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Abstract 

The wave resulting from instantaneous and complete valve-closure in pres-

surized pipe systems propagates upstream and/or downstream in the hy-

draulic system. The pressure (head) and velocity of the flow (waves) are 

important parameters in the design of pipeline systems. Analyzing and in-

terpreting water-hammer (unsteady flow) phenomena in a pipeline are not 

easy tasks. For complicated cases, the governing partial differential equa-

tions can only be solved numerically. Various numerical approaches have 

been introduced for pipe line transient calculations. They include The 

Method of Characteristics (MOC), Finite Difference (FD), Wave Plan 

(WP), Finite Volume (FV) and Finite Element (FE). In this paper, second-
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order Finite Volume (FV) Godunov type scheme is applied for water 

hammer problems and the results are analyzed. The developed one-

dimensional model is based on Reimann solution. The implementation of 

boundary conditions such as reservoirs, valves, and pipe junctions in the 

Godunov approach is similar to that of the method of characteristics 

(MOC) approach. The model is applied to two classic problems (systems 

consisting of a reservoir, a pipe and a valve). The second-order Godunov 

scheme is stable for Courant number less than or equal to unity. The 

minimum and maximum of the pressure waves not only are computed in 

close agreement with laboratory data, both also in the same period of the 

times. 

Key Words 

Water-Hammer, Unsteady Pipe Flow, Finite Volume Method, Second Or-

der Godunov Type Reiman Solver 

1 Introduction 

In pressurized pipeline, flow disturbance caused by pump shutdowns, or 

rapid changes in valve setting, trigger a series of positive and negative 

pressure waves large enough to rupture pipelines or damage other hydrau-

lic devices. Negative pressure waves can also result in cavitation, pitting 

and corrosion. Thus accurate modeling of water hammer events (hydraulic 

transient) is vital for proper design and safe operation of pressurized pipe-

line systems. Water quality problems can also arise due to intrusion of con-

taminants through cracks and joints. Water quality can be affected follow-

ing a water hammer event as the biofilm on the pipe is sloughed off by 

large shear stresses created by the transient, and particulates may be resus-

pended by the strong mixing of the flow inside a pipe. The design of pipe-

line systems, and the prediction of water quality impacts, requires efficient 

mathematical models capable of accurately solving water hammer prob-

lems[10]. 

Various numerical approaches have been introduced for pipeline tran-

sient calculation. They include the method of characteristics (MOC), finite 

difference (FD), wave plan (WP), finite volume (FV), and finite element 

(FE). Among these methods, MOC proved to be the most popular among 

water hammer experts. The MOC approach transforms the water hammer 

partial differential equations into ordinary differential equations along 

characteristic lines. The integration of these ordinary differential equations 
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from one time step to the next requires that the value of the head and flow 

at the foot of each characteristic line be known. This requirement can be 

met by one of two approaches: (i) use the MOC-grid scheme; or (ii) use 

the fixed-grid MOC scheme and employ interpolation in pipes, that it is 

impossible to make the Courant number exactly equal to one in all pipes. 

This interpolation artificially modifies the wave celerity and introduces ar-

tificial damping into the solution[6]. The fixed-grid MOC is the most 

widely accepted procedure for solving the water hammer equations and 

has the attributes of being simple to code, efficient, accurate, and provides 

the analyst with full control over the grid selection.  

Results of solving the water hammer equations by the MacCormack, 

Lambda, and Gabutti explicit FD schemes show that these second-order 

FD schemes produce better results than the first-order MOC[15]. 

Finite element methods (FE) are noted for their ability to: (i) use un-

structured grids (meshes), (ii) provide convergence and accurate results, 

and (iii) provide results in any point of problem domain. Jovic (1995) used 

the combined method of MOC and FE for water hammer modeling in a 

classical system (a system consisting of a reservoir, a pipe, and a valve)[7]. 

Mollabashi (2002) solved the water hammer equations by finite element 

method and applied it to a classical system[11]. Ahmadi et al. (2004) used 

the finite element method for water hammer problems with complicated 

boundary conditions[1]. They found that finite element method results are 

in good agreement with MOC results. However, FE schemes increase the 

execution time. Thus FE schemes don't have an important privilege in 1D 

problems.  

FV methods are widely used in the solutions of hyperbolic systems, 

such as gas dynamics and shallow water waves. FV methods are noted for 

their ability to: (i) conserve mass and momentum, (ii) provide sharp reso-

lution of discontinuities without spurious oscillations, and (iii) use unstruc-

tured grid (mesh). The first application of the FV method to water hammer 

problems is due to Guinot (2002). This first-order scheme is highly similar 

to MOC with linear space-line interpolation. 

The objectives of this article are: (1) to implement the Godunov type 

solution for water hammer and (2) to investigate the accuracy of this 

method. The article is organized as follows. First, the governing equations 

of water hammer are given. Second, the FV form of the governing equa-

tions is provided. Third, first- and second-order Godunov schemes for the 

FV fluxes are formulated. Fourth, the time integration of the equations is 

derived. Fifth, the schemes are tested using single pipe systems. Last, the 

results are summarized in the Conclusions. 
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2 Governing Equations 

Unsteady closed conduit flow is often represented by a set of 1D hyper-

bolic partial differential equations[15]: 
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where t=time; x=distance along the pipe centerline; H=H(x,t)= piezometric 

head; V=V(x,t)=instantaneous average fluid velocity; g=gravitational ac-

celeration; a=wavespeed; θ =the pipe slope; and J=friction force at the 

pipe wall. 

The nonlinear convective terms 
x

HV
∂

∂ and 
x

VV
∂

∂  are included in 

Eqs. (2.1) and (2.2). These terms, although small for the majority of water 

hammer problems, are not neglected in this paper. Maintaining the convec-

tive terms in the governing equations makes the scheme applicable to a 

wide range of transient flow problems. 

3 Formulation of Finite Volume Schemes for Water 
Hammer 

The computational grid involves the discretization of the x axis into 

reaches each of which has a length x∆  and the t axis into intervals each of 

which has a duration t∆ . Node (i,n) denotes the point with coordinate 

x)]2/1(i[x ∆−=  and tnt ∆= . A quantity with a subscript i and a super-

script n signifies that this quantity is evaluated at node (i,n). The ith control 

volume is centered at node i and extends from i-1/2 to i+1/2. That is, the 

ith control volume is defined by the interval [(i-1) x∆ ,i x∆ ]. The boundary 

between control volume i and control volume i+1 has a coordinate i x∆  

and is referred to either as a control surface or a cell interface. Quantities at 

a cell interface are identified by subscript such as i-1/2 and i+1/2 . 

The Riemann-based FV solution of Eqs. (2.1) and (2.2) in the ith con-

trol volume entails the following steps: (1) the governing equations are re-

written in control volume form; (2) the fluxes at a control surface are ap-

proximated using the exact solution of the Riemann problems; and (3) a 

time integration to advance the solution from n to n+1. 
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Eqs. (2.1) and (2.2)  can be rewritten in a matrix form as follows[15]: 
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For hyperbolic systems in nonconservative form, Eq. (3.1) can be ap-

proximated as follows[15]: 
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where uu A)(f = ; 
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A ; and V =mean value of V to be specified 

later. Setting 0V = , the scheme reverts to the classical water hammer case 

where the convective terms are neglected. 

The mass and momentum equations for control volume i is obtained by 

integration Eq. (3.2) with respect to x from control surface i-1/2 to control 

surface i+1/2. The results is: 
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Eq. (3.3) is the statement of laws of mass and momentum conservation 

for the ith control volume. Let iU =mean value of u in the interval [i-

1/2,i+1/2]. Eq. (3.3) becomes 
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The fluxes at cell interfaces can be determined from the Godunov 

schemes that requires the exact solution of the Riemann problem. Godunov 

schemes are conservative, explicit, and efficient. The formulation of a 

Godunov scheme for the mass and momentum flux 2/1i+f  in Eq. (3.4) for 

all i and for ]t,t[t 1nn +∈ requires the exact solution of the following Rie-

mann problem[15]: 
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where n
LU = average value of u to the left of interface i+1/2 at n; and n

RU = 

average value of u to the right of interface i+1/2 at n. The exact solution of 
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Eq. (3.5) at i+1/2  for all internal nodes i and for ]t,t[t 1nn +∈ is as follows: 
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Using Eq. (3.6), the mass and momentum fluxes at i+1/2 for all internal 

nodes and for ]t,t[t 1nn +∈ are as follows: 

n
R2/1i

n
L2/1i2/1i2/1i2/1i CUABUAuAf +++++ +==  )3.7( 

 

Fig. 3.1. Finite Volume grids system  

The evaluation of the right-hand side of Eq. (3.7) requires that 

2/1i+A , n
LU , and n

RU  are approximated. To estimate 2/1i+A , the entry asso-

ciated with the advective terms, 2/1iV + , needs to be approximated. Setting 

0V =  is equivalent to neglecting the advective terms from the governing 

equations. In general, an arithmetic mean be used to evaluate 

2/1iV + [i.e., )VV(5.0V n
1i

n
i2/1i ++ += ]. 

4 First-Order Godunov Scheme Formulation 

The explicit evaluation of Eqs. (3.6) and (3.7) requires that n
LU  and n

RU  
are written in terms of known nodal values. The first-order Godunov ap-

proximation is giving by[15]: 

n
1i

n
R += UU   and  n

i
n
L UU =  )4.1( 

Inserting Eq. (4.1) into Eq. (3.7) completes the formulation of the first-

order Godunov scheme: 
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Fig.4.1. Finite Volume formulation 

5 Second-Order Godunov Scheme Formulation 

In general, the numerical dissipation in first-order scheme is more than in 

second-order scheme. Limiters increase the order of accuracy of a scheme 

while ensuring that results are free of spurious oscillations[15].  

Using MINMOD limiter, an approximation for n
LU and n

RU  that is sec-

ond order in space and time is obtained as follows[15]: 
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Inserting Eq. (5.7) into Eq. (3.7) can give Godunov second-order 

scheme for the water hammer. 

6 Boundary Conditions 

The implementation of boundary conditions is a important step in solving 

partial differential equations. The boundary conditions in this model are: 

6.1 Upstream Head-Constant Reservoir 

The flux at an upstream boundary (i.e., i=1/2) can be determined from the 

Riemann solution. The Riemann invariant associated with the negative 

characteristic line is: 
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Coupling this Riemann invariant with a head-flow boundary relation de-

termines[15]: 
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For an upstream reservoir where 
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6.2 Fully Closed Downstream valve 

The flux at a downstream boundary can be determined from the Riemann 

solution. The Riemann invariant associated with the positive characteristic 

line is[15]: 
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Downstream boundary condition is valve closure in Tc . Head-flow 

boundary relation determines: 
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As a result, the flux at the boundary is determined as follows: 
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7 Time Integration 

The previous section provided a first- and second-order scheme for the 

flux terms. In order to advance the solution from n to n+1, Eq. (3.4) needs 

to be integrated with respect to time. In the absence of friction, the time in-

tegration is exact and leads to the following: 
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In the presence of friction, a second order Runge-Kutta solution is used 

and results in the following explicit procedure[15]: 
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8 Stability Condition 

The time step should satisfy the Courant-friedrichs-Lewy (CFL) condition 

for the convective part: 

1
x

t.a
Cr ≤=

∆

∆
 )8.1( 

Although another stability condition should be used for the updating of 

a source term, it is found that the CFL condition is sufficient for the cases 

where the magnitude of the source term is small. 

9 Friction in Water Hammer Flow 

In this paper, the wall friction is modeled using the formula of Brunone et 

al. (1999)[15]: 

)
x

V
a

t

V
(k

D2

VfV
J

∂

∂
−

∂

∂
+=  )9.1( 

where D=pipe diameter; f = Darcy- Weisbach friction factor; k =unsteady 

friction factor; and a =wavespeed whose expression is as follows[9]: 

)]eD)(EK[(1

K
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+
=

ρ
 )9.2( 

where K=bulk modulus of elasticity of the fluid; E= Young’s modulus of 

elasticity for the pipe; ρ =density of the fluid; and e =thickness of the 

pipe.  
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10 Numerical Results and Discussion 

The objective of this section is to compare the accuracy and efficiency of 

Godunov scheme in solving water hammer problems. The MOC results 

and laboratory data are used for comparison. 

10.1 Test Case I 

Analytical solution data from Zhao and Ghidaoui(2004), and MOC results 

are used to investigate the accuracy of proposal model(Godunov 

scheme)[15]. The geometrical and hydraulic parameters for this test case 

are given in Table 10.1. This test case consists of a simple reservoir-pipe-

valve configuration. 

Table 10.1. Properties for the test case 1 

0.5 Pipe diameter (m) 

1000 Pipe length (m) 

0.00 D.W friction factor 

0.00 Unsteady friction factor 

1000 Wave speed(m/s) 

0 Reservoir head-upstream (m) 

1.02 Initial mean velocity(m/s) 

Downstream instantaneous fully valve closure Cause of transients 

Figure 10.1 shows the analytical and computed solutions for the varia-

tions in hydraulic head at the valve as a function of time. 
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Fig.10.1. Variations in hydraulic head at the valve(Test 1) for MOC and FVM and 

analytical solution 
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Fig.10.2. Pressure head traces at valve( Test 1) for various Cr(FVM) 
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As expected, the head traces results by both schemes (MOC and FVM) 

exhibit numerical dissipation, but the numerical dissipation in FVM is less 

than the MOC. In addition, the finite volume results affect by the Cr num-

ber. That is, the scheme reproduce the analytical solution when Cr=1.0 and 

for Courant number more less than one, the numerical dissipation of the 

scheme is more. Although the numerical dissipation in the Godunov 

scheme is less than other schemes. In addition, the grid size (mesh size) in-

fluences the results of the scheme. 
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Fig.10.3. Pressure head trace at valve (test 1) for Cr=0.1 and different grid size 

(Finite Volume Method) 

10.2 Test Case II 

In this test case, laboratory data from Bergant and Simpson (1994) are 

used to investigate the accuracy of the FV scheme[10]. The geometric, ki-

nematic, and dynamic parameters of this test are summarized in Table 

10.2. 
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Table 10.2. Properties for the test case 2 

Figure 10.4 shows the laboratory data and computed solutions (FVM 

and MOC) for the head value at the valve as a function of time. Figure 

10.4 shows that both models accurately reproduce the time distribution of 

the experimental pressure wave, including its peak and phase, over the en-

tire simulation time. In addition, the both models accurately capture the 

experimental pressure wave peak and phase, but the finite volume scheme 

produce a better fit for the entire pressure distribution than the MOC.  
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Fig.10.4. Variations in hydraulic head at the valve (Test 2) for MOC and FVM 

and laboratory data (Cr=0.5) 

0.022Pipe diameter (m)

37.20 Pipe length (m) 

0.034 D.W friction factor 

0.00 Unsteady friction factor 

1319 Wave speed(m/s) 

32.0 Reservoir head-upstream (m) 

0.114 Discharge(Lit/s) 

1000 Density(kg/m
3
) 

1.02 Viscosity(m
2
/s) 

Downstream valve closure in 0.009 seconds Cause of transients 
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11 Conclusions 

In this paper, second-order explicit finite volume Godunov-type scheme 

for water hammer problems are formulated, applied and analyzed. This 

scheme is compared with measured data from different research groups 

and with numerical data produced by a MOC model. The results are as fol-

lows. 

1. Finite volume formulation conserves mass and momentum and 

produce physically realizable shock fronts. 

2. The Godunov- type solution is stable for a Courant number less than 

or equal to one. 

3. Nonlinear convective terms are included in governing equations. 

4.  Numerical dissipation in finite volume scheme is less than MOC and 

in close agreement with laboratory data. 

5. The maximum and minimum of the pressure waves not only are 

computed in close agreement with experimental data, both also in the 

same period of time. 

6. Similar to other numerical methods, finite volume results affected by 

computational grid size. 



16       Saeed-Reza Sabbagh-Yazdi, Ali Abbasi & Nikos E Mastorakis 

 

References 

1. Ahmadi A, Chamani MR, Asghari K (2004) 1D Water Hammer Modeling by 

Finite Element Method for Complicated Boundary Conditions(in Farsi). M.Sc 

thesis, Isfahan University of Technology 

2. Chaudhry M H (1979) Applied Hydraulic Transients. Van Nostrand Reinhold 

3. Chung T J (2002) Computational Fluid Dynamics. Cambridge University Press 

4. Enel-Cris M(2000) Hydraulic Transients with Water Column Separation. IAHR 

Secretariat 

5. Guinot V (1998) Boundary Condition Treatment in 2�2 Systems of Propaga-

tion Equations. Int J Numer Meth Engng 42:647-666 

6. Guinot V (2000) Riemann Solvers for Water-Hammer Simulations by Godunov 

Method. Int J Numer Meth Eng 49:851-870 

7. Jovic V (1995) Finite Element and Method of Characteristics Applied to Water 

Hammer Modeling. Int J for Engng Modeling 8(3&4):21-28 

8. Karney BW, Ghidaoui MS (1994) Equivalent Differential Equations in Fixed-

Grid Characteristics Method. J Hydraul Eng 120(10):1159-1175 

9. Larock BE, Jeppson RW, Watters GZ (1999) Hydraulics of Pipeline Systems. 

CRC Press 

10. Ghidaoui MS, Mansour S (2002) Efficient Treatment of Vardy-Brown Un-

steady Shear in Pipe Transients. J of Hydraul Engng 128(1):102-112 

11. Mollabashi, A. (2002). Water Hammer Simulation by Finite Element Method. 

M.Sc Thesis(in Farsi), Isfahan University of Technology 

12. Prado R A, Larreteguy AE (2002) A Transient Shear Stress Model for the 

Analysis of Laminar Water-Hammer Problems. J Hydraulic Researches 40: 

45-53 

13. Turani M (2004) Water Hammer Analysis With MOC For Karoun IV Pen-

stocks(in Farsi). M.Sc thesis, K.N.Toosi University of Technology 

14. Wylie EB, Streeter VL (1993) Fluid Transients in System. Prentice-Hall, 

Engle-wood, N.j 

15. Zhao M, Ghidaoui MS (2004) Godunov-Type Solution for Water Hammer 

Flows. J of Hydraul Engng 130(4): 341-348 


