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SUMMARY

This paper presents two novel nonlinear fractional-order sliding mode controllers for power angle
response improvement of multi-machine power systems. First, a nonlinear block control is used to han-
dle nonlinearities of the interconnected power system. In the second step, a decentralized fractional-order
sliding mode controller with a nonlinear sliding manifold is designed. Practical stability is achieved under
the assumption that the upper bound of the fractional derivative of perturbations and interactions are known.
However, when an unknown transient perturbation occurs in the system, it makes the evaluation of pertur-
bation and interconnection upper bound troublesome. In the next step, an adaptive-fuzzy approximator is
applied to fix the mentioned problem. The fuzzy approximator uses adjacent generators relative speed as own
inputs, which is known as semi-decentralized control strategy. For both cases, the stability of the closed-loop
system is analyzed by the fractional-order stability theorems. Simulation results for a three-machine power
system with two types of faults are illustrated to show the performance of the proposed robust controllers
versus the conventional sliding mode. Additionally, the fractional parameter effects on the system transient
response and the excitation voltage amplitude and chattering are demonstrated in the absence of the fuzzy
approximator. Finally, the suggested controller is combined with a simple voltage regulator in order to keep
the system synchronism and restrain the terminal voltage variations at the same time. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-scale power systems are incessantly getting larger in size and complexity with increasing
interconnections. They consist of several synchronous generators having the different inertia
constants, which are weakly connected through large transmission lines. One of the most crucial
operation demands of power systems is maintaining the system stability. Conventional decentralized
linear power system stabilizers (PSS) were well applied because of their simplicity in design and
implementation. Such linear PSS is limited because it provides stability in a small region and only
deals with small disturbances around an operating point. Then, when some large perturbations
transpire, the synchronism among the power system generators can be lost [1, 2].

In last two decades, researchers are focused on nonlinear control techniques to design robust and
reliable PSSs for power systems. Some works deal with the decentralized control of multi-machine
power system based on direct feedback linearization (DFL) technique in [3, 4], DFL with back-
stepping [5] and adaptive backstepping techniques [6]. Recently, the sliding mode control (SMC)
has been applied for power systems, because this method is well known for its high precision and
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robustness against model uncertainties and perturbations [7]. The SMC with nonlinear block con-
trol (NBC) technique is implemented to control a single-machine connected to an infinite bus in
[8, 9], and a multi-machine power system [10, 11]. This method also is designed based on out-
put information [12], and in the higher-order form [13, 14]. Additionally, the SMC is applied to
control a complete model power system with match and mismatch uncertainties [15], and a sim-
plified second-order model in [16]. All of the mentioned papers have been developed based on
integer-order calculus.

Fractional calculus is an old mathematical with a generalization of ordinary differentiation-
integration to an arbitrary order. Nearly 300 years, this branch of mathematics was viewed as an only
theoretical topic with no practical applications [17]. But in last three decades, it has been used in
different fields of engineering and physics such as: electrical circuit [18], rotor-bearing system [19],
finance system [20], biological system [21], thermoelectric system [22], reaction–diffusion system
[23], and finally designing fractional-order controllers on fractional and integer-order systems is a
dominant part of these applications.

Recently, designing the fractional-order controllers on fractional-order systems has been
developed. For instant, there are some valuable literatures especially in sliding mode control of
fractional-order chaotic systems [24–28]. But in reality, most of physical systems have inherently
integer-order dynamics. Therefore, enlarging the application of fractional-order controllers on
integer-order systems seems more practical in spite of its challenges. Moreover, fractional-
order controllers give us some extra parameters for tuning, which can lead to a better closed-
loop performance.

The main idea of fractional-order controller application on integer-order systems is debated in
[29]. In this paper, based on an example, the authors proofed that better tracking is achievable for
non-integer orders. This is a remarkable idea, but it is not extendable for all integer-order systems,
and optimal parameters may lie on the integer-order values ([17], section 9.2.4). In this situation,
fractional-order controllers are not able to reach a better performance in comparison with the integer-
order ones. Therefore, in addition to the integer-order system characteristics, choosing a suitable
fractional-order controller is necessary in order to obtain a superior behavior.

As mentioned earlier, fractional-order controllers provide extra parameters for tuning. Hence,
using this idea in modern nonlinear control techniques like SMC can be useful. Recently, fractional-
order sliding mode controller (FSMC) has been used for integer-order systems such as robot
manipulators [30], permanent magnet synchronous machines [31, 32], antilock braking systems
[33], and induction motor [34]. Additionally, FSMC with nonlinear sliding surface has been applied
in [35]. Some of these works are common in the following cases: (1 ) Using a linear sliding manifold:
the main disadvantage of linear sliding manifold is that the system states cannot reach the equilib-
rium point in a finite time. By defining special nonlinear types of sliding surface, faster convergence
is accessible [35]. (2) Designing some controllers for small-scale systems: while multi-machine
power system is a large-scale system composed of multiple synchronous generators. (3) Applying
integer-order stability theorems: a closed-loop system is fractional-order if controller or system or
both of them be fractional-order. Therefore, using fractional-order stability theorems will be useful
for stability analyzing of the fractional-order closed-loop systems.

Inspired by the aforementioned discussions, combination of the NBC technique [36, 37] with
nonlinear fractional-order sliding mode controllers (NFSMC) is used to design fast and robust PSSs
in this paper. Generally, this paper presents the following main contributions: (1) A new nonlinear
fractional-order sliding surface is proposed to reach a faster transient response. (2) Two decentral-
ized and semi-decentralized fractional-order controllers are developed to halter the multi-machine
power system. (3) Stability of the closed–loop system is analyzed based on fractional-order stability
theorems.

The remainder of this paper is organized as follows: in Section 2, some preliminaries and
properties of fractional-order calculus are introduced. A third-order multi-machine power sys-
tem nonlinear model is presented in Section 3. In Section 4, the NBC technique is applied to
provide a proper model. A decentralized NFSMC PSS is developed in Section 5. Section 6
describes a semi-decentralized NFSMC PSS, which covers the perturbation and interconnection
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problem. In Section 7, simulation results are illustrated and finally, conclusions are presented in
Section 8.

2. PRELIMINARIES

In this section, we state some definitions, properties, and theorems, which will be used later.

Definition 1 ([38])
The function f .t/ W R ! R is continuously differentiable if f .t/ be differentiable and Pf .t/
be continuous.

From this definition, f .t/ 2 C 0; C 1 and C1 are the classes of continuous, continuously
differentiable and smooth functions, respectively.

Definition 2 ([39])
The ˛-th order Riemann–Liouville fractional integration of function f .t/ with respect to t is
given by

I ˛0;tf .t/ D D
�˛
0;t f .t/ D

1

�.˛/

Z t

0

f .�/

.t � �/1�˛
d� (1)

where �.˛/ is the Gamma function.

Definition 3 ([39])
The Grunwald–Letnikov (GL) fractional derivative of function f .t/ with fractional-order ˛ is
given by

GLD
˛
0;tf .t/ D

Xm�1

kD0

f .k/.0/t�˛Ck

�.�˛ C k C 1/
C

1

�.m � ˛/

Z t

0

f .m/.�/

.t � �/1�mC˛
d� (2)

where f .t/ 2 CmŒ0; t � and m � 1 6 ˛ < m;m 2 N.

Definition 4 ([39])
The ˛-th order Caputo fractional derivative of continuous .f .t/ 2 CmŒ0; t �/ function f .t/ is defined
as follows:

CD
˛
0;tf .t/ D D

�.m�˛/
0;t Dmf .t/ D

1

�.m � ˛/

Z t

0

f .m/.�/

.t � �/1�mC˛
d� (3)

where m � 1 < ˛ < m;m 2 N.

Definition 5 ([39])
The ˛-th order Riemann–Liouville (RL) fractional derivative of function f .t/ is given as follows:

RLD
˛
0;tf .t/ D D

mD
�.m�˛/
0;t f .t/ D

1

�.m � ˛/

dm

dtm

Z t

0

f .�/

.t � �/1�mC˛
d� (4)

where m � 1 6 ˛ < m;m 2 N.

Property 1 ([39])
If f .t/ 2 C 0Œ0; T � for T > 0 and ˛ > 0, then

D�˛0;t f .t/jtD0 D 0 (5)

Property 2 ([39])
If f .t/ 2 CmŒ0;1/; m � 1 < ˛ < m and m 2 N, then

(a) CD
˛
0;tf .t/ D RLD

˛
0;t

�
f .t/ �

Pm�1
kD0

tk

kŠ
f .k/.0/

�
.

(b) RLD
˛
0;tD

�˛
0;t f .t/ D f .t/.

(c) CD
˛
0;tD

�˛
0;t f .t/ D f .t/ holds for m D 1.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1548–1568
DOI: 10.1002/rnc



NONLINEAR FRACTIONAL-ORDER POWER SYSTEM STABILIZER 1551

Part (c) proof: Using parts (a), (b), and Property 1, leads to

CD
˛
0;t

�
D�˛0;t f .t/

�
D RLD

˛
0;t

�
D�˛0;t f .t/ �D

�˛
0;t f .t/jtD0

�
D RLD

˛
0;t

�
D�˛0;t f .t/ � 0

�
D f .t/ (6)

Property 3 (sequential property [39])
If f .t/ 2 C 1Œ0; T � for some T > 0; ˛i 2 .0; 1/.i D 1; 2/ and ˛1 C ˛2 2 .0; 1�, then

CD
˛1
0;tCD

˛2
0;tf .t/ D CD

˛2
0;tCD

˛1
0;tf .t/ D CD

˛1C˛2
0;t f .t/ (7)

Note that the continuously differentiability condition restricts the sequential property. To prove this
idea, two examples are illustrated in Table I. The first function does not satisfy (7) as a result of
discontinuity at t D 0.

Generally, for a finite number of discontinuous points of Pf .t/, the function f .t/ still can be
assumed continuously differentiability.

Remark 1
Let us consider the sliding surface s.t/ D f .t/; ˛1 D ˛ and ˛2 D 1�˛, then (7) will be as follows:

Ps.t/ D CD
˛
0;tCD

1�˛
0;t s.t/ D CD

1�˛
0;t CD

˛
0;ts.t/ (8)

from mathematical point of view and according to Property 3, equation (8) holds for continuous
s.t/ and Ps.t/, whereas discontinuous function sgn.s.t//, non-smooth desired values, and sud-
den changes in disturbances may cause discontinuous Ps.t/, which degrades C 1 condition. Using
fuzzy approximations, smooth functions .tanh.s.t//; sat.s.t//;D�˛0;t s.t// instead of sgn.s.t// and
smooth desired values are approximate practical remedies for the mentioned problem.

Definition 6 ([40, 41])
The solution of the system CD

˛
0;tx.t/ D f .t; x.t// is said to be Mittag–Leffler stable if

kx.t/k 6 ¹mŒx.0/�E˛.��t˛/ºb (9)

where ˛ 2 .0; 1/; � > 0; b > 0;E˛.t/ is the Mittag–Leffler function, m.0/ D 0 and m.x/ > 0 is
locally Lipschitz.

Remark 2
It is evident that the Mittag–Leffler stability implies the asymptotic stability.

Theorem 1 ([40])
Let x D 0 be an equilibrium point for the non-autonomous fractional-order system

CD
˛
0;tx.t/ D f .t; x.t// (10)

Table I. Two examples of sequential property.

Function f .t/ Pf .t/ Property 3 .˛1 D 1=3; ˛2 D 1=2/

Discontinuous

f1.t/ D t
0:5 Continuous Pf1.t/ D 0:5t

�0:5
CD

˛1C˛2
0;t f1.t/ D CD

˛2
0;tCD

˛1
0;tf1.t/ D

�.3=2/
�.2=3/

t�1=3

Pf1.0
C/!C1 CD

˛1
0;tCD

˛2
0;tf2.t/ D 0

Continuous

f2.t/ D t
1:5 Continuous Pf2.t/ D 1:5t

0:5
CD

˛1C˛2
0;t f2.t/ D CD

˛1
0;tCD

˛2
0;tf2.t/ D CD

˛2
0;t

Pf2.0/ D 0 CD
˛1
0;tf2.t/ D

�.5=2/
�.5=3/

t2=3
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where f .t; x.t// satisfies the Lipschitz condition with Lipschitz constant l > 0 and ˛ 2 .0; 1/.
Assume that there exists a Lyapunov function V.t; x.t// satisfying

˛1kxk
a 6 V.t; x.t// 6 ˛2kxk (11)

d

dt
V .t; x.t// 6 �˛3kxk (12)

where ˛1; ˛2; ˛3 and a are positive constants. Then, the equilibrium point of the system (10) is
Mittag–Leffler stable.

Theorem 2 ([40, 41])
Let x D 0 be an equilibrium point for the non-autonomous fractional-order system (10). Assume
that there exists a Lyapunov function V.t; x.t// and class-K functions ˛i .i D 1; 2; 3/ satisfying

˛1.kxk/ 6 V.t; x.t// 6 ˛2.kxk/ (13)

CD
ˇ
0;tV.t; x.t// 6 �˛3.kxk/ (14)

where ˇ 2 .0; 1/. Then, the system (10) is asymptotically stable.

Corollary 1 ([42])
Form Theorem 2, if CD

ˇ
0;tV.t; x.t// 6 0, then the system (10) is locally stable.

Proof
From CD

ˇ
0;tV.t; x.t// 6 0, we can get V.t; x.t// 6 V.0; x.0//. Taking into account (13), results

kxk 6 ˛�11 .V .t; x.t/// 6 ˛�11 .V .0; x.0///. Therefore, the equilibrium point x D 0 is stable. �

3. POWER SYSTEM DYNAMICAL MODEL

In this section, a multi-machine power system consisting of n synchronous generators is considered.
A third-order dynamic model of the i-th generator with excitation control can be described as
follows [4–6]:

Generator mechanical equations:

Pıi .t/ D �!i .t/ (15)

� P!i .t/ D �
Di

2Hi
�!i .t/ �

!0

2Hi
.Pei .t/ � Pmi0/ (16)

where ıi .t/ is the power or load angle of the generator .rad/I�!i .t/ is the relative speed of
generator .rad=sec/IPmi0 is the mechanical input power .p:u:/IPei .t/ is the active electrical
power delivered by the generator .p:u:/I!0 is the synchronous speed .rad=sec/IDi is per unit
damping constant and Hi is the inertia constant .sec/.

Generator electrical dynamics:

PE
0

qi .t/ D
1

T
0

doi

�
Ef i .t/ �Eqi .t/

�
(17)

where E
0

qi .t/ is the transient Electromotive Force (EMF) in the quadrature axis of the genera-
tor .p:u:/IEqi .t/ is the EMF in the quadrature axis .p:u:/IEf i .t/ is the equivalent EMF in the
excitation coil .p:u:/ and T

0

doi
is the direct axis transient short circuit time constant .sec/.

Electrical equations:

Eqi .t/ D E
0

qi .t/ �
�
xdi � x

0

di

�
Idi .t/ (18)
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Pei .t/ D
Xn

jD1
E
0

qi .t/E
0

qj .t/Bij sin
�
ıi .t/ � ıj .t/

�
D E

0

qi .t/Iqi .t/ (19)

Qei .t/ D �
Xn

jD1
E
0

qi .t/E
0

qj .t/Bij cos
�
ıi .t/ � ıj .t/

�
D �E

0

qi .t/Idi .t/ (20)

Idi .t/ D
Xn

jD1
E
0

qj .t/Bij cos
�
ıi .t/ � ıj .t/

�
(21)

Iqi .t/ D
Xn

jD1
E
0

qj .t/Bij sin
�
ıi .t/ � ıj .t/

�
(22)

Ef i .t/ D kciuf i .t/ (23)

Eqi .t/ D xadiIf i .t/ (24)

Vti .t/ D

r�
E
0

qi .t/C x
0

di
Idi .t/

�2
C
�
x
0

di
Iqi .t/

�2
(25)

where Qei .t/ is the reactive power .p:u:/I Idi .t/ is the direct axis current .p:u:/I Iqi .t/ is the
quadrature axis current .p:u:/IBij is the i-th row and j -th column element of nodal suscep-
tance matrix at the internal nodes after eliminating all physical buses .p:u:/Iuf i .t/ is the input of
the Silicon Controlled Rectifier (SCR) amplifier .p:u:/I kci is the gain of the excitation amplifier
.p:u:/I If i .t/ is the excitation current .p:u:/I xadi is the mutual reactance between the excitation
coil and the stator coil of the i-th generator .p:u:/I xdi is the direct axis reactance .p:u:/I x

0

di
is the

direct axis transient reactance .p:u:/IVti .t/ is the terminal voltage of the i-th generator .p:u:/.
Since PE

0

qi .t/ is not physically measurable, then it can be removed by differentiating (19) and
substituting (17) in it. Therefore, the i-th generator model with new set of variables .ıi ; �!i ; �Pei /,
will be in the following form:8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

Pıi .t/ D �!i .t/

� P!i .t/ D �
Di
2Hi

�!i .t/ �
!0
2Hi

.Pei .t/ � Pmi0/

� PPei .t/ D �
1

T
0

doi

�
�Pei .t/C Pmi0 � .xdi � x

0

di
/Iqi .t/Idi .t/

�
�Qei .t/�!i .t/

C 1

T
0

doi

kciIqi .t/uf i .t/C �i .ı; !/

(26)

that

�Pei .t/ D Pei .t/ � Pmi0 (27)

�i .ı; !/ D
Xn

jD1
E
0

qi .t/
PE
0

qj .t/Bij sin
�
ıi .t/ � ıj .t/

�
�
Xn

jD1
E
0

qi .t/E
0

qj .t/Bij cos
�
ıi .t/ � ıj .t/

�
(28)

where �i .ı; !/ is the interconnection term among the i-th generator with the others.

Assumption 1
The mechanical input power Pmi0 is assumed to be a constant because it is associated with very
slow time constants.

Remark 3
From Remark 3.4. in [3], because the active Pei .t/ and reactive Qei .t/ powers of each generator
and power flow through each transmission line are bounded, and the excitation voltage Ef i .t/ may
increase by up to five times of the E

0

qi .t/, then we have

j�i .ı; !/j 6
Xn

jD1

�
�i1j

ˇ̌
sin.ıj /

ˇ̌
C �i2

ˇ̌
�!j

ˇ̌�
6
Xn

jD1

�
�i1j C �i2

ˇ̌
�!j

ˇ̌�
(29)
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where

�i1j D

8̂<
:̂
Pn
jD1;j¤i 4p1ij

jPei jmaxˇ̌̌
T
0

doj

ˇ̌̌
min

j D i

4p1ij
jPei jmaxˇ̌̌
T
0

doj

ˇ̌̌
min

j ¤ i
; �i2 D p2ij jQei jmax (30)

where p1ij and p2ij values are 0 or 1 (if they are 0, it means that there is no connection between
j -th and i-th generators).

4. NONLINEAR BLOCK CONTROL TECHNIQUE

From [36, 37], it can be seen that the i-th subsystem (26) has NBC-form composed of three blocks.
Therefore, the NBC technique can be applied before designing the SMC. The equation (26) non-
companion form is the main reason of applying the NBC before SMC.

Because the control goal is the power angle performance enhancement for the generators in the
presence of interconnections and perturbations, then output error can be defined as follows:

´1i .t/ D ıi .t/ � ıdi (31)

where ıdi is a known constant reference signal. Then, using (26) and (31), we obtain

Ṕ1i .t/ D �!i .t/ (32)

To stabilize (32) dynamics, the virtual control input is chosen as

�!i .t/ D �k1i´1i .t/C ´2i .t/; k1i > 0 (33)

Hence, ´1i closed-loop dynamic will be as

Ṕ1i .t/ D �k1i´1i .t/C ´2i .t/ (34)

In the next step, from (32) and (34), the new variable ´2i can be obtained as

´2i .t/ D �!i .t/C k1i´1i .t/ (35)

By differentiating (35), and using (26) and (34), results in

Ṕ2i .t/ D �
!0

2Hi
�Pei .t/C

�
Dik1i

2Hi
� k21i

�
´1i .t/C

�
k1i �

Di

2Hi

�
´2i .t/ (36)

Considering �Pei as the virtual control input in (36), we choose

�Pei .t/ D
2Hi

!0

��
Dik1i

2Hi
� k21i

�
´1i .t/C

�
k1i �

Di

2Hi

�
´2i .t/C k2i´2i .t/ � ´3i .t/

�
; k2i > 0

(37)
By substituting (37) in (36), the second block closed-loop dynamic will be as

Ṕ2i .t/ D �k2i´2i .t/C ´3i .t/ (38)

At the third step, the new variable ´3i can be obtained from (36) and (38) as follows:

´3i .t/ D �
!0

2Hi
�Pei .t/C

�
Dik1i

2Hi
� k21i

�
´1i .t/C

�
k1i C k2i �

Di

2Hi

�
´2i .t/ (39)

By differentiating (39) and using (26), (34), and (38), the third block dynamic will be as follows:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1548–1568
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Ṕ3i .t/ D gi .´1i ; ´2i ; ´3i /C
!0

2HiT
0

doi

�
�Pei .t/C Pmi0 � .xdi � x

0

di /Iqi .t/Idi .t/

CT
0

doiQei .t/�!i .t/
�

�
!0

2HiT
0

doi

kciIqi .t/uf i .t/ �
!0

2Hi
�i .ı; !/

(40)

where

gi .´1i ; ´2i ; ´3i / D

�
k31i �

Dik
2
1i

2Hi

�
´1i .t/C

�
Dik1i

2Hi
� k21i � k2i

�
k1i C k2i �

Di

2Hi

��

� ´2i .t/C

�
k1i C k2i �

Di

2Hi

�
´3i .t/

(41)

Finally, the i-th subsystem (26) can be rewritten by the following transformed form:8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

Ṕ1i .t/ D �k1i´1i .t/C ´2i .t/

Ṕ2i .t/ D �k2i´2i .t/C ´3i .t/

Ṕ3i .t/ D gi .´1i ; ´2i ; ´3i /C
!0

2HiT
0

doi

�
�Pei .t/C Pmi0 �

�
xdi � x

0

di

�
Iqi .t/Idi .t/

CT
0

doi
Qei .t/�!i .t/

�
� !0

2HiT
0

doi

kciIqi .t/uf i .t/ �
!0
2Hi

�i .ı; !/

(42)

where k1i and k2i are known as control gains.

Assumption 2
To avoid Iqi .t/ D 0, assume that the generators are operating in the normal working region .0 <
ıi < � and ıi ¤ ıj /.

5. DECENTRALIZED NFSMC DESIGN

In this section, a decentralized nonlinear fractional-order sliding-mode PSS for the multi-machine
power system (42) is developed. For this purpose, a nonlinear fractional-order sliding surface based
on the fractional-order reaching law is proposed. The suggested controller is designed based on the
Caputo derivative.

Let the nonlinear fractional-order sliding surface to be defined as follows:

si .t/ D CD
1�˛´3i .t/C �iD

�˛´
pi=qi
3i .t/ (43)

where 0 < ˛ < 1; �i > 0; pi and qi are odd integers satisfying qi > pi > 0. Taking CD˛ derivative
from both sides of (43), leads to

CD
˛si .t/ D CD

˛
CD

1�˛´3i .t/C �i CD
˛D�˛´

pi=qi
3i .t/ (44)

From Properties 2.c and 3, we get

CD
˛si .t/ D Ṕ3i .t/C �i´

pi=qi
3i .t/ (45)

Substituting (42) into (45), results in

CD
˛si .t/ D gi .´1i ; ´2i ; ´3i /C

!0

2HiT
0

doi

�
�Pei .t/C Pmi0 � .xdi � x

0

di /Iqi .t/Idi .t/

CT
0

doiQei .t/�!i .t/
�

C �i´
pi=qi
3i .t/ �

!0

2HiT
0

doi

kciIqi .t/uf i .t/ �
!0

2Hi
�i .ı; !/

(46)
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Theorem 3
Consider the system (42) with the nonlinear sliding manifold (43) and assumption 1. The
control law,

uf i .t/ D
2HiT

0

doi

!0kciIqi .t/

 
gi .´1i ; ´2i ; ´3i /C

!0

2HiT
0

doi

�
�Pei .t/CPmi0 �

�
xdi � x

0

di

�
Iqi .t/Idi .t/

�
C T

0

doiQei .t/�!i .t/C �i´
pi=qi
3i .t/CD�.1�˛/ .	isi .t/

CKsw�i tanh .si .t/=
i //

!
; 0 < 
i < 1

(47)
guarantees the closed-loop system asymptotical stability, if the switching gainKsw�i be selected as

Ksw�i >
!0

2Hi

ˇ̌
CD

1�˛�i .ı; !/
ˇ̌

(48)

then the transformed variables .´1i ; ´2i ; ´3i / will converge to zero.

Proof
Consider the global continuously differentiable (except at si .t/ D 0/ Lyapunov candidate to be
as follows:

V.t; s.t// D ks.t/k1 D
Xn

iD1
Vi .t; si .t// D

Xn

iD1
jsi .t/j (49)

where s D Œs1; s2; : : : ; sn�
T is the sliding surface vector of n generators and Vi .t; si .t// is the

Lyapunov function for each generator. By differentiating V.t; s.t// with respect to time

PV .t; s.t// D
Xn

iD1
sgn.si .t//Psi .t/ (50)

Using Property 3, the following equation fractionalizes the integer-order derivative into a
fractional type.

Psi .t/ D CD
1�˛

CD
˛si .t/ (51)

Inserting (51) into (50), results in

PV .t; s.t// D
Xn

iD1
sgn.si .t//Psi .t/ D

Xn

iD1
sgn.si .t//

�
CD

1�˛
CD

˛si .t/
�

(52)

Using the sliding surface dynamics (45), one can obtain

PV .t; s.t// D
Xn

iD1
sgn.si .t//CD

1�˛

 
gi .´1i ; ´2i ; ´3i /C

!0

2HiT
0

doi

.�Pei .t/C Pmi0

�
�
xdi � x

0

di

�
Iqi .t/Idi .t/C T

0

doiQei .t/�!i .t/
�
C �i´

pi=qi
3i .t/

�
!0

2HiT
0

doi

kciIqi .t/uf i .t/ �
!0

2Hi
�i .ı; !/

! (53)

Substituting control signal (47) in (53), we get

PV .t; s.t// D
Xn

iD1
sgn.si .t//CD

1�˛

�
�D�.1�˛/.	isi .t/CKsw�i tanh .si .t/=
i // �

!0

2Hi
�i .ı; !/

�
(54)

Because 	isi .t/ C Ksw�i tanh .si .t/=
i / is a continuously differentiable function, then from
Property 2.c, we get
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PV .t; s.t// D �
Xn

iD1

�
	i jsi .t/j C sgn.si .t//

�
Ksw�i tanh .si .t/=
i /C

!0

2Hi
CD

1�˛�i .ı; !/

��
(55)

By inserting 
i ! 0, we have tanh.si .t/=
i / Š sgn.si .t//, which approximately leads to

PV .t; s.t// Š �
Xn

iD1

�
	i jsi .t/j C

�
Ksw�i C sgn.si .t//

!0

2Hi
CD

1�˛�i .ı; !/

��
(56)

Selecting, Ksw�i > !0
2Hi

ˇ̌
CD

1�˛�i .ı; !/
ˇ̌

results in

PV .t; s.t// 6�
Xn

iD1
	i jsi .t/j6�

1

n

�Xn

iD1
	i

� �Xn

iD1
jsi .t/j

�
D �� ksi .t/k1 ; �D

1

n

Xn

iD1
	i

(57)
which implies the multi-machine power system asymptotic stability based on Theorem 1.

Moreover, for the subsystem limited to the sliding manifold si .t/! 0 or consequently ´3i .t/!
0, the generator dynamics (26) reduce to²

Ṕ1i .t/ D �k1i´1i .t/C ´2i .t/
Ṕ2i .t/ D �k2i´2i .t/C 0

(58)

Dynamics of (58) have the positive eigenvalues k1i and k2i , which guarantee its asymptotic stability
. lim
t!1

´2i .t/ D 0 and lim
t!1

´1i .t/ D 0). �

Based on (58), high values of control gains can provide a faster convergence. On the other hand,
higher control gains may magnify the control signal (46) amplitude. Therefore, k1i and k2i should
be selected to reach a balance between convergence speed and control signal amplitude.

Remark 4
Generally, �i .ı; !/ can be considered as a lumped disturbance, which composed of interconnection
terms, model uncertainties, and disturbances.

Remark 5
Inequality (57) governed by the following Chebyshev inequality:

For a1 > a2 > � � � > an and b1 > b2 > � � � > bnthen

1

n

Xn

iD1
aibi >

�
1

n

Xn

iD1
ai

��
1

n

Xn

iD1
bi

�
(59)

6. SEMI-DECENTRALIZED NFSMC DESIGN

The decentralized NFSMC (47) contains the following constraints:
(1) The control law (47), usually needs the upper bound of interconnections and perturbations

in order to guarantee the stability of the control systems. In general, it is not easy to obtain this
knowledge in practice because of the complexity of the system. Moreover, when an unknown tran-
sient fault occurs in one subsystem, it may causes large changes in interaction bounds, which makes
the calculation of the switching gain Ksw�i difficult. Therefore, a strategy is needed in order to
approximate the unknown uncertainty, which affects the interconnected subsystems.

(2) The use of functions sgn.si .t// and tanh.si .t/=
i / with very small 
i value in (47) provokes
the chattering phenomena, which can damage system and degrades C 1Œ0; t � condition.

In this section, an adaptive fuzzy scheme is applied to approximate the interconnections and
perturbations upper bound, so that the objective of stability can be achieved.

6.1. Fuzzy logic system

In this part, the fuzzy logic system is briefly discussed.
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The basic configuration of the fuzzy system composed of a collection of fuzzy IF-THEN rules,
which can be written as follows [43]:

Rule l W If x1 is F
l
1 and : : : and xn is F

l
n I T hen y is A

l

where the input vectorX D Œx1; : : : ; xn�T 2 Rn and the output variable y 2 R denote the linguistic
variables of the fuzzy system, i D 1; 2; : : : ; n denotes the number of input for the fuzzy system and
l D 1; 2; : : : ;M denotes the number of the fuzzy rules, F li and Al are labels of the input and output
fuzzy sets, respectively.

By using the product inference, singleton fuzzification and center average defuzzification, the
fuzzy system output will be as

y.X/ D

Pm
iD1 y

l

�Qn
iD1 �F l

.xi /

i

�
Pm
iD1

Qn
iD1 �F l

.xi /

i

(60)

where �
F l
.xi /

i

and �Al .y
l/ D 1 are the membership function of the linguistic variables xi and

y, respectively. By introducing the concept of fuzzy basis function, (60) can be rewritten in the
following form

y.X/ D T �.X/ (61)

where  D Œy1; : : : ; yM �T is the parameter vector and �.X/ D Œ�1.X/; : : : ; �M .X/�T is a
regressive vector, which can be defined as

� l.X/ D

Qn
iD1 �F l

.xi /

iPm
iD1

Qn
iD1 �F l

.xi /

i

(62)

6.2. Fuzzy perturbation and interconnection approximator

Because determining the interconnections, perturbation, and also modeling uncertainties upper
bound is really hard. Then, based on the universal approximation of fuzzy systems, we can rewrite
the sliding surface dynamics (46) as follows:

CD
˛si .t/ D gi .´1i ; ´2i ; ´3i /C

!0

2HiT
0

doi

�
�Pei .t/C Pmi0 �

�
xdi � x

0

di

�
Iqi .t/Idi .t/C T

0

doiQei .t/�!i .t/
�

C �i´
pi=qi
3i .t/ �

!0

2HiT
0

doi

kciIqi .t/uf i .t/CD
�.1�˛/Ti �i .�!/

(63)

where i D Œ1i ; : : : ; Mi �
T is the parameter vector, �i .�!/ is a regressive vector, and �! D

Œ�!1; : : : ; �!j¤i : : : ; �!n�
T 2 Rn�1 is fuzzy system input vector.

Choosing the excitation voltage as

uf i .t/ D
2HiT

0

doi

!0kciIqi .t/

 
gi .´1i ; ´2i ; ´3i /C

!0

2HiT
0

doi

�
�Pei .t/C Pmi0 �

�
xdi � x

0

di

�
Iqi .t/Idi .t/

CT
0

doiQei .t/�!i .t/
�
C �i´

pi=qi
3i .t/CD�.1�˛/

�
	isi .t/C O

T
i �i .�!/

�!
(64)

guarantees the multi-machine power system stability with the following adaptation law

PQi D ��i�i .�!/si .t/ or CD
˛ Qi D �D

�.1�˛/�i�i .�!/si .t/ (65)

where Qi D i� Oi is the parameter error vector, Oi is the estimation vector of the unknown parameter
vector i , and �i is a positive constant used for adaptation.
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Proof
Using (63) and (64), the closed-loop dynamic becomes

CD
˛si .t/ D D

�.1�˛/Ti �i .�!/ �D
�.1�˛/

�
	isi .t/C O

T
i �i .�!/

�
D D�.1�˛/

�
QTi �i .�!/ � 	isi .t/

� (66)

To study the local stability and derive the adaptation law for Qi , we consider the following Lyapunov
function:

V.t; X.t// D ˛.kXk/ D kXk22 D
Xn

iD1
kXik

2
2 D

Xn

iD1

�
1

2
s2i .t/C

1

2�i
QTi
Qi

�
(67)

where X D ŒX1; X2; : : : ; Xn�T and Xi D
h
si ; Q

T
i

i
.

Differentiating (67) along the trajectory (66) and using Property 3, one can obtain that

PV .t; X.t// D
Xn

iD1

�
si .t/Psi .t/C

1

�i
QTi
PQi

�

D
Xn

iD1

�
si .t/CD

1�˛
CD

˛si .t/C
1

�i
QTi
PQi

�

D
Xn

iD1

�
si .t/

�
QTi �i .�!/ � 	isi .t/

�
C

1

�i
QTi
PQi

�

D
Xn

iD1

�
�	is

2
i .t/C

QTi

�
�i .�!/si .t/C

1

�i

PQi

��
(68)

Inserting the adaptation law (65), leads to

PV .t; X.t// 6 �
Xn

iD1
	is

2
i .t/ 6 0 (69)

By using Caputo definition in (3) and Theorem 2 (Corollary), we can get

CD
1�˛V.t; X.t// D D�˛ PV .t; X.t// D �

Xn

iD1
	iD

�˛s2i .t/ 6 0 (70)

which guarantees the closed-loop system stability. Therefore, si .t/ and Qi are bounded. Although
si .t/ converges to zero, the system is not asymptotically stable, because Qi is only bounded.

Note that, in addition to the interconnections, the adaptation law is capable to compensate the
system modeling errors and perturbations. �

Remark 6
The adaptation law (65) is also suggested in the fractional-order form in order to have set closed-
loop dynamics. It can be proofed that the fractional-order adaptation law behavior is similar to the
integer-order one. To testify this idea let us take CD

1�˛ from both sides of the fractional-order
adaptation mechanism

CD
1�˛

CD
˛ Q D �CD

1�˛
CD
�.1�˛/�i�i .�!/si .t/ !

PQ D ��i�i .�!/si .t/ (71)

Moreover, the stability proof of the fractional-order adaptation law is same as the integer-order one

except at (68), which PQ should be replaced by CD1�˛
CD

˛ Q .

Remark 7
Although the NFSMC with fuzzy approximation can have better action against unexpected pertur-
bations in comparison with the decentralized NFSMC, it is worthwhile to notify that the NFSMC
without fuzzy approximation uses only local data, whereas adding the fuzzy approximator makes
it a semi-decentralized controller [44], which means each generator needs the neighbors relative
speed information. This information is reachable in a short time via Fiber-optic communication
technology. Therefore, although the semi-decentralized control is a high-cost technique, but it is
more accurate and reliable.
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7. SIMULATION RESULTS

A three-generator system (where generator 3 is infinite bus) in Figure 1 is chosen to demonstrate
the effectiveness of the proposed decentralized fractional-order controllers. The generator and the
transmission line parameters are listed in Table II. The physical limits of excitation voltage of the
machine are taken �6 6 Ef i D uf i 6 6.

The performance of the proposed controller is demonstrated in the following operating point:

ı10 D 0:532 rad; Pm10 D 0:57 p:u:; Vt10 D 1:12 p:u:
ı20 D 0:567 rad; Pm20 D 0:56 p:u:; Vt20 D 1p:u:

Figure 1. A two-machine infinite bus power system.

Table II. The two-machine infinite bus power system parameters.

Parameters Generator #1 Generator #2

xd .p:u:/ 1.863 2.36
x
0

d
.p:u:/ 0.257 0.319

xT .p:u:/ 0.129 0.11
xad .p:u:/ 1.712 1.712 x12 D 0:15 p:u:

T
0

do
.sec/ 6.9 7.96 x13 D 0:53 p:u:

H.sec/ 4 5.1 x23 D 0:6 p:u:
D.p:u:/ 5 3
kc 1 1 T

0

do
D T

0

do�min
D T

0

do�max
Ef .p:u:/ [-6,6]
!0.rad=sec/ 314.159

Figure 2. Fuzzy sets assigned to input variables.(generator #1:�!2 and�!3 generator #2:�!1 and�!3/.
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Figure 3. Power angle, relative speed, active power and excitation voltages of generators #1 and #2 for
Fault 1 (NFSMC vs. SMC) with fuzzy approximator.
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To assess the dynamic performance of the proposed controllers, we consider the following two faults
in which there exists the unknown perturbation in the mechanical power Pm0, reactance xd and
transient reactance x

0

d
:

Fault 1: Unknown perturbation transpires in the direct axis reactance and the direct axis transient
reactance of generator #1 when the whole system is operating at the steady-state, and the reactance
and transient reactance never recovered, that is,

xd1 D

²
1:863 0 6 t < 10
2:608 10 6 t ; x

0

d1 D

²
0:257 0 6 t < 10
0:360 10 6 t

Fault 2: Unknown perturbation occurs to the mechanical power of generator #1 when the whole
system is operating at steady-state, and after 1 sec the mechanical power is recovered, that is,

Pm10 D

8<
:
0:57 0 6 t < 10
0:46 10 6 t < 11
0:57 11 6 t

7.1. Semi-decentralized NFSMC

Relative speed of neighbor generators are chosen as the fuzzy system input variables. Five fuzzy
sets for each input variable have been found sufficient. Fuzzy sets for inputs are defined according
to the membership functions depicted in Figure 2.

The controller parameters are selected as

˛ D 0:2 �1 D �2 D 1 p1=q1 D p2=q2 D 3=11 	1 D 	2 D 10 �1 D �2 D 40

also, the NBC technique control gains are considered as k11 D k12 D 4 and k21 D k22 D 8.
The simulation results of NFSMC and SMC are given in Figures 3 and 4. Both methods use

the same fuzzy approximator, and SMC parameter 	1;2 is considered 10 to have a fair comparison.
Figure 3, presents power angle, relative speed, active power and excitation voltages of generators

Figure 4. Power angle and excitation voltages of generators #1 and #2 for Fault 2 (NFSMC vs. SMC) with
fuzzy approximator.
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Figure 5. Power angle, active power and excitation voltages for ˛ D 0:2 and 0:8 of NFSMC without fuzzy
approximator for half value of Fault 2.
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#1 and #2 for Fault 1. Also, power angle and excitation voltages of generators #1 and #2 for Fault 2
are illustrated in Figure 4. The response of NFSMC appears to be very satisfactory because it has at
least 4 to 6 s faster convergence, low tracking error and generally low deviation from the operation
point in comparison with the SMC.

7.2. Decentralized NFSMC and alpha Effects

In this part, the fuzzy term is removed and 	1;2 assumed to be zero in order to clarify the pure effects
of the parameter ˛ on the closed-loop system. Consider the control law (47) with the following
parameters:

�1 D �2 D 1 p1=q1 D p2=q2 D 3=11 Ksw�1 D Ksw�2 D 50 
1 D 
2 D 0:001

Figure 5 shows power angle, active power, and excitation voltage signals for two different fractional
parameter values .˛ D 0:2 and 0:8/, and exact comparison results are listed in Table III. In this
table, better characteristics are highlighted with gray color. These results are governed for half value
of Fault 2, which is transpired in generator #1. In this part, the Fault value is selected small in order
to avoid losing the system dominant behaviors due to the control signal saturation.

In Table III, three quantities (Overshoot and Undershoot, Convergence speed, and control signal
oscillations) have been presented:

(1) Overshoot and Undershoot: Higher values of ˛ increase the integration D�˛´pi=qi3i .t/ effects
on the sliding surface and multiply the active power deviation from set point for Pe1.t/. Therefore,
based on (58), the first generator power angle ı1.t/ overshoot decreases. These changes affect the
second generator ı2.t/ and Pe2.t/ through interconnections.

(2) Convergence speed: by a glance on Figure 5 and Table III, it can be seen that the transient
response convergence speed is small and better for ˛ D 0:8.

(3) Control signal oscillations: the excitation voltage oscillations are decreased for ˛ D 0:2

because of amplifying the integration effect of tanh.si .t/=
i /, which makes it a smoother function.
It is worthwhile to notify that 
i and pi=qi have direct effects on control signal chattering,

tracking error and convergence time. Table IV is useful in choosing proper values for 
i and pi=qi
to obtain a balance results.

7.3. Terminal Voltage Regulation

All previous discussions were about developing new types of PSSs without considering post-fault
terminal voltage deviations. Nevertheless, because the terminal voltage Vti is a function of load

Table IV. 
i and pi=qi variation effects on system behavior.

Figure 6. i-th generator control system configuration.
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Figure 7. Relative speed, active power, terminal voltage and excitation voltages of generators #1 and #2 for
Fault 1.
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angle ıi , active power Pei and system structure, any change in the system will cause the terminal
voltage to reach another equilibrium point [45]. In order to deal with this problem, we combined
the NFSMC (with the fuzzy approximator) power system stabilizer with a proportional-integral (PI)
regulator which generates the load angle reference value [46].

ıdi .t/ D KPi .Vti � Vtdi /CKI i

Z
.Vti � Vtdi /dt (72)

where KPi and KI i are PI parameters and must be tuned for moving ıdi slowly.
A simplified configuration of the aforementioned technique is presented in Figure 6, which is

composed of suggested fractional PSS and a PI-based automatic voltage regulator. The performance
and effectiveness of mentioned technique is illustrated in Figure 7. This figure shows relative speed,
active power, terminal voltage, and excitation voltages of generators #1 and #2 for Fault 1. From
Figure 7, it is evident that the rotor speed oscillations are damped down for both generators in a short
time. Moreover, the terminal voltages are recovered to desired values for the proposed strategy.

8. CONCLUSION

In this paper, the idea of transient stability enhancement via NFSMC with fuzzy approximator has
been employed to the multi-machine power system, and results are compared with the conventional
SMC. For NFSMC with fuzzy term, the simulation results demonstrate a fast, high precision and
low deviation transient response versus SMC. Moreover, the fractional parameter ˛ absolute effects
on the closed-loop system transient response and control signal chattering have been studied. When
˛ is approaching one, it will cause a fast transient response, high excitation voltage chattering, and
the electrical power high deviation (against power angle deviation). Besides when ˛ is selected near
zero, it will cause a slow transient response, low excitation voltage chattering and the electrical
power low deviation. Consequently, we have an extra tuning parameter to reach a trade-off among
the power angle deviation, convergence speed, and excitation voltage chattering. Finally, the sug-
gested NFSMC PSS is combined with a simple automatic voltage regulator in order to keep the
system synchronism and halter the terminal voltage variations at the same time. Simulation results
reveal the effectiveness of the proposed strategy.

For future works, we intended to develop fractional-order voltage regulators and various
combinations of them with the fractional-order PSSs.
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