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Abstract
Purpose — The purpose of this paper is to develop sliding mode control with linear and nonlinear
manifolds in discrete-time domain for robot manipulators.

Design/methodology/approach — First, a discrete linear sliding mode controller is designed to an
n-link robot based on Gao’s reaching law. In the second step, a discrete terminal sliding mode
controller is developed to design a finite time and high precision controller. The stability analysis of
both controllers is presented in the presence of model uncertainties and external disturbances. Finally,
sampling time effects on the continuous-time system outputs and sliding surfaces are discussed.

Findings — Computer simulations on a three-link SCARA robot show that the proposed controllers
are robust against model uncertainties and external disturbance. It was also shown that the sampling
time has important effects on the closed loop system stability and convergence.

Practical implications — The proposed controllers are low cost and easily implemented in practice
in comparison with continuous-time ones.

Originality/value — The novelty associated with this paper is the development of an approach to
finite time and robust control of n-link robot manipulators in discrete-time domain. Also, obtaining an
upper bound for the sampling time is another contribution of this work.

Keywords Sampling time, Discrete-time sliding mode, Terminal sliding mode,
Linear and nonlinear manifolds, N-link robot manipulator, Robots, Control technology, Control systems

Paper type Research paper

1. Introduction

Sliding-mode control (SMC) is a particular type of variable structure control system that
proposed by Emelyanov (1967) in the Soviet Union. The SMC is one of most powerful
tools to overcome the control problems of nonlinear dynamical systems (Young et al.,
1999). This method is well known due to its high precision and robustness against model
uncertainties, parameter variations and external disturbances (Yu and Kaynak, 2009).
Thus, it has been widely used in variety fields such as robotic systems (Erbatur et al.,
1999; Islam and Liu, 2011), power converters (Tan et al., 2008) and suspension systems
(Yagiz et al., 2008).

The SMC can be designed in two types: a linear sliding surface that is known as
linear sliding-mode control (LSMC), and a nonlinear sliding manifold that is called as
terminal sliding-mode control (TSMC). The TSMC have been proposed in Hui and
Li (2009), Chang et al. (2008), Zhihong and O’Day (1999), Feng et al. (2002), Yu et al.
(2005) and Jin et al. (2009), to bring the system states to the equilibrium point on the
sliding surface in a finite time. This technique has relatively fast transient response in
comparison with LSMC. However, this method has the singularity problem for some of
nonlinear systems. Robot manipulator is one of these nonlinear systems. In Feng ef al.
(2002), Yu et al. (2005) and Jin et al. (2009), some terminal sliding-mode controllers have
been proposed to overcome the singularity problem of robot manipulators.



On the other hand, discrete-time sliding-mode control (DSMC) has received a lot of
attentions due to technological advances in digital electronics and computer control (Wang,
2008; Gao et al., 1995; Furuta, 1990; Spurgeon, 1992; Sarpturk et al., 1987; Bartoszewicz,
1998; Monses, 2002; Bandyopadhyay, 2006). In general, DSMC have many advantages over
SMC. Some of the advantages are: low power consumption, low cost, low weight, high
accuracy and ease of making software and design changes (Wang, 2008). In DSMC, the
control signal is constant over the entire sampling period and is changed only at each
sampling instant. As a result, some properties of continuous-time sliding-mode controller
are lost by discretization. To enhance the performance of DSMC, various methods have
been proposed in Gao et al. (1995), Furuta (1990), Spurgeon (1992), Sarpturk et al. (1987)
and Bartoszewicz (1998). Among these literatures, the proposed reaching law in Gao et al.
(1995) and stability conditions in Sarpturk et al. (1987) are common in comparison with
others. Same as continuous-time one, DSMC can be designed in discrete-time linear
sliding-mode control (DLSMC) and discrete-time terminal sliding-mode control (DTSMC)
forms. In Janardhanan and Bandyopadhyay (2006), Bandyopadhyay and Fulwani (2009)
and Abidi ef al. (2009), DTSMC is applied to reach finite time convergence.

In robotic control, DLSMC has been used to control a mobile robot in Corradini and
Orlando (2002) and Corradini et al. (2002). In Sun ef al. (2007, 2002), the DLSMC and
Neuro-Fuzzy-DLSMC controllers are presented to control a rigid link robot
manipulator. To our knowledge, there is no top literature in finite time control of
robot manipulator in discrete-time. Therefore, extra work is needed in this domain.

This paper presents the following main contributions:

« DTSMC is implemented to control of robot manipulators for first time;

+ stability of the closed loop system is proved for DLSMC and DTSMC in the
presence of imperfect modeling and external disturbances;

+ upper bound of sampling time is derived for the DLSMC and DTSMC;

+ sampling time effects on the system outputs and sliding surfaces convergence
are presented for DLSMC and DTSMC; and

+ the proposed controller is non-singular due to the non-derivative computations.
The reminder of this paper is organized as follows. An n-link robot manipulator and
equivalent discretized model are presented in Section 2. In Section 3, the DLSMC is designed

to the discretized model. The DTSMC is developed in Section 4. Simulation results of
a three-link SCARA robot and conclusions are given in Sections 5 and 6, respectively.

2. Dynamics of an n-link robot and model discretization
The dynamic model of an n-link robot manipulator can be expressed in the following
Lagrange form as (Schilling, 2003; Wai et al., 2004):

D)+ C(q,9)q+ G@) + F(@) +ug =u @

where D(g) € R’ is the inertia matrix which is symmetric and positive definite,
C(q,q)q € R™" is the vector of Coriolis and centripetal forces, G(g)x: is the
gravitational torque, F(q) is the friction force vector, u,; is the disturbance

T
torque vector (lugl < Up, Up >0), ¢ = [fh Qn} is the joint position vector

T
and u = {Ml Uy } is the motor torque vector. The friction term in equation (1),
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1s a highly nonlinear force that is difficult to model accurately. In many cases it can
have direct effects on robot arm dynamics. The frictional force model can be written as
follows (Schilling, 2003):

Fi(@) = Fjqr + sgn(@)) {F? + (Fs - ng)exp —Iqil} )

&€

where for joint 7, F} is the coefficient of the viscous friction, F° f is the coefficient of
dynamic friction and F; is the coefficient of static friction and ¢ is a small positive
constant. The dynamic and static frictions are discontinuous and nonlinear while the
viscous friction is a linear function of §;.

By defining the joint position and joint velocity vectors of n-link robot:

Xon—1(8) = [1(0), %30, « .., x201(O = [q1,G2, -, qu]” (3)

Xon () = D), 2(D), - X = 141, 2, - Gal" 4)

the state-space representation of equation (1) can be expressed in the following form:

{xZNl(t) = xon(1)

. _ 5
() = D -l — Cloay—1, %oy — Gloioy—1) — Fay) — gl )
The continuous system model (5) should be transferred to a discrete model, in order to
design a discrete control law. Hence, using the Euler approximation under the
assumption of a sufficiently small sampling period (Lincolny and Veresyz, 2010):

xon-1(k + 1) = xon-1(k) + Txan(k)
xon(k + 1) = xan(R) + TD M (wan— 1) — Clavan—1, ¥23)x2y — Glxay-1)  (6)

—F(xon) — uq]

where T is the sampling rate, xox— 1(%) is the joint position vector and xop(k) is the joint
velocity vector in the discrete-time domain.

Remark 1. The discretization model of the n-link robot in equation (6) is an
approximation model for the original uncertain model in equation (5). In order to
have an approximately similar behavior between the discrete-time (6) and original
continuous-time (5) systems, the sampling rate should be sufficiently fast in
comparison with system dynamics.

3. Discrete LSMC

A possible block scheme of a discrete-time computer controlling a continuous-time
system is sketched in Figure 1. In this figure, the controller block is composed out of
three parts (Monses, 2002):

(1) a digital central block;
(2) an analog to digital convertor; and
(3) a continuous to discrete-time signal convertor.



Xd(KT)

desired value X(KT)
Zero-Order X(t)
_— Hold
Digital Controller Analog Plant
X(KT) X(t)r
ADC

In order to design the digital central block, consider the linear discrete sliding surface
in the following form:

s(k) = ean (k) + Aeay—1(R) (7

where A = diag{A,As,...,A,} 18 a positive constant diagonal matrix. esy—1(k) and
eon(k) are the vectors of position and velocity error, respectively. The sliding surface
vector s(k) is in the form of:

stk) = [s1(k), s2(k), ..., su(R)]" ®)
the details in equations (7) and (8) are:
ean(R) = Xon(R) — X onya(k) ©)
eon—1(R) = Xon-1(k) — Xon-1)a(k) 10)
Xon(k) = [x2(R), 24(R), ..., xan(R)]" 11
Xomatk) = [x2a(k), x4a(k), . .., Xaa(R)]" (12)
Xon-1(k) = [21(R), 23(R), ..., x30-1(R)]" (13)
Xon-1ak) = [x14(k), x34(R), ..., Xpu1a(k)]" (14)

where Xon—1)a(k) and Xenya(k) are the vectors of desired position and velocity,
respectively. According to Gao et al. (1995) and Wu and Gao (2008), the DSMC reaching
law can be rewritten to the n-link robot (6) as follows:

Stk+1) = n — Th)s(k) — Te sgn(s(k)) (15)

sgn(s(k)) = [sgn(si(k)), sgn(sa(k)), ..., sgn(s,(E) T, e > 0,h > 0and L, — Th > 0.
Here T, & = diag{ey,eo,...,e,} and h = diag{i,hs, ... h,} are the sampling time,
approximation rate and reaching rate, respectively. In equation (15), the sliding
manifolds are bounded as:

sl =4;,, i=1,....n (16)
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where A; is called quasi-sliding mode band width and is:

o SZ'T
1T

For equation (15), the system states will converge to the desired values only if s,(k) — 0.
On the other hand, sliding manifolds will approach to zero only if &;7 — 0. As we know,
g, T is nonzero, then the tracking errors will not converge to the origin. However, it will
approach near the origin if 7°is given a small value. Moreover, there is no guarantee for
inequality (16) in the presence of model uncertainty and external disturbance. In the
Theorem 1 we will derive the closed loop stability bounds.

Remark 2. The precise values of robot parameters are unknown due to measuring
errors. Then, the parameters are supposed uncertain with bounded uncertainties:

i=1,....n a7

D(Xoy-1) = DXon-1) + ADXon-1) (18)
C(Xoy—1,Xon) = CXay—1, Xon) + AC(Xay—1, Xon) 19)
GXay-1) = GXon-1) + AG(Xay—1) (20)
F(Xay) = FXon) + AF(Xay) 1)

with D, @, @, F estimated values, and:
|AD;| = 84, 1AC;| = 8, Xoni(R), |AG)| = &g, |AF| = 80 + 870 Xoni(R)  (22)

5@ 8%, 84, 674 and ;. are known constants.
Theorem 1. Consider the n-link robot described by equation (6) and the discrete
sliding manifold (7), by using the exponential reaching law (15), control law:

u(k) =CXon-1, Xon)Xon(k) + GXon-1) + FXon) + DXan-1)

@
1
(< Camath) ~ Xk = D) = deox(h) Btk — ohsns(h)

with inequalities (31) and (34) guarantees boundedness of closed loop system. Here
u=[ur,uz, ..., u,)" is the control torque vector, ¢ = diag{e1, €2, ...,e,} and h =
diag{hy, hs, ..., h,} are positive diagonal matrixes.

Proof. By substituting the control law (23) in equation (6), the error dynamics will
be in the following form:

eav-1(k+ 1) = ean-_1(k) + Tean (k) (24)
eon(k 4+ 1) =Lysw — TNeay (k) + Lusn — D D)= AXana(k) + TAean(k))
+ TDYAA — uy) — TD ' Dihs(k) + e(k)san(s(k))) (25

where AA = ACXon(k) + AG + AF and |uyl < Up, Up > 0 are bounded, I,x,, is a
identical matrix and AXon (k) = Xonag(R) — Xoya(k — 1) = Xong(k + 1) — Xona(R).



By putting equations (24) and (25) in equation (7), we get:

s(k+1) = s(k) + TD "N(AA — ug) + yxw — D 'D)(— AXong(R) + TAean (k)
(26)
— TD'D(hs(k) + e(k)sgn(s(k)))

from Sarpturk et al. (1987), stability conditions for the DSMC can be illustrated in this
way:

Py =sT(kr)(stk+1) — s(k) <0 27)

Py =sT (k) (s(k+ 1) + sk) >0 (28)

that are known as Sarpturk’s reaching laws.
First condition: the sliding gain &(k) can be determined from the first condition. By
substituting equation (26) in the first condition, we have:

Py =sT(RITD Y AA — ug) + L — D' D)(— AXowy(k) + TAean (k)
(29)
— TD ' D(hs(k) + e(k)sgn(s(k)))]

for s(k) > 0 (sgn(s(k)) = 1, sk + 1) — s(k) < 0) the sliding gain lower bound should be
as:

AXong(k)
T

e(k) > (D‘l(AA —u)+ DD - Im)(— + /\egN(k)> ) — hs(k) (30)

where |b_1(AA - Md)l, < SAi» |D_1D - [nxnlz] < SDijv 1= 1v2v <o 8Air 8Dij is
bounded and known. Then, e(k) should be as:

AXona(k
(k) > 64 + 5[)’— Z}Vd( ) + /\€2N(k)‘ + hls(k)| (31)
where 84 = [841, 842, - .., 84,17 and:
8[)11 8])12 T 61)111
6D21 8D22 o 6D2n

Op =

8Dn1 SDnZ nn
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On the other hand, if s(k) < 0. By putting equation (31) in s( + 1) — s(k):

stk+1) — sk) = TD'D(84 + DY (AA — uy)) + TD 1D

« ( 5 AXzzTVd(k)

(—AXona(k) + Thean (k) + TD "' Dh(|s(R)]) — s(B)) > 0

+ Aean (k)| — (D7D = k) (32)

s(k + 1) — s(k) will be positive. Therefore, inequality (31) satisfies equation (27).

Second condition: in addition to the sliding gain, big values of the sampling time can
cause system instability in discrete-time. Then, the second condition (28) checks the
stability bounds of 7(0 < T < T.x). While, deriving exact value of 7Ty, for a
nonlinear system is not easy. By substituting equation (26) in the second condition, we
can find an approximation inequality:

[D ' D(hls(R)| + (k) — D NAA = ug) — Lusen — D D)Aean (W) T
A (33)
< 2ls(k) = Unxw — D ' D)AX gya(k)

assume that D = D. Hence, we have:

2A1max 2A2max 2Anmax }
, yeens
€1max T 11 A1max + 641 82max +h2A2max + 042 Epmax + B Apmax + Oan
(34)
where €1 max,€2max - - - €nmax AN A1 max,A2 max, - - - Ay max are maximum bounds of
£1,€9 . ..,&, and [s1],|sal, . . . ,|s,| for different values of % in the steady-state. Therefore,

control law (23) with inequalities (31) and (34) guarantees the closed loop system
convergence.

T<min{

4. Discrete TSMC
To obtain a small transient time convergence, the following continuous-time terminal
sliding surface is defined:

s(t) = e() + re(t)? (35)

where ¢ = q — q, is the tracking error, A = diag{Ai,As,...,A,} 1S positive matrix,
0 < p <1 and it should be rational with odd numerator and denominator. On the
terminal sliding manifold (s = 0), it follows that:

e+ et =0 i=1,2,...,n (36)
by solving equation (36), the reaching time (¢,,40— ;) for link-1 can be driven as:
0 . w4
treach*i = _/ de; = & (37)
core! A1 —D)

this means that the system states converge to zero in a finite time. Now, to obtain the
finite time convergence of the tracking error in discrete domain, the discrete terminal
sliding surface can be defined as:




s(k) = ean (k) + Achy_, (k) (38)

where p = p1/p2, p1,p2 >0, p2 > p1, p1,p2 are odd integers.
Theorem 2. Considering the robotic system discretized equation (6), and with the
combination of equations (15) and (38), the control law is expressed by:
u(k) = CXoy—1, Xon)Xon (k) + GXay 1) + FXan) + Doy 1)
1 A
(T Xenak) — Xeonalk — 1)) — T ((ean—1(k) + Tean(R)Y — éby_(R))
—hs(k) — e(k)sgn(s(k)))
(39)
Proof. By substituting equation (39) into equation (6), we have:
eon—1(k +1) = ean-1(k) + Tean(k) (40)
eon(k+ 1) = ean(k) + Aefy_, (k) — Mean—1(R) + Tean(k))?
+ U — D7D AXona(R) + Meay—1(k) + Tean(0))?) (41
+ TD NAA — ug) — TD " 'D(hs(k) + e(k)sgn(s(k)))
putting equation (40) and (41) into equation (38):

s(k+1) = s(k) + TD " (AA — ug) + Lxw — D 7'D) X (— AX oy (k) @

+ Meoy—1(B) + Teay(R))?) — TD *Dhs(k) — TD *De(k)sgn(s(k))

same as the Theorem 1, substituting equation (42) into the Sarpturk’s first stability
condition, we have:

Py =sT(RTD YAA — ug) + Lisen — DDy X (—AXana(k) + Aeay—1(k)
R (43)
+ TegN(k))p ) — TDilD(hs(k) + e(k)sgn(s(k)))]

for s(k) > 0 (sgn(s(k) =1, s(k + 1) — s(k) < 0). In order to have a negative values for
P, the sliding gain lower bound can be driven as:

AXong(R) A
T T

e(k) > (D‘1<AA —tg) + (D7D = L) <— (ean—1(k) + TezN(k»p) )

— hs(k)
(44)
84; and &p;; are mentioned in Theorem 1. Then, &(k) can be expressed as:

_ AXoya(k) A
T t7 + nls(k)| (45)

e(k) > 84+ dp (eon—1(R) + Tean(R))?
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On the other hand, if s(k) <O then sgn(s(k)) = —1. By putting equation (45) in
stk + 1) — s(k):

s(k+1) — s(k) = TD 'D(84 + DY (AA — ug)) + TD ' Dx

AXonia(k A N~
(5D‘— %() + o (eav 1) + TezN(k))p)‘ — (D7D = I)

A
(_AXZNd(k) + T (eon—1(k) + Tean (k)Y ) )

+TD'Dh(|sk)| — s(k)) > 0
(46)

s(k 4+ 1) — s(k) is positive. Then, inequality (45) satisfies first stability condition.
Therefore, control law (39) with inequalities (34) and (45) guarantees the closed loop
system convergence.

Remark 3. In practical applications, SMC and DSMC suffer from an important
disadvantage that is known as chattering phenomenon. Chattering can cause vibration
and system failure due to excitation the high frequency unmodelled dynamics
(Young et al., 1999; Wang, 2008). From equations (23) and (39), it can be seen that the
controllers are demonstrate chattering. In order to remove the chattering from equation
(23) and reduce from equation (39), the switching term of DLSMC an DTSMC control laws
(Uswitching = — €lsign(si1(k)), sign(sa(R)), ... , sign(s,(k))] Ty are modified in the form of:

s1(k)
[s1(R)[+61

USwitching = — &€ 01,00, ...,6, >0 47)

Su(k)
[$n(R)[+0,

61,8, . . .,6, have sufficiently small values.
Remark 4. To design the sliding gain e(k) and sampling time 7 values for DLSM
and DTSM controllers, we should act as below algorithm:

« select oscillation range (needed precision) of sliding surface |s(%)|;

+ choose &(k) from inequalities (31) and (45) for DLSMC and DTSMC, respectively;
and

+ calculate T from inequality (34).

5. Discrete TSMC
A three-link SCARA robot is simulated to show the effectiveness of the DSMC and

DTSMC methods in discrete-time domain. The dynamic equations are given as follows
(Schilling, 2003):

D Dip Di3 [dn Cu Ci2 Ci3] [dn Gy T

Doy Dag Dos | |2 | + |Cn Co2 Cos | | Q2| + | G2 | +F()+ugt)= | 2| (48)
D31 D3 D33 | |3 Ca1 C2 C33| |43 G3 (5



where: Control of robot

Dy =1 (n% +my + ms) + hla(my + 2m3)cos(qz) + 15 (% + 7443> manipulators
m m
Du=-ﬁb(§+m@€%@@—€C§+mQ=Jh
349

m
Dy =1 (?2 + Wl3> D33 =m33 Di3=D3 =Dy =D3p =0

Ci1 = —ga(mo + 2m3)l1losin(gz)  Ci2 = —@2 (72 + ms)hleln(f]z)

Ca=-q (% + ms)hlein((]z) Cpn=Ci3=C3=Cp3=Cp=C3=0

GlZGZZO GgZ—WL3g
in which ¢q;, g2 and g3 are the angle of joints 1, 2 and 3; m, ms and ms are the
mass of links 1, 2 and 3; 4, I, /5 and are the length of links 1, 2 and 3; and g is

the gravity acceleration. The system parameters of the robot are selected as
(Wai et al, 2004):

m; =1.0kg my=08kg m3=05kg =98 1 =10m [, =08m
1320.61’11

The friction term and the external disturbance are the most important parameters
that affect the control performance of the robotic system. Therefore, the friction
forces are considered as follows:
Vi + /1 san(qr)
F(g) = | 542 + /4 sgn(g2) (49)

Fhas + £35gn(d3)

where f]=f5=/f3=12 f‘f = fg = fg =0.2. Moreover, the disturbance that
affected into the robotic system are given as:

ug(t) = [0.2sin(3H) 0.2sin(3) 0.2sin36)]” (50)

DLSMC design
In order to design DLSMC, controller parameters are selected as:

M=095M C=08C G=09G EF=095F T=0.002s
h = diag{2,2,2} A= diag{3,3,3}
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moreover, sliding gain vector is:

AXona(k)

(k) = 84 + 6p|— T + Aeon (R)| + Rls(R)| (51)
where:
5 0 0 1 01 0
5,=10 6 0|, &=1]01 1 0
0 0 5 0 0

The tracking position, control torque and sliding gain variations of joints 1, 2 and 3 are
shown in Figures 2 and 3. From Figure 2, we can see that the DLSMC has a high
precision tracking and robust behavior.

Figure 3 shows the sliding gain vector &(k) variation, and is a proof for equation (51).
In the other word, e(k) has high value in starting time due to maximum magnitude of
tracking errors, and it decreases by passing time.

DTSMC design
In this method, sliding gain is selected as:
AXong(R) A
g(k) = 84 + &p|— %() + T(@N—l(k) + Tean(R)?| + hls(k)| (52)

where p = 3/5 and other parameters are similar to DLSMC design. The tracking
position, control torque and sliding gain variation of joints 1, 2 and 3 are shown in
Figures 4 and 5.

From Figures 2, 4 and 3, 5, it can be seen that DTSMC presents a better transient
response and smaller tracking error than the DLSMC, but there is some chattering in
the control signal that saturation function could not remove it completely.

Tracking error of joint 2 is shown in Figure 6 to illustrate another advantage of
DTSMC against DLSMC. This figure shows that the tracking error magnitude of
DTSMC is lower than DLSMC.

Sampling time effects on the closed loop system convergence: finally, in order to
study the sampling times effects on the DLSMC and DTSMC controllers, the computer
simulations are repeated for different sampling times. The tracking position and
discrete-time sliding surface convergence for 7°= 0.04 and 7 = 0.004 are shown in
Figures 7 and 8 for joint 2.

From Figures 7 and 8, it can be seen that the SMC in discrete domain is depended on
the sampling time values. Then, in addition to the joint friction and the external
disturbance, the sampling time can have important effects on the closed loop
convergence. Therefore, the sampling time should be as small as possible to have a
high precision controller.

6. Conclusion
In this paper, two robust nonlinear controllers for robotic manipulators have been
developed based on discrete-time case. A discrete model of an n-link robot has been used
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Figure 3.

Sliding gain vector
variation (g(k)) of joints 1,
2 and 3 (DLSMC)

Sliding Gain Vector

to design these controllers. Through the comparative computer simulations on the
three-link SCARA robot, the DLSMC and DTSMC advantages and similarities can be
demonstrated as:

* The presented control schemes are robust against the model uncertainties and
external disturbance.

» Boundedness of the controlled variables has been theoretically proved by using
the Sarpturk inequalities.

* The control torque and sliding manifold (linear and terminal) values are
depended on the sampling period. In order to have a high performance and stable
closed loop system, the sampling frequency should be small.

The main differences of DLSMC and DTSMC controllers are deduced as:

* The DTSMC presents a better transient response and smaller tracking error than
the DLSMC, while the control signal values are high in the first steps.

* The chattering phenomenon does not removed completely from the DTSMC
control signal.

Moreover, the most important advantages of DLSMC and DTSMC in comparison with
SMC and TSMC are:

* The DLSMC and DTSMC controllers are low cost, low weight, high accuracy and
ease of making software and design changes in comparison with
continuous-time ones.

* There is no singularity problem for DTSMC due to differential (non-derivative)
computations.

The proposed controllers are applicable to large class of two-rational order systems.
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