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Discrete-time based sliding-mode
control of robot manipulators

Sajjad Shoja Majidabad and Heydar Toosian Shandiz
Department of Electrical Engineering and Robotic,
Shahrood University of Technology, Shahrood, Iran

Abstract

Purpose – The purpose of this paper is to develop sliding mode control with linear and nonlinear
manifolds in discrete-time domain for robot manipulators.

Design/methodology/approach – First, a discrete linear sliding mode controller is designed to an
n-link robot based on Gao’s reaching law. In the second step, a discrete terminal sliding mode
controller is developed to design a finite time and high precision controller. The stability analysis of
both controllers is presented in the presence of model uncertainties and external disturbances. Finally,
sampling time effects on the continuous-time system outputs and sliding surfaces are discussed.

Findings – Computer simulations on a three-link SCARA robot show that the proposed controllers
are robust against model uncertainties and external disturbance. It was also shown that the sampling
time has important effects on the closed loop system stability and convergence.

Practical implications – The proposed controllers are low cost and easily implemented in practice
in comparison with continuous-time ones.

Originality/value – The novelty associated with this paper is the development of an approach to
finite time and robust control of n-link robot manipulators in discrete-time domain. Also, obtaining an
upper bound for the sampling time is another contribution of this work.

Keywords Sampling time, Discrete-time sliding mode, Terminal sliding mode,
Linear and nonlinear manifolds, N-link robot manipulator, Robots, Control technology, Control systems

Paper type Research paper

1. Introduction
Sliding-mode control (SMC) is a particular type of variable structure control system that
proposed by Emelyanov (1967) in the Soviet Union. The SMC is one of most powerful
tools to overcome the control problems of nonlinear dynamical systems (Young et al.,
1999). This method is well known due to its high precision and robustness against model
uncertainties, parameter variations and external disturbances (Yu and Kaynak, 2009).
Thus, it has been widely used in variety fields such as robotic systems (Erbatur et al.,
1999; Islam and Liu, 2011), power converters (Tan et al., 2008) and suspension systems
(Yagiz et al., 2008).

The SMC can be designed in two types: a linear sliding surface that is known as
linear sliding-mode control (LSMC), and a nonlinear sliding manifold that is called as
terminal sliding-mode control (TSMC). The TSMC have been proposed in Hui and
Li (2009), Chang et al. (2008), Zhihong and O’Day (1999), Feng et al. (2002), Yu et al.
(2005) and Jin et al. (2009), to bring the system states to the equilibrium point on the
sliding surface in a finite time. This technique has relatively fast transient response in
comparison with LSMC. However, this method has the singularity problem for some of
nonlinear systems. Robot manipulator is one of these nonlinear systems. In Feng et al.
(2002), Yu et al. (2005) and Jin et al. (2009), some terminal sliding-mode controllers have
been proposed to overcome the singularity problem of robot manipulators.
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On the other hand, discrete-time sliding-mode control (DSMC) has received a lot of
attentions due to technological advances in digital electronics and computer control (Wang,
2008; Gao et al., 1995; Furuta, 1990; Spurgeon, 1992; Sarpturk et al., 1987; Bartoszewicz,
1998; Monses, 2002; Bandyopadhyay, 2006). In general, DSMC have many advantages over
SMC. Some of the advantages are: low power consumption, low cost, low weight, high
accuracy and ease of making software and design changes (Wang, 2008). In DSMC, the
control signal is constant over the entire sampling period and is changed only at each
sampling instant. As a result, some properties of continuous-time sliding-mode controller
are lost by discretization. To enhance the performance of DSMC, various methods have
been proposed in Gao et al. (1995), Furuta (1990), Spurgeon (1992), Sarpturk et al. (1987)
and Bartoszewicz (1998). Among these literatures, the proposed reaching law in Gao et al.
(1995) and stability conditions in Sarpturk et al. (1987) are common in comparison with
others. Same as continuous-time one, DSMC can be designed in discrete-time linear
sliding-mode control (DLSMC) and discrete-time terminal sliding-mode control (DTSMC)
forms. In Janardhanan and Bandyopadhyay (2006), Bandyopadhyay and Fulwani (2009)
and Abidi et al. (2009), DTSMC is applied to reach finite time convergence.

In robotic control, DLSMC has been used to control a mobile robot in Corradini and
Orlando (2002) and Corradini et al. (2002). In Sun et al. (2007, 2002), the DLSMC and
Neuro-Fuzzy-DLSMC controllers are presented to control a rigid link robot
manipulator. To our knowledge, there is no top literature in finite time control of
robot manipulator in discrete-time. Therefore, extra work is needed in this domain.

This paper presents the following main contributions:
. DTSMC is implemented to control of robot manipulators for first time;
. stability of the closed loop system is proved for DLSMC and DTSMC in the

presence of imperfect modeling and external disturbances;
. upper bound of sampling time is derived for the DLSMC and DTSMC;
. sampling time effects on the system outputs and sliding surfaces convergence

are presented for DLSMC and DTSMC; and
. the proposed controller is non-singular due to the non-derivative computations.

The reminder of this paper is organized as follows. An n-link robot manipulator and
equivalent discretized model are presented in Section 2. In Section 3, the DLSMC is designed
to the discretized model. The DTSMC is developed in Section 4. Simulation results of
a three-link SCARA robot and conclusions are given in Sections 5 and 6, respectively.

2. Dynamics of an n-link robot and model discretization
The dynamic model of an n-link robot manipulator can be expressed in the following
Lagrange form as (Schilling, 2003; Wai et al., 2004):

DðqÞ€qþ Cðq; _qÞ_qþ GðqÞ þ Fð_qÞ þ ud ¼ u ð1Þ

where D(q) [ R n£n is the inertia matrix which is symmetric and positive definite,
Cðq; _qÞ_q [ Rn£1 is the vector of Coriolis and centripetal forces, G(q)n£1 is the
gravitational torque, Fð_qÞ is the friction force vector, ud is the disturbance

torque vector (judj , UD, UD . 0), q ¼ q1 · · · qn
h iT

is the joint position vector

and u ¼ u1 · · · un
h iT

is the motor torque vector. The friction term in equation (1),
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is a highly nonlinear force that is difficult to model accurately. In many cases it can
have direct effects on robot arm dynamics. The frictional force model can be written as
follows (Schilling, 2003):

Fið_qÞ ¼ Fv
i _qk þ sgnð_qiÞ Fd

i þ Fs
i 2 Fd

i

� �
exp

2j_qij

1

� �
ð2Þ

where for joint i, F v
i is the coefficient of the viscous friction, Fd

i is the coefficient of
dynamic friction and F s

i is the coefficient of static friction and 1 is a small positive
constant. The dynamic and static frictions are discontinuous and nonlinear while the
viscous friction is a linear function of _qi .

By defining the joint position and joint velocity vectors of n-link robot:

x2N21ðtÞ ¼ ½x1ðtÞ; x3ðtÞ; . . . ; x2n21ðtÞ�
T ¼ ½q1; q2; . . . ; qn�

T ð3Þ

x2N ðtÞ ¼ ½x2ðtÞ; x4ðtÞ; . . . ; x2nðtÞ�
T ¼ ½_q1; _q2; . . . ; _qn�

T ð4Þ

the state-space representation of equation (1) can be expressed in the following form:

_x2N21ðtÞ ¼ x2N ðtÞ

_x2N ðtÞ ¼ D21ðx2N21Þ½u2 Cðx2N21; x2N Þx2N 2 Gðx2N21Þ2 Fðx2N Þ2 ud�

(
ð5Þ

The continuous system model (5) should be transferred to a discrete model, in order to
design a discrete control law. Hence, using the Euler approximation under the
assumption of a sufficiently small sampling period (Lincolny and Veresyz, 2010):

x2N21ðkþ 1Þ ¼ x2N21ðkÞ þ Tx2N ðkÞ

x2N ðkþ 1Þ ¼ x2N ðkÞ þ TD21ðx2N21Þ½u2 Cðx2N21; x2N Þx2N 2 Gðx2N21Þ

2Fðx2N Þ2 ud�

8>><
>>: ð6Þ

where T is the sampling rate, x2N21(k) is the joint position vector and x2N(k) is the joint
velocity vector in the discrete-time domain.

Remark 1. The discretization model of the n-link robot in equation (6) is an
approximation model for the original uncertain model in equation (5). In order to
have an approximately similar behavior between the discrete-time (6) and original
continuous-time (5) systems, the sampling rate should be sufficiently fast in
comparison with system dynamics.

3. Discrete LSMC
A possible block scheme of a discrete-time computer controlling a continuous-time
system is sketched in Figure 1. In this figure, the controller block is composed out of
three parts (Monses, 2002):

(1) a digital central block;

(2) an analog to digital convertor; and

(3) a continuous to discrete-time signal convertor.
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In order to design the digital central block, consider the linear discrete sliding surface
in the following form:

sðkÞ ¼ e2N ðkÞ þ le2N21ðkÞ ð7Þ

where l ¼ diag{l1,l2, . . . ,ln} is a positive constant diagonal matrix. e2N21(k) and
e2N(k) are the vectors of position and velocity error, respectively. The sliding surface
vector s(k) is in the form of:

sðkÞ ¼ ½s1ðkÞ; s2ðkÞ; . . . ; snðkÞ�
T ð8Þ

the details in equations (7) and (8) are:

e2N ðkÞ ¼ X2N ðkÞ2 X ð2N ÞdðkÞ ð9Þ

e2N21ðkÞ ¼ X2N21ðkÞ2 X ð2N21ÞdðkÞ ð10Þ

X2N ðkÞ ¼ ½x2ðkÞ; x4ðkÞ; . . . ; x2nðkÞ�
T ð11Þ

X ð2N ÞdðkÞ ¼ ½x2dðkÞ; x4dðkÞ; . . . ; x2ndðkÞ�
T ð12Þ

X2N21ðkÞ ¼ ½x1ðkÞ; x3ðkÞ; . . . ; x2n21ðkÞ�
T ð13Þ

X ð2N21ÞdðkÞ ¼ ½x1dðkÞ; x3dðkÞ; . . . ; x2n21dðkÞ�
T ð14Þ

where X(2N21)d(k) and X(2N)d(k) are the vectors of desired position and velocity,
respectively. According to Gao et al. (1995) and Wu and Gao (2008), the DSMC reaching
law can be rewritten to the n-link robot (6) as follows:

sðkþ 1Þ ¼ ðI n£n 2 ThÞsðkÞ2 T1 sgnðsðkÞÞ ð15Þ

sgnðsðkÞÞ ¼ ½sgnðs1ðkÞÞ; sgnðs2ðkÞÞ; . . . ; sgnðsnðkÞÞ�
T , 1 . 0, h . 0 and In£n 2 Th . 0.

Here T, 1 ¼ diag{11,12, . . . ,1n} and h ¼ diag{h1,h2, . . . ,hn} are the sampling time,
approximation rate and reaching rate, respectively. In equation (15), the sliding
manifolds are bounded as:

jsiðkÞj # Di; i ¼ 1; . . . ; n ð16Þ

Figure 1.
Closed loop system

composed of
a discrete-time

controller and a
continuous-time plant

desired value

Xd(kT)

Zero-Order
Hold

X(t)
Digital Controller

Xd(kT)

X(kT)

u(kT)

Analog Plant

u(t) X(t)

ADC

X(t)X(kT)
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where Di is called quasi-sliding mode band width and is:

Di ¼
1iT

1 2 hiT
; i ¼ 1; . . . ; n ð17Þ

For equation (15), the system states will converge to the desired values only if si(k) ! 0.
On the other hand, sliding manifolds will approach to zero only if 1iT ! 0. As we know,
1iT is nonzero, then the tracking errors will not converge to the origin. However, it will
approach near the origin if T is given a small value. Moreover, there is no guarantee for
inequality (16) in the presence of model uncertainty and external disturbance. In the
Theorem 1 we will derive the closed loop stability bounds.

Remark 2. The precise values of robot parameters are unknown due to measuring
errors. Then, the parameters are supposed uncertain with bounded uncertainties:

DðX2N21Þ ¼ D̂ðX2N21Þ þ DDðX2N21Þ ð18Þ

CðX2N21;X2N Þ ¼ ĈðX2N21;X2N Þ þ DCðX2N21;X2N Þ ð19Þ

GðX2N21Þ ¼ ĜðX2N21Þ þ DGðX2N21Þ ð20Þ

FðX2N Þ ¼ F̂ðX2N Þ þ DFðX2N Þ ð21Þ

with D̂, Ĉ, Ĝ, F̂ estimated values, and:

jDDijj # ddij ; jDCijj # dcijX2NiðkÞ; jDGij # dgi ; jDFij # df d þ df vX2NiðkÞ ð22Þ

ddij, dcij, dgi, df d and df v are known constants.
Theorem 1. Consider the n-link robot described by equation (6) and the discrete

sliding manifold (7), by using the exponential reaching law (15), control law:

uðkÞ ¼ĈðX2N21;X2N ÞX2N ðkÞ þ ĜðX2N21Þ þ F̂ðX2N Þ þ D̂ðX2N21Þ

£
1

T
ðX ð2N ÞdðkÞ2 X ð2N Þdðk2 1ÞÞ2 le2N ðkÞ2 hsðkÞ2 1ðkÞsgnðsðkÞÞ

� � ð23Þ

with inequalities (31) and (34) guarantees boundedness of closed loop system. Here
u ¼ ½u1; u2; . . . ; un�

T is the control torque vector, 1 ¼ diag{11; 12; . . . ; 1n} and h ¼
diag{h1; h2; . . . ; hn} are positive diagonal matrixes.

Proof. By substituting the control law (23) in equation (6), the error dynamics will
be in the following form:

e2N21ðkþ 1Þ ¼ e2N21ðkÞ þ Te2N ðkÞ ð24Þ

e2N ðkþ 1Þ ¼ðI n£n 2 TlÞe2N ðkÞ þ ðI n£n 2 D21D̂Þð2DX2NdðkÞ þ Tle2N ðkÞÞ

þ TD21ðDA2 udÞ2 TD21D̂ðhsðkÞ þ 1ðkÞsgnðsðkÞÞÞ ð25Þ

where DA ¼ DCX2N (k) þ DG þ DF and judj , UD, UD . 0 are bounded, In£n is a
identical matrix and DX2NdðkÞ ¼ X2NdðkÞ2 X2Ndðk2 1Þ ø X2Ndðkþ 1Þ2 X2NdðkÞ.
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By putting equations (24) and (25) in equation (7), we get:

sðkþ 1Þ ¼ sðkÞ þ TD21ðDA2 udÞ þ ðI n£n 2 D21D̂Þð2DX2NdðkÞ þ Tle2N ðkÞÞ

2 TD21D̂ðhsðkÞ þ 1ðkÞsgnðsðkÞÞÞ
ð26Þ

from Sarpturk et al. (1987), stability conditions for the DSMC can be illustrated in this
way:

P1 ¼ sT ðkÞðsðkþ 1Þ2 sðkÞÞ , 0 ð27Þ

P2 ¼ sTðkÞðsðkþ 1Þ þ sðkÞÞ . 0 ð28Þ

that are known as Sarpturk’s reaching laws.
First condition: the sliding gain 1(k) can be determined from the first condition. By

substituting equation (26) in the first condition, we have:

P1 ¼ sTðkÞ½TD21ðDA2 udÞ þ ðI n£n 2 D21D̂Þð2DX2NdðkÞ þ Tle2N ðkÞÞ

2 TD21D̂ðhsðkÞ þ 1ðkÞsgnðsðkÞÞÞ�
ð29Þ

for s(k) . 0 (sgn(s(k)) ¼ 1, s(k þ 1) 2 s(k) , 0) the sliding gain lower bound should be
as:

1ðkÞ . D̂21ðDA2 udÞ þ ðD̂21D2 I n£nÞ 2
DX2NdðkÞ

T
þ le2N ðkÞ

� �� �
2 hsðkÞ ð30Þ

where jD̂21ðDA2 udÞji , dAi , jD̂21D2 I n£njij , dDij, i ¼ 1,2, . . . ,n. dAi, dDij is
bounded and known. Then, 1(k) should be as:

1ðkÞ . dA þ dD 2
DX2NdðkÞ

T
þ le2N ðkÞ

����
����þ hjsðkÞj ð31Þ

where dA ¼ ½dA1; dA2; . . . ; dAn�
T and:

dD ¼

dD11
dD12

· · · dD1n

dD21
dD22

· · · dD2n

..

. ..
. . .

. ..
.

dDn1
dDn2

· · · dDnn

2
6666664

3
7777775
:
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On the other hand, if s(k) , 0. By putting equation (31) in s(k þ 1) 2 s(k):

sðkþ 1Þ2 sðkÞ ¼ TD21D̂ðdA þ D̂21ðDA2 udÞÞ þ TD21D̂

£ dD 2
DX2NdðkÞ

T
þ le2N ðkÞ

����
����2 ðD̂21D2 I n£nÞ

�
2DX2NdðkÞ þ Tle2N ðkÞÞð Þ þ TD21D̂hðjsðkÞjÞ2 sðkÞÞ . 0

ð32Þ

s(k þ 1) 2 s(k) will be positive. Therefore, inequality (31) satisfies equation (27).
Second condition: in addition to the sliding gain, big values of the sampling time can

cause system instability in discrete-time. Then, the second condition (28) checks the
stability bounds of T(0 , T , Tmax). While, deriving exact value of Tmax for a
nonlinear system is not easy. By substituting equation (26) in the second condition, we
can find an approximation inequality:

½D21D̂ðhjsðkÞj þ 1ðkÞÞ2 D21ðDA2 udÞ2 ðI n£n 2 D21D̂Þle2N ðkÞ�T

, 2jsðkÞj2 ðIn£n 2 D21D̂ÞDX2NdðkÞ
ð33Þ

assume that D ¼ D̂. Hence, we have:

T, min
2D1max

11max þh1D1max þdA1
;

2D2max

12max þh2D2max þdA2
; ...;

2Dnmax

1nmax þhnDnmax þdAn

� 	
ð34Þ

where 11 max ,12 max , . . . ,1nmax and D1 max ,D2 max , . . . ,Dnmax are maximum bounds of
11,12, . . . ,1n and js1j,js2j, . . . ,jsnj for different values of k in the steady-state. Therefore,
control law (23) with inequalities (31) and (34) guarantees the closed loop system
convergence.

4. Discrete TSMC
To obtain a small transient time convergence, the following continuous-time terminal
sliding surface is defined:

sðtÞ ¼ _eðtÞ þ leðtÞ p ð35Þ

where e ¼ q 2 qd is the tracking error, l ¼ diag{l1,l2, . . . ,ln} is positive matrix,
0 , p , 1 and it should be rational with odd numerator and denominator. On the
terminal sliding manifold (s ¼ 0), it follows that:

_eiðtÞ þ lieiðtÞ
p ¼ 0 i ¼ 1; 2; . . . ; n ð36Þ

by solving equation (36), the reaching time (treach2 i) for link-i can be driven as:

treach2i ¼ 2

Z 0

eið0Þ

dei

le pi
¼

jeið0Þj
12p

lið1 2 pÞ
ð37Þ

this means that the system states converge to zero in a finite time. Now, to obtain the
finite time convergence of the tracking error in discrete domain, the discrete terminal
sliding surface can be defined as:
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sðkÞ ¼ e2N ðkÞ þ lep2N21ðkÞ ð38Þ

where p ¼ p1=p2; p1; p2 . 0; p2 . p1; p1; p2 are odd integers.
Theorem 2. Considering the robotic system discretized equation (6), and with the

combination of equations (15) and (38), the control law is expressed by:

uðkÞ ¼ ĈðX2N21;X2N ÞX2N ðkÞ þ ĜðX2N21Þ þ F̂ðX2N Þ þ D̂ðX2N21Þ

1

T
ðX ð2N ÞdðkÞ2 X ð2N Þdðk2 1ÞÞ2

l

T
ðe2N21ðkÞ þ Te2N ðkÞÞ

p 2 ep2N21ðkÞ

 ��

2hsðkÞ2 1ðkÞsgnðsðkÞÞÞ

ð39Þ

Proof. By substituting equation (39) into equation (6), we have:

e2N21ðkþ 1Þ ¼ e2N21ðkÞ þ Te2N ðkÞ ð40Þ

e2N ðkþ 1Þ ¼ e2N ðkÞ þ le p2N21ðkÞ2 lðe2N21ðkÞ þ Te2N ðkÞÞ
p

þ ðI n£n 2 D21D̂Þð2DX2NdðkÞ þ lðe2N21ðkÞ þ Te2N ðkÞÞ
pÞ

þ TD21ðDA2 udÞ2 TD21D̂ðhsðkÞ þ 1ðkÞsgnðsðkÞÞÞ

ð41Þ

putting equation (40) and (41) into equation (38):

sðkþ 1Þ ¼ sðkÞ þ TD21ðDA2 udÞ þ ðI n£n 2 D21D̂Þ £ ð2DX2NdðkÞ

þ lðe2N21ðkÞ þ Te2N ðkÞÞ
pÞ2 TD21D̂hsðkÞ2 TD21D̂1ðkÞsgnðsðkÞÞ

ð42Þ

same as the Theorem 1, substituting equation (42) into the Sarpturk’s first stability
condition, we have:

P1 ¼ sT ðkÞ½TD21ðDA2 udÞ þ ðI n£n 2 D21D̂Þ £ ð2DX2NdðkÞ þ lðe2N21ðkÞ

þ Te2N ðkÞÞ
pÞ2 TD21D̂ðhsðkÞ þ 1ðkÞsgnðsðkÞÞÞ�

ð43Þ

for s(k) . 0 (sgn(s(k)) ¼ 1, s(k þ 1) 2 s(k) , 0). In order to have a negative values for
P1, the sliding gain lower bound can be driven as:

1ðkÞ. D̂21ðDA2 udÞ þ ðD̂21D2 I n£nÞ 2
DX2NdðkÞ

T
þ

l

T
ðe2N21ðkÞ þTe2N ðkÞÞ

p

� �� �

2 hsðkÞ

ð44Þ

dAi and dDij are mentioned in Theorem 1. Then, 1(k) can be expressed as:

1ðkÞ . dA þ dD 2
DX2NdðkÞ

T
þ

l

T
ðe2N21ðkÞ þ Te2N ðkÞÞ

p

����
����þ hjsðkÞj ð45Þ
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On the other hand, if s(k) , 0 then sgn(s(k)) ¼ 21. By putting equation (45) in
s(k þ 1) 2 s(k):

sðkþ 1Þ2 sðkÞ ¼ TD21D̂ðdA þ D̂21ðDA2 udÞÞ þ TD21D̂£

dD 2
DX2NidðkÞ

T
þ

l

T
ðe2N21ðkÞ þ Te2N ðkÞÞ

pÞ

����
����2 ðD̂21D2 I 3£3Þ

�

2DX2NdðkÞ þ
l

T
ðe2N21ðkÞ þ Te2N ðkÞÞ

p

� ��
þTD21D̂hðjsðkÞj2 sðkÞÞ . 0

ð46Þ

s(k þ 1) 2 s(k) is positive. Then, inequality (45) satisfies first stability condition.
Therefore, control law (39) with inequalities (34) and (45) guarantees the closed loop
system convergence.

Remark 3. In practical applications, SMC and DSMC suffer from an important
disadvantage that is known as chattering phenomenon. Chattering can cause vibration
and system failure due to excitation the high frequency unmodelled dynamics
(Young et al., 1999; Wang, 2008). From equations (23) and (39), it can be seen that the
controllers are demonstrate chattering. In order to remove the chattering from equation
(23) and reduce from equation (39), the switching term of DLSMC an DTSMC control laws
ðuSwitching ¼ 21½signðs1ðkÞÞ; signðs2ðkÞÞ; . . . ; signðsnðkÞÞ�

TÞ are modified in the form of:

uSwitching ¼ 21

s1ðkÞ
s1ðkÞj jþd1

..

.

snðkÞ
snðkÞj jþdn

2
66664

3
77775 d1; d2; . . . ; dn . 0 ð47Þ

d1,d2, . . . ,dn have sufficiently small values.
Remark 4. To design the sliding gain 1(k) and sampling time T values for DLSM

and DTSM controllers, we should act as below algorithm:
. select oscillation range (needed precision) of sliding surface js(k)j;
. choose 1(k) from inequalities (31) and (45) for DLSMC and DTSMC, respectively;

and
. calculate T from inequality (34).

5. Discrete TSMC
A three-link SCARA robot is simulated to show the effectiveness of the DSMC and
DTSMC methods in discrete-time domain. The dynamic equations are given as follows
(Schilling, 2003):

D11 D12 D13

D21 D22 D23

D31 D32 D33

2
664

3
775

€q1

€q2

€q3

2
664

3
775þ

C11 C12 C13

C21 C22 C23

C31 C32 C33

2
664

3
775

_q1

_q2

_q3

2
664

3
775þ

G1

G2

G3

2
664

3
775þFð_qÞþudðtÞ¼

t1

t2

t3

2
664

3
775 ð48Þ
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where:

D11 ¼ l21
m1

3
þm2 þm3

� �
þ l1l2ðm2 þ 2m3Þcosðq2Þ þ l22

m2

3
þm3

� �

D12 ¼ 2l1l2
m2

2
þm3

� �
cosðq2Þ2 l22

m2

3
þm3

� �
¼ D21

D22 ¼ l22
m2

3
þm3

� �
D33 ¼ m33 D13 ¼ D31 ¼ D23 ¼ D32 ¼ 0

C11 ¼ 2_q2ðm2 þ 2m3Þl1l2sinðq2Þ C12 ¼ 2_q2
m2

2
þm3

� �
l1l2sinðq2Þ

C21 ¼ 2_q1
m2

2
þm3

� �
l1l2sinðq2Þ C22 ¼ C13 ¼ C31 ¼ C23 ¼ C32 ¼ C33 ¼ 0

G1 ¼ G2 ¼ 0 G3 ¼ 2m3g

in which q1, q2 and q3 are the angle of joints 1, 2 and 3; m1, m2 and m3 are the
mass of links 1, 2 and 3; l1, l2, l3 and are the length of links 1, 2 and 3; and g is
the gravity acceleration. The system parameters of the robot are selected as
(Wai et al., 2004):

m1 ¼ 1:0 kg m2 ¼ 0:8 kg m3 ¼ 0:5 kg g ¼ 9:8 l1 ¼ 1:0 m l2 ¼ 0:8 m

l3 ¼ 0:6 m

The friction term and the external disturbance are the most important parameters
that affect the control performance of the robotic system. Therefore, the friction
forces are considered as follows:

Fð_qÞ ¼

f v1 _q1 þ f d1 sgnð_q1Þ

f v2 _q2 þ f d2 sgnð_q2Þ

f v3 _q3 þ f d3 sgnð_q3Þ

2
66664

3
77775

T

ð49Þ

where f v1 ¼ f v2 ¼ f v3 ¼ 12 f d1 ¼ f d2 ¼ f d3 ¼ 0:2. Moreover, the disturbance that
affected into the robotic system are given as:

udðtÞ ¼ ½0:2 sinð3tÞ 0:2 sinð3tÞ 0:2 sinð3tÞ�T ð50Þ

DLSMC design
In order to design DLSMC, controller parameters are selected as:

M̂ ¼ 0:95 M Ĉ ¼ 0:8 C Ĝ ¼ 0:9 G F̂ ¼ 0:95 F T ¼ 0:002 s

h ¼ diag{2; 2; 2} l ¼ diag{3; 3; 3}
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moreover, sliding gain vector is:

1ðkÞ ¼ dA þ dD 2
DX2NdðkÞ

T
þ le2N ðkÞ

����
����þ hjsðkÞj ð51Þ

where:

dA ¼

5 0 0

0 6 0

0 0 5

2
664

3
775; dD ¼

1 0:1 0

0:1 1 0

0 0 1

2
664

3
775

The tracking position, control torque and sliding gain variations of joints 1, 2 and 3 are
shown in Figures 2 and 3. From Figure 2, we can see that the DLSMC has a high
precision tracking and robust behavior.

Figure 3 shows the sliding gain vector 1(k) variation, and is a proof for equation (51).
In the other word, 1(k) has high value in starting time due to maximum magnitude of
tracking errors, and it decreases by passing time.

DTSMC design
In this method, sliding gain is selected as:

1ðkÞ ¼ dA þ dD 2
DX2NdðkÞ

T
þ

l

T
ðe2N21ðkÞ þ Te2N ðkÞÞ

p

����
����þ hjsðkÞj ð52Þ

where p ¼ 3/5 and other parameters are similar to DLSMC design. The tracking
position, control torque and sliding gain variation of joints 1, 2 and 3 are shown in
Figures 4 and 5.

From Figures 2, 4 and 3, 5, it can be seen that DTSMC presents a better transient
response and smaller tracking error than the DLSMC, but there is some chattering in
the control signal that saturation function could not remove it completely.

Tracking error of joint 2 is shown in Figure 6 to illustrate another advantage of
DTSMC against DLSMC. This figure shows that the tracking error magnitude of
DTSMC is lower than DLSMC.

Sampling time effects on the closed loop system convergence: finally, in order to
study the sampling times effects on the DLSMC and DTSMC controllers, the computer
simulations are repeated for different sampling times. The tracking position and
discrete-time sliding surface convergence for T ¼ 0.04 and T ¼ 0.004 are shown in
Figures 7 and 8 for joint 2.

From Figures 7 and 8, it can be seen that the SMC in discrete domain is depended on
the sampling time values. Then, in addition to the joint friction and the external
disturbance, the sampling time can have important effects on the closed loop
convergence. Therefore, the sampling time should be as small as possible to have a
high precision controller.

6. Conclusion
In this paper, two robust nonlinear controllers for robotic manipulators have been
developed based on discrete-time case. A discrete model of an n-link robot has been used
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Figure 2.
Tracking position and

control torque of joints 1, 2
and 3 (DLSMC)
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(d) u2(k) control torque of joint 2; (e) q3 angle of joint 3; (f) u3(k) control torque of joint 3
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to design these controllers. Through the comparative computer simulations on the
three-link SCARA robot, the DLSMC and DTSMC advantages and similarities can be
demonstrated as:

. The presented control schemes are robust against the model uncertainties and
external disturbance.

. Boundedness of the controlled variables has been theoretically proved by using
the Sarpturk inequalities.

. The control torque and sliding manifold (linear and terminal) values are
depended on the sampling period. In order to have a high performance and stable
closed loop system, the sampling frequency should be small.

The main differences of DLSMC and DTSMC controllers are deduced as:

. The DTSMC presents a better transient response and smaller tracking error than
the DLSMC, while the control signal values are high in the first steps.

. The chattering phenomenon does not removed completely from the DTSMC
control signal.

Moreover, the most important advantages of DLSMC and DTSMC in comparison with
SMC and TSMC are:

. The DLSMC and DTSMC controllers are low cost, low weight, high accuracy and
ease of making software and design changes in comparison with
continuous-time ones.

. There is no singularity problem for DTSMC due to differential (non-derivative)
computations.

The proposed controllers are applicable to large class of two-rational order systems.

Figure 3.
Sliding gain vector
variation (1(k)) of joints 1,
2 and 3 (DLSMC)
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Figure 4.
Tracking position and

control torque of joints 1, 2
and 3 (DTSMC)
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Figure 5.
Sliding gain vector
variation (1(k)) of joints 1,
2 and 3 (DTSMC)
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Figure 6.
Position tracking error
of joint 2 (DLSMC and
DTSMC)
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Figure 7.
Tracking position and
sliding surface for two

different sampling times
(DLSMC)
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Figure 8.
Tracking position and
sliding surface for two
different sampling
times (DTSMC)
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