
Journal of Control and Systems Engineering                                                                                  Jun 2013, Vol. 1 Iss. 1, PP. 1-8                                          

- 1 - 

Discrete-time Terminal Sliding Mode Control  

of Chaotic Lorenz System  
Sajjad Shoja Majidabad

*1
, Heydar Toosian Shandiz

2
 

Department of Electrical and Robotic Engineering, Shahrood University of Technology 

Shahrood, Iran 
*1

shoja.sajjad@gmail.com; 
2
htshandiz@shahroodut.ac.ir

 
 

 
 

Abstract- The objective of this paper is to design a terminal sliding mode controller for Lorenz system in discrete-time. First, a 

discrete model is derived through Taylor series expansion. In the next step, a discrete terminal sliding mode controller (DTSMC) is 

developed to reach a fast and high precision control. The stability analysis of DTSMC is presented in the presence of external 

disturbance. Numerical simulations of Lorenz system are shown and compared to illustrate the effectiveness of the proposed control 

scheme. Finally, the sampling frequency effects on the closed loop system convergence are discussed. 
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I. INTRODUCTION 

In recent years, chaos has been intensively studied [1-4], due to its powerful applications in chemical reactions, mechanical 

and biological systems, secure communications, etc. Chaotic behavior is complex, irregular, sensitive to initial conditions and 

usually undesirable in practical engineering. It often causes poor performance or even system instability. Thus, it is necessary 

to eliminate chaotic behaviour and stabilize the chaotic system at one of equilibrium points. 

On the other hand, sliding mode control (SMC) is a particular type of variable structure control system that proposed by 

Emelyanov in the Soviet Union [5]. The SMC is one of most powerful tools to overcome the control problems of nonlinear 

dynamical systems [6]. This method is well known due to its high precision and robustness against model uncertainties, 

parameter variations and external disturbances [7]. In the field chaos control, SMC has been widely used to control of various 

chaotic systems like: Lorenz [8-10], Rossler [11] and Chua systems [12]. However, the main disadvantage of SMC scheme is 

that the system states reach the equilibrium point at low rate. In [13-18], to bring the system states to the equilibrium point in a 

finite time, terminal sliding mode control (DTSMC) has been proposed. But, this method has the singularity problem for some 

of nonlinear systems. In [15-16], some terminal sliding mode controllers have been proposed to overcome the singularity 

problem in the chaos and robot control. 

Moreover, discrete-time sliding mode control (DSMC) has received a lot of attentions due to technological advances in 

digital electronics and computer control [19-26]. In general, DSMC have many advantages over SMC. Some of the advantages 

are: low power consumption, low cost, low weight, high accuracy and ease of making software and design changes [19]. In 

DSMC, the control signal is constant over the entire sampling period and is changed only at each sampling instant. As a result, 

some properties of continuous-time sliding mode controller are lost by discretization. To enhance the performance of DSMC, 

various methods have been proposed in [20-24]. Among these literatures, the proposed reaching law in [20] and stability 

conditions in [22] are common in comparison with others. Same as continuous-time one, DSMC can be designed in the finite-

time form that is known as discrete-time terminal sliding mode control (DTSMC). In [27-28], DTSMC is applied to reach 

finite-time convergence. 

In chaos control, DSMC is used to stabilizing unstable fixed points of discrete chaotic systems [29]. To our knowledge, 

there is no top literature in finite-time control of chaotic systems in discrete-time. Therefore, extra work is needed in this 

domain.  

This paper presents the following main contributions: 1- DTSMC is implemented to control of chaotic systems for first 

time. 2- Stability of the closed loop system is proved for DTSMC in the presence of external disturbances. 3- Upper bound of 

sampling time is derived for the proposed control scheme. 4- Sampling time effects on the system outputs and sliding surfaces 

convergence are presented. 5- The proposed controller is nonsingular due to the non-derivative computations. 6- The main 

drawback of the terminal sliding mode control is illustrated.  

The rest of this paper is organized as follows: Section 2 describes a canonical form for the Lorenz system. A discrete-time 

model is derived from the canonical form in Section 3. In Section 4, we design a discrete-time terminal sliding mode controller. 

The effectiveness of the proposed controller is illustrated by numerical simulations in Section 5. Finally, concluding remarks in 

Section 6 close the paper. 
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II. LORENZ SYSTEM AND ITS CANONICAL FORM 

Consider the following chaotic Lorenz system with external disturbance [8-9], 
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where )(1 tx , )(2 tx and )(3 tx

 

are states of the system, )(tu  is the scalar control input, Dtd )(  is the bounded disturbance, 

D  is positive constant. 

The objective of this study is to drive the system states to a specified point in the state space. If dxtx 11 )(  , then 

0)()()( 211  txtxtx   and then dxtx 12 )(  . Moreover, by solving the third equation of (1) we have  

 
b

ex
xetx

bt
dbt )1(

)0()(
2
1

33


 

  (2) 
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Now let the error states be dxtxte 111 )()(  , dxtxte 222 )()(   and dxtxte 333 )()(  , then we can get 
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and the following error dynamics can be derived from (1) and (3) 
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where )()()()())(),(( 21112121 textexteteteteg dd  .  

To design the sliding mode control law, the reformulation of the error dynamics (4) into a controllable canonical form is 

needed. We applied the following state transformation to present (4) in the canonical form 
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where )(tE  is the new state error vector and P  is transformation matrix. Hence, the first two equations of (4) can be 

transferred to a standard form as  
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where )()(2)()()())(),((ˆ 211121
2
1

2
21 tExtExtEtEtEtEtEg dd   and goes zero if 0, 21 EE . Then, 03 e  [8]. 

III. MODEL DISCRETIZATION 

A possible block scheme of a discrete-time computer controlling a continuous-time system is sketched in Fig. 1. In this 

figure, the controller block is composed out of three parts [25]: 

1- A digital central block 

2- An analog to digital convertor 

3- A continuous to discrete-time signal convertor. 
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Fig. 1 Closed loop system composed of a discrete time controller and a continuous time plant 

From above figure, to design a discrete control law, the continuous-time model (6) should be transferred to a discrete-time 

one. By using the following Taylor series expansion [30], 
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where T  is the sampling period and )(TO  is the high order term of the above expansion, i.e. 
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the higher order terms of )(TO  will be small for the high sampling rates. By substituting (6) into the first and second equations 

of (7), the discrete-time model will be as 
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Remark 1: The discretization model of Lorenz system in (9) is an approximation model for the original uncertain model in 

(6). In order to have an approximately similar behaviour between the discrete-time (9) and original continuous-time (6) 

systems, the sampling rate should be sufficiently fast in comparison with the system dynamics and uncertainties. 

IV. TERMINAL SLIDING MODE CONTROL  

To obtain a small transient time convergence for (6), the following continuous-time terminal sliding surface is defined 

 ptEtEts )()()( 12   (10) 

where   is positive constant and  10  p . p  should be rational with odd numerator and denominator.  

On the terminal sliding manifold ( 0s ), the system dynamics are determined by the following nonlinear differential 

equation 
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by solving (11), the reaching time ( reacht ) is given by 
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this means that the system states converge to zero in a finite time. Same as (10), we can define the discrete-time terminal 

sliding surface as  

 )()()( 12 kEkEks
p

  (13) 

According to the reaching law that proposed in [20, 31], 

 01,0,0))(sgn()()()1(   ThhksTksThIks nn   (14) 
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we can define below Theorem to stabilize the Lorenz system. Here T , 

 

  and h  are the sampling time, approximation rate 

and reaching rate, respectively. 

Theorem. Considering the Lorenz system discretized Equation (6), and with the combination of (13) and (14), the 

following control law 
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with Inequalities (23) and (25) guarantees boundedness of closed loop system. 

Proof. By substituting (15) into (9), the error dynamics will be as 
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putting (16) and (17) into (13), we can get 
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from [22], stability conditions for the discrete-time sliding mode control can be illustrated in this way  
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that are known as Sarpturk’s reaching laws. Now, by putting (18) in (19) and (20), 
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to have a negative values for 1P  , the sliding gain lower bound should be as 
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also, for the second condition  
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and from the above inequalities 
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then for (15), the system states will converge to the desired values only if 0)( ks . On the other hand, sliding manifold will 

approach to zero only if 0)(  DT  . As we know, the parameters  , T , D  are nonzero. Then, the tracking errors will not 

converge to the origin. However, it will approach near the origin if T  is given a small value. Therefore, Control Law (15) with 

Inequality (23) guarantees the closed loop convergence for a small sampling time.    

Remark 2: To design the sliding gain   and sampling time T  values for DTSM controller, we should act as below 

algorithm: 

1- Select

 

oscillation range (needed precision) of sliding surface )(ks .  

2- Evaluate  from inequality (23) for DTSMC.  

3- Calculate T  from inequality (25).  

Remark 3: From Equation (15), it can be seen that the controller demonstrates chattering phenomenon. Chattering can 
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cause vibration and system failure due to excitation the high frequency un-modelled dynamics [6]. Hence, to reduce the 

chattering from (15), the control law ( ))(( kssignuSwitching  ) is modified in the form of 

 0
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where   is sufficiently small. 

V. SIMULATION RESULTS 

For numerical simulations, consider the Lorenz system described by (1), whose parameters are chosen as 10 , 3/8b  

and 28r . The initial and desired values of TxxxX ],,[ 321  are given by TX ]9,2,12[ and TX ]1.27,5.8,5.8[ , respectively.  

The disturbance that affected into the chaotic system is )3sin(2.0)( ttd  . Moreover, controller parameters are selected as 

1.06210sec002.0  hT  

Fig. 2 shows the phase portrait of Lorenz system without any controllers. Fig. 3, 4 and 5 present system states convergence 

for two different values of p  ( 1p : linear manifold and 11/7p : non-linear manifold). Also, Figure 6 shows control input. 

From Fig. 3, 4, 5 and 6, it can be seen that: 

1- When p is close to zero, the transient response is fast but the chattering phenomenon is not removed completely from 

control signal even in the presence of saturation function.  

2- When p is approaching one, the transient response is slow, but the chattering is eliminated.  

Then, p should be chosen in a way that we reach a tradeoff between the transient response and control signal oscillations.  
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Fig. 2 The phase plot of Lorenz system 
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Fig. 3 Time response of )(1 kTx for 
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Fig. 4 Time response of )(2 kTx for 
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Fig. 5 Time response of )(3 kTx for 
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Fig. 6 Time response of )(kTu for 
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Finally, to study the sampling period effects on the DTSMC controller, the computer simulations are repeated for different 
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sampling rates. The tracking position and discrete sliding surface convergence for sec05.0T

 

and sec005.0T

 

are shown in 

Fig. 7 with additional zoom on the right side. From this Figure, it can be seen that the sliding mode control in discrete domain 

is depended on the sampling time values. Then, to have a high precision controller the sampling time should be as small as 

possible. 

0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

kT (sec)

s
 (

k
T

) 
  

s
lid

in
g
 s

u
rf

a
c
e

 

 

4.9 4.92 4.94 4.96 4.98 5 5.02 5.04 5.06 5.08

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

kT (sec)

s
 (

k
T

) 
  

s
lid

in
g
 s

u
rf

a
c
e

 

 
T=0.02  sec

T=0.002 sec

T=0.02  sec

T=0.002  sec

 

Fig. 7 Sliding surface )(kTs  variation for 02.0T  and 002.0T  

VI. CONCLUSIONS 

In this paper, the terminal sliding mode control of Lorenz system has been developed in discrete-time. Through the 

computer simulations, it has been shown that by using DTSMC, system states have been steered fast to the equilibrium point. 

Also, stability of the closed loop system has been theoretically proved. Meanwhile, the proposed controller behaviour is highly 

depended on the sampling rate. Therefore, to have a high performance and stable closed loop system, the sampling frequency 

should be small enough. Moreover, the most important advantages of DTSMC in comparison with TSMC are:  

1-There is no singularity problem for the DTSMC controller due to differential (non-derivative) computations. 

2-The DTSMC controller is low cost and easily implemented in practice in comparison with continuous-time one. 

Such a control algorithm could be easily extended to the Rossler and Chua chaotic systems. 
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