractional-order sliding mode con-
trollers with different sliding surfaces are designed.
Stability of the closed-loop systems is attained under
the assumption that the uncertainties and interconnec-
tions among the subsystems are bounded, and the upper
bound is known. However, determining the intercon-
nections and uncertainties bound in a large-scale sys-
tem is troublesome. Therefore in the second step, two
different fuzzy systems with adaptive tuning structures
are utilized to approximate the interconnections and
uncertainties. Since the fuzzy system uses the adjacent
subsystem variables as its own input, this strategy is
known as semi-decentralized fractional-order sliding
mode control. For both fully decentralized and semi-
decentralized control schemes, the stability of closed-
loop systems has been analyzed depend on the sliding
surface dynamics by integer-order or fractional-order
stability theorems. Eventually, simulation results are
presented to illustrate the effectiveness of the suggested
robust controllers.
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1 Introduction

Large-scale nonlinear systems are often composed of
multiple interconnected low-dimensional subsystems.
Such dynamical systems are widely employed in indus-
try, for example, electric power systems [1], chemi-
cal processes [2], robotic manipulators [3], etc. These
systems complexities lie in high nonlinearity, large
dimensions and interconnections among the subsys-
tems, which make the centralized control strategy com-
putationally burden or hard to implement. Moreover,
when the centralized controller fails, the entire system
becomes out of control. In contrast, fully decentral-
ized control can be designed for local subsystems from
local data with less computational efforts by ignor-
ing the interactions. It is apparent that fully decen-
tralized control may not provide pleasant performance
and may not even guarantee system stability for sys-
tems with unknown interconnections. On the other side,
the advancement of DCS, fieldbus, and communication
technologies in industry allows the engineers to intro-
duce semi-decentralized and distributed strategies as
new control methodologies [4,5].

One of the dominant challenges in large-scale sys-
tem control is to develop some robust methods for
dealing with the interconnections and consequently
global system stability. In [6–15], different decentral-
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ized control methods have been reported. In some of
these studies, intelligent methods like adaptive-fuzzy
[6,7] and adaptive-neural controllers [8] are used to
cope with the interconnections and nonlinearities. Refs
[4,9] have suggested a semi-decentralized technique
based on direct and indirect adaptive-fuzzy techniques.
The semi-decentralized structure means that the i-th
subsystem’s controller depends not only on the i-th
subsystem variables but also on neighbor subsystems
variables. This technique is a high-cost control strat-
egy, but in reality the interconnection terms are func-
tions of multiple subsystems states not only one. In
recent two decades, the sliding mode control (SMC)
has been used in large-scale systems control [10–13]
due to its high precision and robust behavior against
model uncertainties and interactions. These literatures
often assume that the interconnections are bounded by
first-order or higher-order polynomials of states. How-
ever, some physical systems do not satisfy these con-
ditions, or finding such conditions is challenging. In
[3,14,15] some combinations of intelligent techniques
and SMC have been reported to manage the mentioned
problem. It is worthwhile to notify that whole men-
tioned discussions on decentralized control of large-
scale systems are developed based on integer-order (IO)
calculus.

Fractional calculus is an old mathematical branch
with a generalization of ordinary differentiation
-integration to an arbitrary order. Nearly 300 years, this
field was viewed as an only theoretical topic with no
practical applications [16]. But in last three decades, it
has been used in different branches of engineering and
physics such as: reaction–diffusion system [17], elec-
trical circuits [18], rotor-bearing system [19], finance
system [20], biological system [21], thermoelectric sys-
tem [22], and so on. Designing fractional -order (FO)
controllers on dynamical systems is another prominent
case of mentioned applications. Also fractional-order
sliding mode control (FOSMC) is a famous one of these
FO controllers.

Recently, various forms of FOSMC have been used
to control FO nonlinear systems especially the chaotic
systems [23–31]. In [23,24], the FOSMC with a simple
linear sliding surface has been designed. Refs [25,26]
have developed this method base on terminal slid-
ing surfaces. To remove the chattering of FOSMC a
non-chatter sliding manifold proposed in [27], and a
second-order structure is suggested in [28]. The slid-
ing mode technique is designed for output tracking

of a time-varying reference signal for FO nonlinear
systems in [29]. In [30], a passivity-based integral
sliding mode controller is considered. Also, authors
of [31] have tried to apply a backstepping sliding
mode controller for uncertain chaotic systems. Most
of the above literatures are common in the following
cases:

1 Designing FO sliding mode controllers for small-
scale systems: To the author’s best knowledge, there
are few works on control of FO large-scale sys-
tems. Recently, robust decentralized control of FO
large-scale linear systems is reported in [32]. Based
on our information, there is no prominent work on
applying FO sliding mode technique for fully or
semi-decentralized control of large-scale nonlinear
systems.

2 The FOSMC is employed alone, and lack of adap-
tive or adaptive-fuzzy structures for uncertainty
approximation in proposed controllers is appar-
ent: Based on our knowledge, there are few lit-
eratures on the adaptive and adaptive-fuzzy slid-
ing mode control of nonlinear systems. In [33,34],
authors have proposed an adaptive-fuzzy sliding
mode controller for synchronization of FO nonlin-
ear systems. However, the final result of their work
is questionable, because they were careless about
some properties of FO calculus [35]. In [36,37], two
adaptive sliding mode controllers are constructed
to facilitate the stability of systems with unknown
uncertainties. However, the presented methods are
employed on the small-scale systems.

With the mentioned motivations, we study the
fully decentralized and semi-decentralized control of
FO large-scale nonlinear systems. Both strategies are
designed for two different types of fractional deriva-
tives (Caputo and RL), which can be considered as a
comparative research. Also, we found the FO stability
theorems presented in [38–40] and properties in [41]
really helpful in the closed-loop system haltering and
stability analysis.

The rest of this paper is organized as follows:
Some fractional calculus preliminaries are presented
in Sect. 2. In Sect. 3, FO large-scale nonlinear sys-
tems with two distinctive dynamics are introduced. Two
decentralized FOSMCs are developed in Sect. 4. Sec-
tion 5 describes two semi-decentralized FOSMC strate-
gies. Two illustrative examples are provided to confirm
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the theoretical results in Sect. 6, and finally, conclusions
are given in Sect. 7.

2 Fractional calculus preliminaries

In this section, some basic definitions of fractional
calculus and two essential FO stability theorems are
expressed.

Definition 1 [42] The function f (t) : R → R is
called Ck-class if the derivatives f (1), f (2), . . ., f (k)

exist and be continuous (except for a finite number of
points). From the above definition, f (t) ∈ C0,C1, and
C∞ are the classes of all continuous, continuously dif-
ferentiable, and smooth functions, respectively.

Definition 2 [41] The α-th order Riemann–Liouville
fractional integration of function f (t)with respect to t
is given by

I α0,t f (t) = D−α
0,t f (t) = 1

�(α)

t∫

0

f (τ )

(t − τ)1−α dτ (1)

where � (·) is the Gamma function.

Definition 3 [41] The Grunwald–Letnikov (GL) frac-
tional derivative of function f (t) with fractional-order
α is defined as

GL Dα
0,t f (t) =

m−1∑
k=0

f (k)(0)t−α+k

�(−α + k + 1)

+ 1

�(m − α)

t∫

0

f (m)(τ )

(t − τ)1−m+α dτ (2)

where f (t) ∈ Cm[0, t] and m − 1 ≤ α < m, m ∈ N .

Definition 4 [41] The α-th order Caputo fractional
derivative of continuous ( f (t) ∈ Cm[0, t]) function
f (t) is given by follows:

C Dα
0,t f (t) = D−(m−α)

0,t Dm f (t)

= 1

�(m − α)

t∫

0

f (m)(τ )

(t − τ)1−m+α dτ (3)

where m − 1 < α < m, m ∈ N .

Definition 5 [41] The Riemann–Liouville (RL) frac-
tional derivative of function f (t) with fractional-order
α is defined as

RL Dα
0,t f (t) = Dm D−(m−α)

0,t f (t)

= 1

�(m − α)

dm

dtm

t∫

0

f (τ )

(t − τ)1−m+α dτ (4)

where m − 1 ≤ α < m, m ∈ N .

Property 1 [41] If f (t) ∈ C0[0, T ] for T > 0 and
α > 0, then

D−α
0,t f (t)|t=0 = 0 (5)

Property 2 [41] If f (t) ∈ Cm[0, ∞), m − 1 < α <

m, and m ∈ N , then

(a) C Dα
0,t f (t) = RL Dα

0,t

(
f (t)− ∑m−1

k=0
tk

k! f (k)(0)
)

.

(b) RL Dα
0,t D−α

0,t f (t) = f (t).

(c) C Dα
0,t D−α

0,t f (t) = f (t) holds for m = 1.

Part (c) proof Using parts (a), (b) and Property 1, one
can get

C Dα
0,t

(
D−α

0,t f (t)
)

= RL Dα
0,t

(
D−α

0,t f (t)− D−α
0,t f (t)|t=0

)

= RL Dα
0,t

(
D−α

0,t f (t)− 0
)

= f (t)

(6)

��
Property 3 [41] If f (t) ∈ Cm[0, t] then RL Dα

0,t f (t)
=GL Dα

0,t f (t).

Property 4 (sequential property) [41]: If f (t) ∈
C1[0, T ] for some T > 0, αi ∈ (0, 1) (i = 1, 2)
and α1 + α2 ∈ (0, 1], then

C Dα1
0,t C Dα2

0,t f (t) = C Dα2
0,t C Dα1

0,t f (t)

= C Dα1+α2
0,t f (t), t ∈ [0, T ] (7)

Note that, the sequential property is very attractive
in the sliding mode control, but the continuously dif-
ferentiability condition restricts it. For more details see
Remark 1.

Remark 1 Let consider the sliding surface f (t) =
s(t), α1 = α and α2 = 1 − α, then Eq. (7) will be
as follows:

ṡ(t) = C Dα
0,t ·C D1−α

0,t s(t) = C D1−α
0,t · C Dα

0,t s(t) (8)
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from mathematical point of view and according to
Property 4, Eq. (8) holds for continuous s(t) and
ṡ(t), while discontinuous sgn(s(t)) function, non-
smooth desired values, and sudden changes in distur-
bances may cause discontinuous ṡ(t) which degrade
C1 condition. Using fuzzy approximations, smooth
functions (tanh(s(t)), sat (s(t)), D−α

0,t (s(t))) instead
of sgn(s(t)) and smooth desired values are approxi-
mate practical remedies for the mentioned problem.

Theorem 1 [38,39] Let x = 0 be an equilibrium point
for the non-autonomous FO system

C Dα
0,t x(t) = f (t, x(t)) (9)

where f (t, x(t)) satisfies the Lipschitz condition with
Lipschitz constant l > 0 and α ∈ (0, 1). Assume that
there exists a Lyapunov function V (t, x(t)) and class-
K functions αi (i = 1, 2, 3) satisfying

α1 (‖x‖) ≤ V (t, x(t)) ≤ α2 (‖x‖) (10)

C Dβ
0,t V (t, x(t)) ≤ −α3 (‖x‖) (11)

where β ∈ (0 1). Then the system (9) is asymptotically
stable.

Remark 2 For Theorem 1, if C Dβ
0,t V (t, x(t)) ≤ 0,

then the system (9) will be stable [40].

Proof From C Dβ
0,t V (t, x(t)) ≤ 0 we can get V (t, x(t))

≤ V (0, x(0)). Taking into account (10), results ‖x‖ ≤
α−1

1 (V (t, x(t))) ≤ α−1
1 (V (0, x(0))). Therefore, the

equilibrium point x = 0 is stable. ��
Theorem 2 [38] Let x = 0 be an equilibrium
point for the non-autonomous fractional-order sys-
tem (9). Assume that there exists a Lyapunov function
V (t, x(t)) satisfying

α1 ‖x‖a ≤ V (t, x(t)) ≤ α2 ‖x‖ (12)
d

dt
V (t, x(t)) ≤ −α3 ‖x‖ (13)

where α1, α2, α3, and a are positive constants. Then
the equilibrium point of the system (9) is asymptotic
stable.

3 Problem formulation

Consider a class of FO large-scale nonlinear system
composed of N interconnected subsystems (Si ). All

of the subsystems Si can be described based on RL
derivative as (i = 1, 2, . . ., N ):

Si :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RL Dαxi1(t) = xi2(t)
RL Dαxi2(t) = xi3(t)

...

RL Dαxin(t) = fi (Xi ) + gi (Xi )ui (t)
+ Mi (Xi , t)+ Ii (X1, . . ., X N , t)

(14)

or based on Caputo derivative

Si :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C Dαxi1(t) = xi2(t)
C Dαxi2(t) = xi3(t)

...

C Dαxin(t) = fi (Xi )+ gi (Xi )ui (t)
+ Mi (Xi , t)+ Ii (X1, . . . , X N , t)

(15)

where α ∈ (0, 1) is the order of system, Xi =
[xi1, xi2, . . ., xin] is the state vector of i - th sub-
system, ui ∈ R is the input, fi : Rn → R and
gi : Rn → R are known functions, Mi : Rn+1 → R
is model uncertainty and external disturbance term, and
Ii : Rn×N+1 → R represents the interconnection
between the i-th subsystem and other subsystems. We
consider Li (X, t) = Mi (Xi , t) + Ii (X1, . . ., X N , t)
which is called the lumped uncertainty.

Assumption 1 Full state vectors of the system are
measurable.

By defining the tracking errors of the i-th subsystem
as ei1(t) = xi1(t) − xi1d(t), . . .., ein(t) = xin(t) −
xind(t), the error dynamics of (14) and (15) will be in
the following form

Si :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RL Dαei1(t) = ei2(t)

RL Dαei2(t) = ei3(t)
.
.
.

RL Dαein(t) = fi (Xi )+ gi (Xi )ui (t) − RL Dαx(t)ind+Li (X, t)

(16)

and

Si :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C Dαei1(t) = ei2(t)

C Dαei2(t) = ei3(t)
.
.
.

C Dαein(t) = fi (Xi )+gi (Xi )ui (t)−C Dαx(t)ind+Li (X, t)

(17)

where sets Xid = [xi1d , xi2d , . . ., xind ]T and Ei =
[ei1, ei2, . . ., ein]T are reference vector and track-
ing error vector of i-th subsystem, respectively, and
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the large-scale system error vector is given by E =
[E1, E2, . . ., EN ]T . The goal is to design robust con-
trollers for the FO systems (14) and (15) such that the
state vectors Xi (t), i = 1, 2, . . ., N track the time-
varying reference vectors Xid(t) (where xi( j+1)d(t)
=RL Dαxi jd(t) for (14) and xi( j+1)d(t) = C Dαxi jd(t)
for (15), 1 ≤ j ≤ n − 1).

4 Fully decentralized FOSMC

In this section, designing the fully decentralized FOS-
MC for FO large-scale systems (14) and (15) are devel-
oped. For this purpose, two types of sliding surfaces are
proposed. The suggested controllers are designed based
on the Caputo and RL derivatives separately.

Assumption 2 In this section, we assume that the
lumped uncertainty Li (X, t) satisfies the following
conditions

|Li (X, t)| ≤ ψi1 (18)∣∣∣C D1−αLi (X, t)
∣∣∣ ≤ ψi2 (19)

where ψ1i , ψi2 are known positive constants.

4.1 RL-derivative-based dynamics

Consider the following integral FO sliding manifold:

σi (t) = D−(1−α)
(

ein(t)+
n−1∑
k=1

cikeik(t)

)
(20)

where ci1, ci2, . . ., ci(n−1) are selected in such a way
that all roots of the polynomial P(s) = sn−1 +
ci(n−1)sn−2 +· · ·+ci2s +ci1 are located in the left half
of s-plane. By differentiating from both sides of (20),
one can obtain

σ̇i (t) = D1 D−(1−α)
(

ein(t)+
n−1∑
k=1

cikeik(t)

)

= RL Dαein(t)+
n−1∑
k=1

cik RL Dαeik(t) (21)

Putting (16) in (21), leads to

σ̇i (t) = fi (Xi , t)+ gi (Xi , t)ui (t)− RL Dαxind(t)

+
n−1∑
k=1

cikei(k+1)(t)+ Li (X, t) (22)

Theorem 3 Consider the RL-derivative-based error
dynamics (16) with the sliding manifold (20) and
assumptions 1, 2, the fully decentralized control law

ui (t) = 1

gi (Xi , t)

(− fi (Xi , t)+ RL Dαxind(t)

−
n−1∑
k=1

cikei(k+1)(t)

−ηiσi (t)− Ksw−i sgn(σi (t))) , ηi > 0 (23)

guarantees the closed-loop system asymptotic stability,
if the switching gain Ksw−i be selected as

Ksw−i ≥ ψi1 ≥ |Li (X, t)| (24)

then the tracking errors E1, E2, . . ., EN will converge
to zero.

Proof Choose the following continuously differen-
tiable (except in equilibrium point) Lyapunov function
candidate

V (t, σ (t))=‖σ(t)‖1 =
N∑

i=1

Vi (t, σi (t))=
N∑

i=1

|σi (t)|

(25)

where Vi (•) is the Lyapunov function for each subsys-
tem. Whereas putting (23) in (22) results an IO sliding
dynamic (all fractional terms are removed), then apply-
ing the IO stability theorems is proper. So by taking
time derivative from V (•), one has

V̇ (t, σ (t)) =
N∑

i=1

sgn(σi (t))σ̇i (t) (26)

Substituting the sliding surface dynamics (22), results
in

V̇ (t, σ (t))=
N∑

i=1

sgn(σi (t))

(
fi (Xi , t)+gi (Xi , t)ui (t)

−RL Dαxind(t)+
n−1∑
k=1

cikei(k+1)(t)+ Li (X, t)

)

(27)

Using the control signal (23), one can obtain

V̇ (t, σ (t)) =
N∑

i=1

sgn(σi (t)) (−ηiσi (t)

−Ksw−i sgn(σi (t))+ Li (X, t)) (28)
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Since sgn(σi (t)) × sgn(σi (t)) = 1 and sgn(σi (t)) ×
σi (t) = |σi (t), then we have

V̇ (t, σ (t)) = −
N∑

i=1

(
ηi |σi (t)|

+ Ksw−i − sgn(σi (t))Li (X, t)
)

(29)

Choosing Ksw−i ≥ ψi1, leads to

V̇ (t, σ (t)) ≤ −
N∑

i=1

ηi |σi (t)| ≤ − 1

N

N∑
i=1

ηi

N∑
i=1

|σi (t)|

= −	 ‖σi (t)‖1 , 	 =
(

1

N

N∑
i=1

ηi

)
> 0

(30)

which implies the closed-loop system asymptotic sta-
bility based on IO stability theorems. ��

4.2 Caputo-derivative-based dynamics

Let the FO sliding surface to be defined as follows:

σi (t) = ein(t)+
n−1∑
k=1

cikeik(t) (31)

Taking C Dα derivative from both sides of (31), leads
to

C Dασi (t) = C Dαein(t)+
n−1∑
k=1

cikC Dαeik(t) (32)

Substituting the error dynamics (17) into (32), results
in

C Dασi (t) = fi (Xi , t)+ gi (Xi , t)ui (t)− C Dαxind(t)

+
n−1∑
k=1

cikei(k+1)(t)+ Li (X, t) (33)

Theorem 4 For the error dynamics described by Caputo
derivative (17) with the sliding manifold (31) and
assumptions 1, 2, the decentralized control effort

ui (t) = 1

gi (Xi , t)

(
− fi (Xi , t)+ C Dαxind(t)

−
n−1∑
k=1

cikei(k+1)(t)− D−(1−α)
(
ηiσi (t)

+Ksw−i tanh

(
σi (t)

ρi

)))
, 0 < ρi < 1 (34)

with the sliding gain

Ksw−i ≥ ψi2 ≥
∣∣∣C D1−αLi (Xi , t)

∣∣∣ (35)

guarantee boundedness of the closed-loop system
tracking errors (E1, E2, . . ., EN ).

Proof Let the global Lyapunov candidate to be as fol-
lows:

V (t, σ (t))=‖σ(t)‖1 =
N∑

i=1

Vi (t, σi (t))=
N∑

i=1

|σi (t)|

(36)

By differentiating V (•) with respect to time

V̇ (t, σ (t)) =
N∑

i=1

sgn(σi (t))σ̇i (t) (37)

Since substituting (34) in (33) results a FO sliding
dynamic, then using the FO stability theorems will be
useful. Hence, using Property 4, the following equation
fractionalizes the IO derivative into a fractional type.

σ̇i (t) = C D1−α
C Dασi (t) (38)

Inserting (38) into (37), results in

V̇ (t, σ (t)) =
N∑

i=1

sgn(σi (t))
(

C D1−α
C Dασi (t)

)
(39)

Using the sliding surface dynamics (33), one can obtain

V̇ (t, σ (t))=
N∑

i=1

sgn(σi (t))

⎛
⎝C D1−α

⎛
⎝ fi (Xi , t)+ gi (Xi , t)ui (t)

−C Dαxind (t)+
n−1∑
k=1

cikei(k+1)(t)+ Li (X, t)

⎞
⎠

⎞
⎠ (40)

Substituting control signal (34) in (40), we get

V̇ (t, σ (t)) =
N∑

i=1

sgn(σi (t))

(
C D1−α

(
−D−(1−α)

(
ηiσi (t)+

Ksw−i tanh

(
σi (t)

ρi

))
+ Li (X, t)

))
(41)

Since ησi (t)+ Ksw−i tanh (σi (t)/ρi ) is a continuously
differentiable function, then from Property 2.c we get

V̇ (t, σ (t)) =
N∑

i=1

(−ηi |σi (t)| + sgn(σi (t))

(
−Ksw−i tanh

(
σi (t)

ρi

)
+ C D1−αLi (X, t)

)
(42)
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By approaching ρ → 0, we have tanh (σi (t)ρi ) ∼=
sgn(σi (t)), which leads to

V̇ (t, σ (t)) ∼= −
N∑

i=1

(
ηi

∣∣σi (t)
∣∣

+(
Ksw−i − sgn(σi (t))C D1−αLi (X, t)

))
(43)

Selecting Ksw−i ≥ ψi2, results in

V̇ (t, σ (t)) ≤ −
N∑

i=1

ηi |σi (t)|

≤ − 1

N

N∑
i=1

ηi

N∑
i=1

|σi (t)| = −	 ‖σi (t)‖1

(44)

which implies the large-scale system (15) stability
based on Theorem 2. ��
Remark 3 Inequalities (30) and (44) are derived by the
following Chebyshev’s sum inequality:

For a1 ≥ a2 ≥ · · · ≥ aN and b1 ≥ b2 ≥ · · · ≥
bN then

1

N

N∑
i=1

ai bi ≥
(

1

N

N∑
i=1

ai

) (
1

N

N∑
i=1

bi

)
(45)

Remark 4 Although the suggested decentralized con-
trol strategies, (23) and (34), are developed on large-
scale systems with distinctive FO derivatives, there are
other dominant differences between them which are
listed in below:

1 To guarantee the large-scale system stability, the
control law (23) needs a small sliding gain in com-
parison with the control effort (34) sliding gain.

2 In (34), the sliding surface should be continuously
differentiable (σi (t) ∈ C1), while this constraint is
not necessary for (23) (sequential property).

3 By applying (23), the closed-loop system error tra-
jectories will converge to the origin, while for (34),
the error trajectories approach the neighborhood of
the origin (due to using tanh (σi (t)/ρi ) function
instead of sgn(σi (t))).

Remark 5 Proposed decentralized SMC techniques,
(23) and (34) based on Assumption 2, contain the fol-
lowing limitations:

1 The control laws, (23) and (34), usually need the
upper bound of interconnections and model uncer-
tainties in order to assure the stability of closed-loop

system. Generally, it is not easy to obtain this knowl-
edge in practice because of the complexities of large-
scale systems. Moreover, when an unknown pertur-
bation occurs in one subsystem, it may cause large
changes in the interaction bounds, which makes the
calculation of the switching gain Ksw−i difficult in
(23) and (34). Therefore, a plan is needed in order to
approximate the interactions bound.

2 Applying functions sgn(σi (t)) and tanh (σi (t)/ρi )
(with very small ρi ) value in (23) and (34) can pro-
voke the chattering phenomena, which can degrade
C1 condition (for (34)), and damage both RL- and
Caputo-derivative-based physical systems.

5 Semi-decentralized FOSMC

In this section, two adaptive-fuzzy schemes are intro-
duced to approximate the interconnections and uncer-
tainties, so that the objective of stability can be
achieved.

5.1 Fuzzy logic system

In this part, the fuzzy logic system is briefly discussed.
The basic configuration of the fuzzy system composed
of a collection of fuzzy IF-THEN rules, which can be
written as follows [43]:

Rule l : I f x1 is Fl
1 and...and x p is Fl

p T hen

y is Al

where the input vector X = [x1, . . ., x p]T ∈ R p

and the output variable y ∈ R denote the linguis-
tic variables of the fuzzy system, i = 1, 2, . . ., p
denotes the number of input for the fuzzy system, and
l = 1, 2, . . ., M denotes the number of the fuzzy rules,
Fl

i and Al are labels of the input and output fuzzy sets,
respectively. By using the product inference, singleton
fuzzification, and center average defuzzification, the
fuzzy system output will be as

y(X) =
∑m

l=1 yl
(∏p

i=1 μFl
i
(xi )

)
∑m

l=1
∏p

i=1 μFl
i
(xi )

(46)

where μFl
i
(xi ) and μAl (yl) = 1 are the membership

functions of the linguistic variables xi and y, respec-
tively. By introducing the concept of fuzzy basis func-
tion, (46) can be rewritten in the following form

y(X) = θT ξ(X) (47)
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where θ = [y1, . . ., yM ]T is the parameter vector and
ξ(X) = [ξ1(X), . . ., ξM (X)]T is a regressive vector
which can be defined as

ξ l(X) =
∏p

i=1 μFl
i
(xi )∑m

l=1
∏p

i=1 μFl
i
(xi )

(48)

5.2 Adaptive-fuzzy interconnection and uncertainty
approximation

As mentioned earlier, determining the interconnec-
tions, modeling uncertainties, and also external distur-
bances upper bounds is difficult. But based on the uni-
versal approximation property of fuzzy systems it is
possible.

5.2.1 RL-derivative-based dynamics

Now, consider the rewritten form of the sliding surface
dynamics (22) as follows:

σ̇i (t) = fi (Xi , t)+ gi (Xi , t)ui (t)− RL Dαxind(t)

+
n−1∑
k=1

cikei(k+1)(t)+ θT
i ξi (X) (49)

where θi = [θi1, . . ., θi M ]T is the parameter vector,
ξi (X) is a regressive vector, and X= [X1, X2, · · ·, X N ]
is the fuzzy system input vector. Choosing the semi-
decentralized control law as

ui (t) = 1

gi (Xi , t)

(− fi (Xi , t)+ RL Dαxind(t)

−
n−1∑
k=1

cikei(k+1)(t)− ηiσi (t)− θ̂T
i ξi (X)

)
(50)

guarantees the large-scale systems (14) stability with
the following adaptation mechanism

˙̃
θi = −μiξi (X)σi (t) (51)

where θ̃ = θ − θ̂ is the parameter error vector, θ̂ is the
estimation vector of the unknown parameter vector θ ,
and μi is a positive constant used for adaptation.

Proof Using (49) and (50) the closed-loop dynamic
becomes

σ̇i (t) = θT
i ξi (X)− ηiσi (t)− θ̂T

i ξi (X)

= θ̃T
i ξi (X)− ηiσi (t) (52)

To study the stability and derive the adaptation law for
θ̃ , we consider the following Lyapunov function:

V (t,Y (t)) = α(‖Y‖) = ‖Y‖2
2 =

N∑
i=1

Vi (t,Yi (t))

=
N∑

i=1

(
1

2
σ 2

i (t)+ 1

2μi
θ̃T

i θ̃i

)
(53)

where Yi = [σi , θ̃
T
i ]. Differentiating (53) along the

trajectory (52), one can obtain that

V̇ (t,Y (t)) =
N∑

i=1

(
σi (t)σ̇i (t)+ 1

μi
θ̃T

i
˙̃
θi

)

=
N∑

i=1

(
σi (t)

(
θ̃T

i ξi (X)− ηiσi (t)
)

+ 1

μi
θ̃T

i
˙̃
θi

)

=
N∑

i=1

(
−ηiσ

2
i (t)+ θ̃T

i

(
ξi (X)σi (t)+ 1

μi

˙̃
θi

))

(54)

Inserting the adaptation law (51), leads to

V̇ (t,Y (t)) =
N∑

i=1

−ηiσ
2
i (t) ≤ 0 (55)

which assures the large-scale system (14) stability.
Therefore, σi (t) and θ̃i are bounded. Although σi (t)
converges to zero (Barbalat’s lemma), the system is
not asymptotically stable, because θ̃i is only bounded.

��

5.2.2 Caputo-derivative-based dynamics

Consider the rewritten form of the sliding manifold
dynamics (33) in the following form:

C Dασi (t) = fi (Xi , t)+ gi (Xi , t)ui (t)− C Dαxind(t)

+
n−1∑
k=1

cikei(k+1)(t)+ D−(1−α)θT
i ξi (X) (56)

Selecting the semi-decentralized control signal

ui (t) = 1

gi (Xi , t)

(
− fi (Xi , t)+ C Dαxind (t)

−
n−1∑
k=1

cikei(k+1)(t)− D−(1−α)(ηiσi (t)+ θ̂T
i ξi (X))

)

(57)
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with the following adaptation law

C Dαθ̃i = −D−(1−α)μiξi (X)σi (t) (58)

guarantees the large-scale system (15) stability.

Proof Substituting (57) in (56), leads to

C Dασi (t) = D−(1−α)θT
i ξi (X)− D−(1−α) (ηiσi (t)

+ θ̂T
i ξi (X))

= D−(1−α) (θ̃T
i ξi (X)− ηiσi (t)

)
(59)

Similar to the previous part, consider the following Lya-
punov candidate:

V (t,Y (t)) = α(‖Y‖) = ‖Y‖2
2 =

N∑
i=1

Vi (t,Yi (t))

=
N∑

i=1

(
1

2
σ 2

i (t)+ 1

2μi
θ̃T

i θ̃i

)
(60)

Now, by differentiating from (60) along the trajectory
(59) and using Properties 2.c and 4, we have

V̇ (t, Y (t)) =
N∑

i=1

(
σi (t)σ̇i (t)+ 1

μi
θ̃T

i
˙̃
θi

)

=
N∑

i=1

(
σi (t)C D1−α

C Dασi (t)+ 1

μi
θ̃T

i C D1−α
C Dαθ̃i

)

=
N∑

i=1

((
θ̃T

i ξi (X)− ησi (t)
)
σi (t)+ 1

μi
θ̃T

i C D1−α
C Dαθ̃i

)

(61)

Using the adaptation mechanism (58), one can obtain

V̇ (t,Y (t)) =
N∑

i=1

−ηiσ
2
i (t) ≤ 0 (62)

By using Caputo definition (3), Theorem 1 and Remark
2, we get

C D1−αV (t,Y (t)) = D−α V̇ (t,Y (t)) ≤ 0 (63)

which results the large-scale system (15) stability, and
guarantees σi (t) and θ̃i boundedness. It is worthwhile
to notify that in (63), the Barbalat’s lemma is not used
for analyzing the sliding manifold σi (t) convergence
to zero, because the Barbalat’s lemma is known as an
IO stability technique. ��
Remark 6 Although, we suggested the adaptation law
(58) in FO form in order to have set dynamics, both

adaptation mechanisms (51) and (58) in reality are sim-
ilar. This can be proofed by integrating from both sides
of the adaptation laws:

˙̃
θi = −μiξi (X)σi (t)

D−1−→ θ̃i (t)− θ̃i (0)

= −
t∫

0

μiξi (X)σi (τ )dτ (64)

C Dαθ̃i = −D−(1−α)μiξi (X)σi (t)
D−α−→ θ̃i (t)− θ̃i (0)

= −D−αD−(1−α)μiξi (X)σi (t)

= −
t∫

0

μiξi (X)σi (τ )dτ (65)

Remark 7 By substituting the proposed control laws in
the corresponding sliding manifold dynamics, we can
get the following closed-loop sliding surface dynamics:
Fully decentralized strategy:

σ̇i (t) = −ηiσi (t)− Ksw−i sgn(σi (t))+ Li (X, t)

(66)

C Dασi (t)=−D−(1−α)
(
ηiσi (t)+Ksw−i tanh

(
σi (t)

ρi

))

+Li (X, t) (67)

and semi-decentralized strategy:

σ̇i (t) = θ̃T
i ξi (X)− ηiσi (t)

˙̃
θi = −μiξi (X)σi (t) (68)

C Dασi (t) = D−(1−α) (θ̃T
i ξi (X)− ηiσi (t)

)
(69)

C Dαθ̃i = −D−(1−α)μiξi (X)σi (t)

from equations (66) and (68), it is obvious that there is
no FO dynamics, while we can find D−(1−α) and C Dα

operators in (67) and (69) even in the adaptation law.
Therefore, the IO stability analysis can be applied for
(66) and (68), and the FO stability analysis should be
employed for (67) and (69). Note that, the mentioned
concept is not depends on RL or Caputo derivatives, but
it is related to how we are defining the sliding manifold.

6 Simulation results

In this section, two illustrative examples are presented
to reveal the effectiveness of the proposed control
strategies. Simulation results only presented for semi-
decentralized controllers (50) and (57). Similar results
are achievable for the fully decentralized control laws
(23) and (34) by replacing the fuzzy system with a con-
stant sliding gain.
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Example 1 Consider the following nonlinear FO large-
scale system composed of two subsystems which
described by

S1 :

⎧⎪⎨
⎪⎩

C,RL D0.8x11 = x12

C,RL D0.8x12 = −x3
11 − x12

+
(

1 + e−x11+x2
12

)
u1 + L1(X, t)

S2 :
⎧⎨
⎩

C,RL D0.8x21 = x22

C,RL D0.8x22 = −x21 − x2
22

+ (2 + sin(x21)) u2 + L2(X, t)

where the lumped uncertainty terms are as follows

L1(X, t)= 0.6 cos(t)+ 0.4x12 sin(0.5t)

+ 0.2x21 sin(3t)+ 0.5x22 cos(10t)

L2(X, t)= 0.5 sin(5t)+ 2x11 sin(x21)

+ 0.4x22 sin(0.2t)

also the reference values and initial conditions are cho-
sen as

x11d(t) = sin((π/20)t),

x12d(t) = C,RL Dα sin((π/20)t),

x21d(t) = sin((π/15)t),

x22d(t) = C,RL Dα sin((π/15)t)

(x11(0), x12(0)) = (0, 0) , (x21(0), x22(0)) = (0, 0)

Each subsystem states and neighbor subsystem states
are considered as the fuzzy system input variables (four
variables for each subsystem). Fuzzy sets for input vari-
ables are defined according to the membership func-
tions depicted in Fig. 1.

μ1(xik) = exp(−10x2
ik)

μ2(xik) = 1 − μ1(xik)

i, k = 1, 2

Two fuzzy sets for each input variable have been found
sufficient. Therefore, the number of fuzzy rules will be
2 × 2 × 2 × 2 = 16.

Based on (50) and (57), the controller parameters
are picked as follows:

c11 = c21 = 1, η1 = η2 = 20, μ1 = μ2 = 100

For Caputo-derivative-based dynamics (15) and
control effort (57), the simulations are performed using
MATLAB toolbox called Ninteger [44]. The C Dα oper-
ator is approximated via Crone method in frequency
range [0.01 100] rad/s and n = 10. For RL-derivative-
based dynamics (14) and control law (50), the RL Dα

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

xik

µ(
x ik

)

Fig. 1 Fuzzy sets assigned to input variables (x11, x12, x21 and
x22)

operator has been approximated (from Property 3) by
GL-derivative discrete-time algorithm with the sam-
pling interval h = 0.005 [45]. This algorithm is exe-
cuted by S-function blocks in MATLAB.

The simulation results of semi-decentralized FO-
SMC based on RL and Caputo-derivatives are given
in Figs. 2 and 3, respectively. As can be seen from
Figs. 2 and 3, the responses of semi-decentralized
FOSMC appear to be very satisfactory, since they track
desired trajectories with low deviation and small con-
trol signals. Moreover, there are some differences in
the transient behaviors between RL- and Caputo-based
dynamics. For instant: the control signal amplitude
for initial times in Fig. 2 is higher than Fig. 3, also
the states x12 and x22 oscillation in Fig. 3 is a little
high.

Example 2 To show more results of the suggested con-
trollers, we consider the double inverted pendulum [9]
by replacing IO derivatives with FO ones. The dynamic
model of the system can be described as

S1 :

⎧⎪⎨
⎪⎩

C D0.85x11 = x12

C D0.85x12 =
(

m1gr
J1

− kr2

4J1

)
sin (x11)

+ kr
2J1

(l − b)+ 1
J1

u1 + L1(X)

S2 :

⎧⎪⎨
⎪⎩

C D0.85x21 = x22

C D0.85x22 =
(

m2gr
J2

− kr2

4J2

)
sin (x21)

− kr
2J2

(l − b)+ 1
J2

u2 + L2(X)

where θ1 = x11 and θ2 = x21 are the angu-
lar displacements of the vertical reference value for
each pendulum, L1(X) = (kr2/kr24J1) sin(x21) and

123



Fractional-order large-scale nonlinear systems

0 20 40 60 80 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (sec)

x 22
(t

)

x22d(t)

x22(t)

0 20 40 60 80 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

t (sec)

x 12
(t

)

x12d(t)

x12(t)

Fig. 2 The responses of (RL-derivative-based) system under the semi-decentralized FOSMC; Right states x11, x12 and control effort
u1 of subsystem 1; Left states x21, x22 and control effort u2 of subsystem 2
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Fig. 3 The responses of (Caputo-derivative-based) system under the semi-decentralized FOSMC; Right states x11, x12 and control
effort u1 of subsystem 1; Left states x21, x22 and control effort u2 of subsystem 2
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Fig. 4 Fuzzy sets assigned to input variables (x12 and x21)

L2(X) = (kr2/kr24J2) sin(x12) are the interconnec-
tions terms, m1 and m2 are the end masses, J1 and J2

are the moments of inertia, r is the pendulum height, k
is the spring constant of the linker spring, l is the spring
natural length, b is the distance between the pendulum
hinges, and finally g is the gravitational acceleration.
These parameters values are considered as follows:

m1 = 2 kg m2 = 2.5 kg J1 = 0.5 kg

J2 = 0.625 kg r = 0.5 m k = 100 N/m l = 0.5 m

b = 0.4 m g = 9.81 m/sec2

and the initial conditions are selected as

(x11(0), x12(0)) = (π/3, 0) ,

(x21(0), x22(0)) = (−π/3, 0)

Note that, the pendulum dynamics are demonstrated
only by Caputo-derivative in order to avoid the ini-

0 5 10 15 20 25 30 35 40

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

t (sec)

x 21
(t

)

x21(t)

x21d(t)

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t (sec)

x 11
(t

)
x11d(t)

x11(t)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

t (sec)

u 2(t
)

u2(t)

0 5 10 15 20 25 30 35 40
-25

-20

-15

-10

-5

0

5

t (sec)

u 1(t
)

u1(t)

Fig. 5 The responses of (Caputo-derivative-based) system under the semi-decentralized FOSMC; Right state x11 and control effort
u1of subsystem 1; Left state x21 and control effort u2 of subsystem 2
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Fig. 6 The responses of (Caputo-derivative-based) system under the semi-decentralized FOSMC; Right state x11 and control effort
u1of subsystem 1; Left state x21 and control effort u2 of subsystem 2

tial condition interpretation problem of RL derivatives.
We consider one input variable for each fuzzy system,
whereas the interconnection terms are only depended
on one of the variables of neighbor subsystem. More-
over, the fuzzy sets of input variable are defined accord-
ing to the membership functions which are illustrated
in Fig. 4. From this figure, it is obvious that the number
of fuzzy rules will be five.

μ1i (xik) = 1/(1 + exp(−5 × (xik − 1)))

μ2i (xik) = exp(−5 × (xik − 0.5)2)

μ3i (xik) = exp(−5 × (xik)
2)

μ4i (xik) = exp(−5 × (xik + 0.5)2)

μ5i (xik) = 1/(1 + exp(5 × (xik + 1)))

According to (57), the following parameters can be
used for this example simulation

c11 = c21 = 5, η1 = η2 = 20, μ1 = μ2 = 100

The system states and control efforts are presented in
Figs. 5 and 6 for different reference values in order to
check the performance of semi-decentralized FOSMC.
In Fig. 5, the reference values for each subsystem are
selected as x11d(t) = 0, x12d(t) = 0, x21d(t) =
0, and x22d(t) = 0. Moreover, the reference val-
ues for Fig. 6 are chosen as x11d(t) = x21d(t) =
sin(t), and x12d(t) = x22d(t) = C Dα sin(t). By tak-
ing a glance at these figures, the closed-loop system
behavior seems satisfactory.

7 Conclusion

In this paper, the fully decentralized and semi-
decentralized FOSMC schemes have been developed
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for two different classes of FO large-scale nonlinear
systems for the first time. First, two fully decentral-
ized controllers are designed for RL- and Caputo-based
systems with the known interconnections and uncer-
tainties. In the second step, to approximate the inter-
connections and uncertainties we proposed two semi-
decentralized controllers using fuzzy systems. The
closed-loop systems stability is proved using IO and FO
stability theorems depend on existing IO and FO oper-
ators in the sliding surface dynamic. For system with
RL dynamics: an integral sliding surface is used which
removes fractional dynamics of the closed-loop sys-
tem. As a result, we employed IO stability theorems to
stability analyzing in both fully and semi-decentralized
strategies. For the Caputo-based system: we applied a
simple linear sliding surface which a closed-loop sys-
tem with FO dynamics is its outcome. Hence the FO
stability theorems are applied to guarantee system sta-
bility with fully decentralized and semi-decentralized
controllers. Finally, computer simulations revealed the
good efficiency of the suggested control techniques in
trajectory tracking of two FO large-scale case studies.
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