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Abstract: The objective of this paper is to design decentralised sliding mode 
controllers for fractional-order large-scale nonlinear systems. In the first step, a 
fully-decentralised fractional-order sliding mode controller with a novel 
integral sliding manifold is developed. Practical stability of the closed-loop 
system is fulfilled under the assumption that the interconnections among the 
subsystems are bounded with known upper bounds. However, in reality the 
uncertainties and interconnections upper bounds are unknown. Therefore in the 
next step, an adaptive-fuzzy structure is applied to approximate the interactions 
and uncertainties. Since the states of neighbour subsystems are considered as 
the fuzzy system inputs, this technique is known as semi-decentralised control 
strategy. Due to using the fractional integral sliding surface, the zero 
convergence of the sliding manifold has been analysed based on integer-order 
stability theorems. In addition, system tracking errors convergence is deduced 
from fractional-order linear stability theorems. Computer simulations present 
the performance of the suggested controllers in the presence of uncertainties 
and interconnections. 
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1 Introduction 

Large-scale nonlinear systems are often composed of multiple low-dimensional 
subsystems, which are interconnected. Such dynamical systems are widely employed in 
industries like; electric power systems (Guo et al., 2000), chemical processes (Al-Gherwi 
et al., 2010), robotic manipulators (Zhu and Li, 2010), etc. These systems complexities 
lie in high nonlinearity, large dimensions and interconnections among the subsystems, 
which make the centralised control strategy computationally burden or hard to 
implement. Moreover, when the centralised controller fails, the entire system becomes 
out of control. In contrast, fully-decentralised control can be designed for local 
subsystems from local data with less computational efforts. But the fully-decentralised 
control may not provide pleasant performance and may not even guarantee system 
stability for systems with unknown interconnections. On the other side, the advancement 
of distributed control systems (DCS), fieldbus, and communication technologies in 
industry allows the engineers to introduce semi-decentralised and distributed control 
strategies as new control methodologies (Yousef et al., 2010; Stewart et al., 2011). The 
semi-decentralised structure means that the ith subsystem’s controller depends not only on 
the ith subsystem variables, but also on neighbour subsystems variables. From cable 
connections and computation point of views, this technique is a bridge between the 
centralised and fully-decentralised control methods. 

One of the dominant challenges in fully-decentralised and semi-decentralised 
techniques is to develop some robust methods for dealing with the interconnections and 
consequently global system stability. In Zhang and Feng (1997), Huang and Zhou (2010), 
Li et al. (2011), Yousef et al. (2006), Yan et al. (2003), Shyu et al. (2003), Chou and 
Cheng (2003), Cheng and Chang (2008), Da (2000) and Lin and Wang (2010), different 
decentralised control methods have been reported. In some of these studies, intelligent 
methods like adaptive-fuzzy (Zhang and Feng, 1997; Huang and Zhou, 2010) and 
adaptive-neural controllers (Li et al., 2011) are used to cope with the interconnections 
and nonlinearities. Yousef et al. (2010, 2006) have suggested a semi-decentralised 
technique based on direct and indirect adaptive-fuzzy techniques. In recent two decades, 
the sliding mode control (SMC) has been used in large-scale systems control (Yan et al., 
2003; Shyu et al., 2003; Chou and Cheng, 2003; Cheng and Chang, 2008) due to its high 
precision and robust behaviour against model uncertainties and interactions. These 
literatures often assume that the interconnections are bounded by first-order or  
higher-order polynomials of states. However, some physical systems do not satisfy these 
conditions or finding such conditions is challenging. In Zhu and Li (2010), Da (2000) and 
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Lin and Wang (2010) some combinations of intelligent techniques and SMC have been 
reported to manage the mentioned problem. It is worthwhile to notify that the whole 
mentioned discussions on SMC of large-scale systems are developed based on  
integer-order (IO) calculus. 

Fractional calculus is an old mathematical branch with a generalisation of ordinary 
differentiation-integration to an arbitrary order. Nearly 300 years, this field was viewed 
as an only theoretical topic with no practical applications (Podlubny, 1999). But in last 
three decades, it has been used in different branches of engineering and physics such as: 
reaction-diffusion system (Gafiychuk et al., 2008), electrical circuits (Luo et al., 2011), 
rotor-bearing system (Cao et al., 2011), finance system (Laskin, 2000), biological system 
(Petras and Magin, 2011), thermoelectric system (Ezzat, 2011), and finally designing 
fractional-order (FO) controllers on dynamical systems is a prominent case of these 
applications. Fractional-order sliding mode control (FOSMC) is a famous one of these 
FO controllers. 

Recently, various forms of FOSMC have been used to control FO nonlinear systems 
especially the chaotic systems (Tavazoei and Haeri 2008; Hosseinnia et al., 2010; 
Aghababa, 2012, 2013a, 2013b; Chen et al., 2013; Binazadeh and Shafiei, 2013; Dadras 
and Momeni, 2013; Wang, 2013). In Tavazoei and Haeri (2008) and Hosseinnia et al. 
(2010), the FOSMC with a simple linear sliding manifold has been reported. Aghababa 
(2012, 2013a) has developed this method base on terminal sliding surfaces. To remove 
the chattering of FOSMC a non-chatter sliding manifold proposed in Aghababa (2013b), 
and a second-order structure is suggested in Chen et al. (2013). The sliding mode 
technique is designed for output tracking of a time-varying reference signal for FO 
nonlinear systems in Binazadeh and Shafiei (2013). In Dadras and Momeni (2013), a 
passivity-based integral sliding mode controller is considered. Also, Wang (2013) has 
tried to apply a backstepping SMC for uncertain chaotic systems. Most of the above 
literatures are common in the following cases: 

1 Designing the FOSMC for small-scale systems: The main difficulty in the large-scale 
systems control in comparison with the small-scale ones, is the interconnections 
which makes the control process challenging. To the author’s knowledge, there are 
few works on control of FO large-scale systems. Recently, robust decentralised 
control of FO large-scale linear systems is reported in Li et al. (2013). While most of 
physical systems have nonlinear dynamics and encountering with nonlinearities is a 
delicate matter. Therefore, the first novelty associated with this paper is developing a 
fully-decentralised FOSMC technique on fractional-order large-scale nonlinear 
systems with known uncertainty and interconnection bounds. 

2 Applying the FOSMC with known uncertainty bounds. In the other word,  
lack of adaptive or adaptive-fuzzy structures for unknown uncertainty approximation 
in the proposed controllers is apparent. However, in practical point of view the 
uncertainties upper bounds are unknown. Based on our knowledge, there are few 
literatures on the adaptive and adaptive-fuzzy SMC of FO nonlinear systems with 
unknown uncertainties. In Lin and Lee (2011) and Lin et al. (2011), authors have 
proposed an adaptive-fuzzy sliding mode controller for synchronisation of FO 
chaotic systems. However, the final result of their work is questioned by Tavazoei 
(2012), because they were careless about some properties of FO calculus. In  
Wang et al. (2012) and Yin et al. (2013), two adaptive sliding mode controllers  
are constructed to facilitate the stability of systems with unknown uncertainties. 
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However, the presented methods are employed on simple FO small-scale systems.  
The main problem will arise when the system is large-scale with unknown 
interconnections. Hence, an algorithm is needed to approximate both uncertainty  
and interconnection. Therefore, the second novelty associated with this paper is 
employing the semi-decentralised FOSMC technique on fractional-order large-scale 
nonlinear systems with uncertainty and interconnection approximation. 

The remainder of this paper is organised as follows: some preliminaries of fractional 
calculus are expressed in Section 2. In Section 3, FO large-scale nonlinear system model 
is introduced. A fully-decentralised FOSMC are developed in Section 4. Section 5 
describes a semi-decentralised FOSMC strategy. An illustrative example is provided to 
approve the theoretical results in Section 6, and finally, conclusions are given in  
Section 7. 

2 Preliminaries 

In this section, some basic definitions, remarks and theorems of fractional calculus are 
expressed. 

Definition 1 (Hewitt and Stromberg, 1963): The function f(t): R → R is called Ck-class if 
its derivatives f(1), f(2),…,f(k) exist and be continuous (except for a finite number of points). 

Based on this definition, f(t) ∈ C0, C1 are the classes of all continuous and continuously 
differentiable functions. 

Definition 2 (Li and Deng, 2007): The αth order Riemann-Liouville (RL) fractional 
integration of function f(t) with respect to t is given by 

0, 0, 10

1 ( )( ) ( )
Γ( ) ( )

t

t t
f τI f t D f t dτ

t τ −
= =

−∫α −α
αα

 (1) 

where Γ(·) is the Gamma function. 

Definition 3 (Li and Deng, 2007): The Grunwald-Letnikov (GL) fractional derivative of 
function f(t) with fractional order α is defined as 

1 ( ) ( )

0, 10
0

(0) 1 ( )( )
Γ( 1) Γ( ) ( )

m k k mt
GL t m

k

f t f τD f t dτ
k m t τ

α
α

αα α

− − +

− +
=

= +
− + + − −∑ ∫  (2) 

where f(t) ∈ Cm[0, t] and m – 1 ≤ α < m, m ∈ N. 

Definition 4 (Li and Deng, 2007): The RL fractional derivative of function f(t) with 
fractional order α is defined as 

( )
0, 0, 10

1 ( )( ) ( )
Γ( ) ( )

m t
mm

RL t t m m

d f τD f t D D f t dτ
m dt t τ

− −
− +

= =
− −∫αα

αα
 (3) 

where m – ≤ α < m, m ∈ N. 
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Property 1 (Li and Deng, 2007): If f(t) ∈ Cm[0, t] then 0, 0,( ) ( ).RL GLt tD f t D f t=α α  

Theorem 1 (Qian et al., 2010): The autonomous linear system (4) with RL derivative, 
fractional order 0 < α < 1 and initial value 1

0 00, ( ) | ,RL ttz D z t−
== α  is asymptotically stable 

if and only if all the non-zero eigenvalues of matrix A satisfy | arg( ( )) | .
2i
πλ A >

α  

0, ( ) ( )RL tD z t Az t=α  (4) 

where z(t) ∈ Rn×1 is state vector, and λi is the ith eigenvalue of the matrix A ∈ Rn×n. 

3 FO large-scale system dynamic 

Consider a class of FO large-scale nonlinear system composed of N interconnected 
subsystems (Si). All of the subsystems Si can be described based on RL derivative as  
(i = 1, 2,…,N): 

( ) ( ) ( ) ( )

1 2

2 3

1

( ) ( )
( ) ( )

:

( ) ( ) , , , ,

RL i i

RL i i
i

RL in i i i i i i i i N

D x t x t
D x t x t

S

D x t f X g X u t M X t I X X t

=⎧
⎪ =⎪
⎨
⎪
⎪ = + + +⎩

#
"

α

α

α

 (5) 

where α ∈ (0, 1) is the order of system, Xi = [xi1, xi2,…,xin]T is the state vector of ith 
subsystem, ui ∈ R is the input, fi: Rn → R and gi: Rn → R are known functions (gi(Xi) ≠ 0), 
M1: Rn+1 → R is model uncertainty and external disturbance and Ii: Rn×N+1 → R represents 
the interconnection between the ith subsystem and other subsystems. We consider  
Li(X, t) = Mi(Xi, t) + Ii(X1,…,XN, t) which is called the lumped uncertainty. Where 

1 2[ , , , ]T T T T
NX X X X= …  is the global state vector. 

Assumption 1: Full state vectors of the system are measurable. 

By defining the tracking errors of the ith subsystem as ei1(t) = xi1(t) – xi1d(t),…,ein(t) = 
xin(t) – xind(t), the error dynamics of (5) will be in the following form: 

( ) ( )

1 2

2 3

( ) ( )
( ) ( )

:

( ) ( ) ( , ) ( )

RL i i

RL i i
i

RL in i i i i i i RL ind

D e t e t
D e t e t

S

D e t f X g X u t L X t D x t

=⎧
⎪ =⎪
⎨
⎪
⎪ = + + −⎩

#

α

α

α α

 (6) 

where sets Xid = [xi1d, xi2d,…,xind]T and Ei = [ei1, ei2,…,ein]T are reference vector and 
tracking error vector of ith subsystem, respectively, and the large-scale system error 
vector is given by 1 2[ , , , ] .T T T T

NE E E E= …  The goal is to design robust controllers for the 
FO systems (5) such that the state vectors Xi(t), i = 1, 2,…,N track the time-varying 
reference vectors Xid(t) (where xi(j+1)d(t) = RLDαxijd(t), 1 ≤ j ≤ n – 1). 
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4 Fully-decentralised fractional-order SMC 

In this section, designing the fully-decentralised FOSMC for FO large-scale system (4) is 
developed. For this purpose, an integral sliding manifold is proposed. 

Assumption 2: Assume that the lumped uncertainty Li(X, t) satisfies the following 
condition 

1( , )i iL X t ψ≤  (7) 

where ψi1 is a known positive constant. 
Consider the following integral FO sliding manifold: 

1
(1 ) 1

0 1
1

( ) ( ) ( ) ( )
n

i in ik ik i
k

s t D e t c e t c D e t
−

− − −

=

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑α  (8) 

where the positive constants ci0, ci1,…,ci(n–1), are known as sliding manifold parameters. 
By differentiating from both sides of (8) and applying (6), one can obtain 

1
1 (1 ) 1 1

0 1
1

1

0 1
1
1

( 1) 0 1
1
1

( 1)
1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

n

i in ik ik i
k

n

RL in ik RL ik i
k
n

RL in ik i k i
k
n

RL in ik i k
k

s t D D e t c e t c D D e t

D e t c D e t c e t

D e t c e t c e t

D e t c e t

−
− − −

=

−

=

−

+

=

−

+

=

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

= + +

= +

∑

∑

∑

∑

� α

α α

α

α

 (9) 

Putting (6) in (9), leads to 

( ) ( )
1

( 1)
0

( ) ( ) ( ) ( ) ( , )
n

i i i i i i RL ind ik i k i
k

s t f X g X u t D x t c e t L X t
−

+

=

= + − + +∑� α  (10) 

If the sliding motion be on the sliding manifold (si(t) = 0), we can get 

1
(1 ) 1

0 1
1

( ) ( ) ( ) 0
n

in ik ik i
k

D e t c e t c D e t
−

− − −

=

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑α  (11) 

By taking time derivative D1 from both sides of (11) and using (6), results in 

1 2

2 3

1

( 1)
0

( ) ( )
( ) ( )

( ) ( )

RL i i

RL i i

n

RL in ik i k
k

D e t e t
D e t e t

D e t c e t
−

+

=

=⎧
⎪ =⎪⎪
⎨
⎪
⎪ = −
⎪⎩

∑
#

α

α

α

 (12) 
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or it can be rewritten in a matrix form as 

0 1 2 ( 1)

0 1 0 0
0 0 1 0

( ) ( )RL i i

i i i i n

D E t E t

c c c c −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
− − − −⎣ ⎦

"
"

# # # # #
α  (13) 

The sliding manifold parameters (ci0, ci1,…,ci(n–1)) should be selected in such a way that 

the eigenvalues of (13) satisfy the condition of Theorem 1 (i.e., | arg( ( )) | ).
2i
πλ A >

α  Note 

that, considering ci0 = 0 still can guarantee asymptotic stability of the tracking errors. For 
more details, see Remark 3.4(a) in Qian et al. (2010) and Lemma 1 from Pisano et al. 
(2010). 

Theorem 2: Consider the RL derivative-based error dynamics (6) with the sliding 
manifold (8) and Assumptions 1 and 2, the decentralised control law 

( )
( )

( )

1

( 1)
0

1( ) ( ) ( )

                       ( ) sgn ( )

n

i i i RL ind ik i k
i i k

i i sw i i

u t f X D x t c e t
g X

η s t K s t

−

+

=

−

⎛
= − + −⎜⎜

⎝
⎞

− − ⎟
⎠

∑α

 (14) 

guarantees the closed-loop system asymptotical stability, if the switching gain Ksw–i be 
selected as 

1 ( , )sw i i iK ψ L X t− ≥ ≥  (15) 

then the tracking errors E1, E2,…,EN, will converge to zero. Where ηi > 0 is known as 
reaching rate. 

Proof: Let select the following Lyapunov function: 

( ) ( )1
1 1

, ( ) ( ) , ( ) ( )
N N

i i i
i i

V t s t s t V t s t s t
= =

= = =∑ ∑  (16) 

where Vi(•) is the Lyapunov function for each subsystem. Now, by taking time derivative 
from V(•), one has 

( ) ( )
1

, ( ) sgn ( ) ( )
N

i i
i

V t s t s t s t
=

=∑� �  (17) 

Substituting the sliding manifold dynamics (10), results in 

( ) ( ) ( ) ( )
1

1

( 1)
0

, ( ) sgn ( ) ( ) ( )

                                           ( ) ( , )

N

i i i i i i RL ind
i

n

ik i k i
k

V t s t s t f X g X u t D x t

c e t L X t

=

−

+
=

⎛
= + −⎜

⎝

⎞
+ + ⎟⎟

⎠

∑

∑

� α

 (18) 
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Using the control signal (14), one can obtain 

( ) ( ) ( )( )
1

, ( ) sgn ( ) ( ) sgn ( ) ( , )
N

i i i sw i i i
i

V t s t s t η s t K s t L X t−
=

= − − +∑�  (19) 

Since sgn(si(t)) × sgn(si(t)) = 1 and sgn(si(t)) × si(t) = | si(t) |, then we have 

( ) ( )( )
1

, ( ) ( ) sgn ( ) ( , )
N

i i sw i i i
i

V t s t η s t K s t L X t−
=

= − + −∑�  (20) 

Choosing Ksw–i ≥ ψi1, leads to 

( ) 1
1 1 1

1

1, ( ) ( ) ( ) Ω ( ) ,

1Ω 0

N N N

i i i i i
i i i

N

i
i

V t s t η s t η s t s t
N

η
N

= = =

=

≤ − ≤ − = −

⎛ ⎞
= >⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑

�

 (21) 

which implies the closed-loop system asymptotic stability. □ 

Remark 1: Inequality (21) is derived by the following Chebyshev’s sum inequality 
(Toader, 1996): 

For a1 ≥ a2 ≥ ··· ≥ aN and b1 ≥ b2 ≥ ··· ≥ bN then 

1 1 1

1 1 1N N N

i i i i
i i i

a b a b
N N N= = =

⎛ ⎞⎛ ⎞
≥ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ∑  (22) 

Remark 2: Proposed decentralised FOSMC technique (14) based on Assumption 2, 
contain the following limitations: 

1 Employing the sgn(si(t)) function in (14) provoke the chattering phenomena, which 
can damage under control physical systems. 

2 The control law (14), usually needs the upper bound of the interconnections and 
model uncertainties in order to assure the stability of the large-scale system. 
Generally, it is not easy to obtain this knowledge in practice because of the 
complexity of the system. Moreover, when an unknown perturbation occurs in one 
subsystem, it may causes large changes in interaction bounds, which makes the 
calculation of the switching gain Ksw–i difficult. Therefore, a plan is needed to 
approximate the interconnections and uncertainties. 

5 Semi-decentralised FOSMC 

In this section, an adaptive-fuzzy structure is employed to approximate the 
interconnections and uncertainties, and then the aim of stability can be obtained. 
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5.1 Fuzzy logic system brief review 

The basic configuration of the fuzzy system composed of a collection of fuzzy IF-THEN 
rules, which can be written as follows (Wang, 1997): 

Rule 1: If x1 is 1
lF  and…and xp is l

pF  then y is Al. 

where the input vector X = [x1,…,xp]T ∈ Rp and the output variable y ∈ R denote the 
linguistic variables of the fuzzy system, i = 1, 2,…,p denotes the number of input for the 
fuzzy system and l = 1, 2,…M denotes the number of the fuzzy rules, l

iF  and Al are 
labels of the input and output fuzzy sets, respectively. 

By using the product inference, singleton fuzzification and centre average 
defuzzification, the fuzzy system output will be as 

( )
( )( )
( )

1 1

1 1

l
i

l
i

pM l
iFl i

p pM
iFl i

y μ x
y X

μ x
= =

= =

=
∑ ∏
∑ ∏

 (23) 

where ( )l
i iFμ x  and ( ) 1l

l
Aμ y =  are the membership function of the linguistic variables xi 

and y, respectively. By introducing the concept of fuzzy basis function, (23) can be 
rewritten in the following form 

( )( ) T
py X θ ξ X=  (24) 

where θ = [y1,…,yM]T is the parameter vector and ξ(X) = [ξ1(Xp),…,ξM(Xp)]T is a regressive 
vector which can be defined as 

( )
( )

( )
1

1 1

l
i

l
i

p
iFil

p pM
iFl i

μ x
ξ X

μ x
=

= =

=
∏

∑ ∏
 (25) 

5.2 Interconnection and uncertainty approximation strategy 

Based on the universal approximation property of fuzzy systems it is possible to 
approximate the interconnections and uncertainties. 

Now, consider the rewritten form of the sliding manifold dynamics (10) as follows: 

( ) ( )
1

( 10
0

( ) ( ) ( ) ( ) ( )
n

T
i i i i i i RL ind ik i k ii

k

s t f X g X u t D x t c e t θ ξ X
−

+

=

= + − + +∑� α  (26) 

where θi = [θi1,…,θiM]T is the parameter vector, ξi(X) is a regressive vector. 

Theorem 3: Choosing the semi-decentralised control law as 

( )
( )

1

( 1)
0

1 ˆ( ) ( ) ( ) ( ) ( )
n

T
i i i RL ind ik i k i i ii

i i k

u t f X D x t c e t η s s θ ξ X
g X

−

+

=

⎛ ⎞
= − + − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑α  (27) 
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guarantees the large-scale systems (4) stability with the following adaptation mechanism 

( ) ( )i i i iθ μ ξ X s t= −��  (28) 

where ˆθ θ θ= −�  is the parameter error vector, θ̂  is the estimation vector of the unknown 
parameter vector θ, and μi is a positive constant used for adaptation. 

Proof: Using (26) and (27) the closed-loop dynamic becomes 

ˆ( ) ( ) ( ) ( ) ( ) ( )T T T
i i i i i i i ii i is t θ ξ X η s t θ ξ X θ ξ X η s t= − − = −��  (29) 

To study the stability and derive the adaptation law for ,θ�  we consider the following 
Lyapunov function: 

( ) ( ) ( )2 2
2

1 1

1 1, ( ) , ( ) ( )
2 2

N N
T

i i ii i
ii i

V t Y t Y Y V t Y t s t θ θ
μ= =

⎛ ⎞= = = = +⎜ ⎟
⎝ ⎠

∑ ∑ � �α  (30) 

where [ ].T
i i iY s θ= �  Differentiating (30) along the trajectory (29), results in 

( )

( )
1

1

2

1

1, ( ) ( ) ( )

1( ) ( ) ( )

1( ) ( ) ( )

N
T

i i ii
ii

N
T T

i i i i ii i
ii

N
T

i i i ii i
ii

V t Y t s t s t θ θ
μ

s t θ ξ X η s t θ θ
μ

η s t θ ξ X s t θ
μ

=

=

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑

∑

�� �� �

�� � �

�� �

 (31) 

Inserting the adaptation law (28), leads to 

( ) 2

1

, ( ) ( ) 0
N

i i
i

V t Y t η s t
=

= − ≤∑�  (32) 

which assures the large-scale system (4) stability. Therefore, si(t) and iθ�  are bounded. 
Although si(t) converges to zero (Barbalat’s lemma), but the system is not asymptotically 
stable, because iθ�  is only bounded. 

Remark 3: By substituting the proposed control laws in the corresponding sliding 
manifold dynamics, we can get the following closed-loop sliding manifold dynamics: 

• decentralised strategy 

( )( ) ( ) sgn ( ) ( , )i i i sw i i is t η s t K s t L X t−= − − +�  (33) 

• semi-decentralised strategy 

( ) ( ) ( )

( ) ( )

T
i i i ii

i i i i

s t θ ξ X η s t

θ μ ξ X s t

= −

= −

��
��

 (34) 
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from equations (33) and (34), it is obvious that there is no FO operators. Therefore, the 
IO stability analysis can be applied for (33) and (34). Moreover, it is worthwhile to notify 
that the error dynamics (13) is FO, and the sliding manifold parameters should be 
selected in such a way that the eigenvalues of (13) satisfy the condition of Theorem 1. 

Remark 4: Although the ith subsystem interconnection Li(X, t) and regressive vector ξi(X) 
input vector is considered X(n×N)×1, but in reality the dimension of input vector is lower 
than (n × N) × 1 (input vector is not full dimension). In the other word, the dimension of 
input vector is the number of ith subsystem states plus the states of neighbour subsystems 
which are present in the ith interconnection. Therefore, the non-interconnected subsystems 
or states should be removed from the input vector. This fact is considered in the 
simulation process. 

6 Simulation results 

In this section, an illustrative example is presented to reveal the effectiveness of the 
proposed control strategies. Simulation results are presented for fully-decentralised and 
semi-decentralised controllers (14) and (27). 

Consider the following FO large-scale nonlinear system composed of two subsystems 
which are described by: 

( )

( )( )

211 12

0.8
11 12

1
0.8 3

12 12 1 111

0.8
21 22

2 0.8 2
22 21 21 2 222

:
1 ( , )

:
2 sin ( , )

RL

x x
RL

RL

RL

D x x
S

D x x x e u L X t

D x x
S

D x x x x u L X t

− +

=⎧⎪
⎨

= − − + + +⎪⎩
=⎧

⎨ = − − + + +⎩

 

where the lumped uncertainty terms and the reference values are considered as: 

( )
( ) ( )
( ) ( )

1 12 21 22

2 11 21 22

11 12

21 22

( , ) 0.6cos( ) 0.4 sin(0.5 ) 0.2 sin(3 ) 0.5 cos(10 )
( , ) 0.5sin(5 ) 2 sin 0.4 sin(0.2 )

( ) sin ( / 20) , ( ) sin ( / 20)

( ) sin ( /15) , ( ) sin ( /15)
d d RL

d d RL

L X t t x t x t x t
L X t t x x x t
x t π t x t D π t

x t π t x t D π t

= + + +

= + + ×

= =

= =

α

α

 

Also, the initial conditions are selected as below to avoid the initial value interpretation 
problem of RL derivative. 

( ) ( )11 12 21 22(0), (0) (0, 0), (0), (0) (0, 0)x x x x= =  

For RL-derivative-based dynamics (5) and control laws (14) and (27), the RLDα operator 
has been approximated (from Property 1) by GL-derivative discrete-time algorithm with 
the sampling interval h = 0.005 (Monje et al., 2010). This algorithm is executed by  
S-function blocks in MATLAB. 

 

 

 



   

 

   

   
 

   

   

 

   

   192 S. Shoja-Majidabad et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

6.1 Fully-decentralised FOSMC 

Based on (14), the fully-decentralised FOSMC parameters are selected as: 

1 2 10 20 11 21

1 2 1 2

0.5, 1, 2,
20, 50sw sw

ρ ρ c c c c
η η K K− −

= = = = = =
= = = =

 

Also we replaced sgn(si(t)) by tan(si(t) / ρi) in order to remove the chattering and produce 
a continuously differentiable signal (C1). 

Figure 1 illustrates the state responses and control signals of the large-scale system 
for the fully-decentralised FOSMC strategy. From this figure, it is evident that the system 
states (x11, x12, x21, x22) are tracking the desired trajectories robustly with small control 
signals in the presence of uncertainties and interconnections. 

Figure 1 The responses of system under the fully-decentralised FOSMC (see online version  
for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 1 The responses of system under the fully-decentralised FOSMC (continued) (see online 
version for colours) 

  
(e)     (f) 

6.2 Semi-decentralided FOSMC 

Based on (27), the controller parameters are picked as follows: 

10 20 11 21 1 2 1 21, 2, 20, 100c c c c η η μ μ= = = = = = = =  

All the states of ith subsystem and neighbour subsystem which are effective in Li(X, t) are 
considered as the fuzzy system input variables (three variables for each subsystem). 
Fuzzy sets for input variables are defined according to the following membership 
functions which are depicted in Figure 2. 

( ) ( ) ( ) ( )2
1 2 1exp 10 , 1
, 1, 2

ik ik ikikμ x x μ x μ x
i k

= − = −

=
 

Two fuzzy sets for each input variable have been found sufficient. Therefore, the number 
of fuzzy rules will be 2 × 2 × 2 = 8. 

Figure 2 Fuzzy sets assigned to input variables 

 



   

 

   

   
 

   

   

 

   

   194 S. Shoja-Majidabad et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 The responses of system under the semi-decentralised FOSMC (see online version  
for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 
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The simulation results of the semi-decentralised FOSMC strategy are presented in  
Figure 3. As can be seen from this figure, the responses of the semi-decentralised 
FOSMC appear to be satisfactory, since they track desired trajectories with low deviation 
and small control signals. 

Moreover, there are few differences in the control signals amplitude and the second 
state deviations. For instant: the states x12 and x22 oscillations in the semi-decentralised 
FOSMC are little high. 

7 Conclusions 

In this paper, the fully-decentralised and the semi-decentralised FOSMC strategies have 
been developed for FO large-scale nonlinear systems for the first time. First, we designed 
a fully-decentralised controller for FO system with known interconnections and 
uncertainties. In the second step, the semi-decentralised control strategy is proposed to 
deal with unknown interconnections and uncertainties. The sliding manifold zero 
convergence is proved using the IO stability theorems due to the proposed integral  
sliding surface. Moreover, the system tracking errors convergence is concluded from 
Theorem 1. Simulation results expose the high performance of the suggested control 
techniques in trajectory tracking of FO large-scale case study. For both control strategies, 
the system states are converged to the desired values in the presence of uncertainties  
and interconnections. The proposed controllers are applicable for vast range of  
fractional-order systems. 
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