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Abstract

Aims: Classification is an appropriate tool for the summarizing of species data in community ecology. Re-
searchers need to select the effective classification method(s) and the optimum number of clusters to perform a 
reasonable classification. The aims of the present research are to assess the efficacy of various classification al-
gorithms and to select the optimum number of clusters. Study area: We used a dataset of 197 400 m2 relevés 
recorded from Tarbiat Modares University research forest located in the north of Iran. Methods: For each rel-
evé, a species list and the canopy cover were recorded by using Braun-Blanquet cover-abundance scale modified 
by van der Maarel. We considered seven classification methods: flexible-β linkage (β = -0.25), Ward’s linkage, 
complete linkage, average linkage, Modified TWINSPAN, k-means, and PAM. Using each of these algorithms, 
data were classified into 2-21 cluster levels. Then, values of eight internal evaluators viz. ASW, 1-C.index, PAR-
TANA, PBC, 1-ISA.pval, ISA.sig.inds, ISAMIC, 1-Morisita as well as mean lambda index were calculated for 
each classification level resulted from algorithms. These values were applied in three methods to select the ap-
propriate classification algorithm(s). Also, we used those values to choose the optimum number of clusters in 
the selected algorithm(s). A discriminate analysis opted for the verification of the selected optimums. Results: 
Our results revealed that, for our data, flexible-β linkage was the proper classification algorithm with 12 the 
optimum number of clusters. Despite the vast number of available classification algorithms, there is no ultimate 
best one for all vegetation datasets. Therefore scientists need using multiple criteria to choose their specific ap-
propriate method. With respect to this, our methods and findings could provide a generalized framework for 
choosing the effective method(s) for the subsequent classification analyses.
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Introduction

Vegetation classification is an important tool for environ-
mental management that describes critical units for the 
monitoring of natural communities (De Caceres & Wiser 
2012). Management planning for successful forestry and 
conservation programs depend on vegetation classifica-
tion (Peet & Roberts 2013). This analysis can be based on 
various criteria including species composition, physio-
gnomy, plant functional traits, climatic factors and soil 
conditions (De Cáceres & Wiser 2012). 

Methods of vegetation classification are generally di-
vided into two groups: qualitative expert-based and 
quantitative numerical-based ones (Aho 2006; Peet & 

Roberts 2013). Cluster analysis, a quantitative method, is 
the most common approach in classification studies (Aho 
2006). This method creates homogeneous groups (Gan et 
al. 2007) and provides acceptable results (Aho 2006). 
Choosing an appropriate clustering algorithm and select-
ing the optimum number of clusters can be considered as 
important parts of the cluster analysis (Aho 2006).

There are numerous algorithms for a numerical classi-
fication of the species data. These algorithms are mainly 
different in terms of their linkage methods (Tichý et al. 
2010). Although different clustering algorithms have 
been proposed in the literature (Gan et al. 2007; Legendre 
& Legendre 2012; Peet & Roberts 2013), selecting the ef-
fective one is often very tricky.
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seven classification algorithms to lambda and eight inter-
nal evaluators at 20 cluster levels; (b) use these responses 
to draw boxplots for each algorithm (graphical represen-
tation) and investigate differences between algorithms 
based on outliers and also to calculate quartiles and medi-
ans of responses and compare them with each other; (c) 
select the appropriate classification methods based on 
results of part b; (d) determine optimum number of clus-
ters in the selected algorithms and consequently verify 
these optimums by using environmental factors.

Materials and methods

Study area

The Hyrcanian forests cover an area of 1.9 million hec-
tares along the southern coast of the Caspian Sea in 
northern Iran (Esmailzadeh et al. 2011; Gholizadeh et al. 
2019). These forests have a high growth capacity due to 
fertile soil and a humid temperate climate (Marvie Moh-
adjer 2004). The dominant tree species of Hyrcanian for-
ests are oriental beech (Fagus orientalis Lipsky), oak 
(Quercus castaneifolia C.A. May.) and hornbeam (Carpi-
nus betulus L.) (Sagheb-Talebi et al. 2014). The study area 
with latitude of 36°29'23" to 36°29'36" N and longitude 
of 51°43'20" to 51°47'39" E is a part of the Hyrcanian for-
ests. It is located in the south-east part of Sissangan For-
est Park and covers about 1721 ha. The elevation ranges 
from 100 to 1800 m a.s.l. The mean annual precipitation 
and temperature of the area are 1300 mm and 15 °C, re-
spectively (Iran Meteorological Organization-Mazanda-
ran portal, 2018).

Sampling design

Vegetation sampling was conducted following the Braun-
Blanquet approach (Jennings et al. 2009). Data from 197 
relevés, each with an area of 400 m2 (Dengler et al. 2008), 
were recorded from all types of the plant communities in 
the area. Sampling was performed along an elevational 
gradient at the time of the vegetation cover peak of 2017. 
For each relevé cover of species was recorded by using 
Braun-Blanquet cover-abundance scale modified by van 
der Maarel in which absence ranked as 0 and 1: 0–1%, 2: 
1–2.5%, 3: 2.5–5%, 4: 5–12.5%, 5: 12.5–25%, 6: 25–50%, 
7: 50–75%, 8: 75–100%. The estimated canopy cover val-
ues were transformed to mid-point percentage values for 
each degree (Slezák et al. 2016). Environmental data in-
cluding elevation, aspect and slope inclination were re-
corded in each relevé. Slope aspect was recorded as a cir-
cular variable, then, transformed into the northness and 
eastness of aspect by using Equation 1 and 2 (Dobrovic et 
al. 2007) as follows: 

Classification stability and the quality of results are 
two general ways to assess the effectiveness of a classifi-
cation algorithm. Furthermore, reproducible results 
along with the consistency in the assignment of new sam-
ples to previously defined clusters are considered as im-
portant features in determination of an effective classifi-
cation method (De Cáceres & Wiser 2012).

Goodman-Kruskal’s lambda index (Goodman & 
Kruskal 1954) can be used to evaluate the stability of clas-
sification results against the removal of the site from the 
original dataset (Tichý et al. 2011). The quality of classifi-
cation results can be assessed by using external and inter-
nal evaluators (indices). Internal indices use the charac-
teristics of the classification algorithms to evaluate their 
results (Gauch & Whittaker 1981). These evaluators are 
divided into geometric and non-geometric evaluators. 
Geometric evaluators (e.g., average silhouette width 
(ASW) (Rousseeuw 1987)) assess the quality of classifica-
tion algorithms based on the relation of samples within 
and between clusters. Non-geometric evaluators, like 
Morisita’s index of niche overlap (Horn 1966), investigate 
the quality of classification algorithms with respect to 
species distributions.

Determining the optimum number of clusters is an-
other important part of the cluster analysis (Tibshirani et 
al. 2001). Various methods including Gap statistic (Tib-
shirani et al. 2001), Goodman-Kruskal’s lambda index 
(Tichý et al. 2011), the number of diagnostic species 
(Tichý et al. 2010), and internal evaluators (Aho 2006; 
Aho et al. 2008; Roberts 2015) are proposed to determine 
the optimum number of clusters.

Previous researches focused on Kruskal’s lambda (e.g., 
Tichý et al. 2011 and Lengyel et al. 2017) or one or a few 
internal evaluators like C-index and Goodman-Kruskal 
index (e.g., Bolshakova & Azuaje 2006); Indicator Spe-
cies Analysis (ISA) (e.g., Dufrêne & Legendre 1997); 
Point Biserial Correlation (PBC) (e.g., Milligan 1980); 
Indicator Species Analysis Minimizing Intermediate 
Constancies (ISAMIC( and uniqueness index (e.g., Lot-
ter et al. 2013); crispness index (e.g., Botta-Dukat et al. 
2005); ISAMIC, Partition Analysis (PARTANA( and Si-
lhouette Width (e.g., Roberts 2015) in selecting the best 
algorithm or (and) determining the optimum number of 
clusters. Aho et al. (2008) compared different classifica-
tion methods by using multiple internal evaluators.

Here, a combination of eight internal evaluators and 
Kruskal’s lambda is used to compare the effectiveness of 
seven classification methods. In addition to previous 
methods (e.g., Aho 2006 and Aho et al. 2008), we graphi-
cally evaluated the algorithm responses. This step also is 
used to determine the optimum number of clusters.

We hypothesize that the results of statistical and 
graphical analysis of algorithm response confirm each 
other. Also, using environmental data can help us to ver-
ify the selected optimum number of clusters. The specific 
objectives of our study are to (a) compute responses of 
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Northness = Cos(A) + 1 (Equation 1)
Eastness = Sin(A) + 1 (Equation 2)

Where A is the Azimuth of the slope (Dobrovic et al. 
2007).

In each relevé, a soil sample up to 20 cm depth was col-
lected. These samples were dried, sieved using a 2 mm 
mesh, and analysed to determine the soil texture as well 
as N%, C% and pH.

Data analysis

Classification methods

To classify the collected data, first, the Hellinger distance 
measure was calculated. Then, we used four hierarchical 
agglomerative algorithms viz. flexible-β linkage (β = 
-0.25) (Lance & Williams 1967; McCune et al. 2002), 
Ward’s linkage (Ward 1963), complete linkage (Sørensen 
1948) and average linkage (Sokal & Michener 1958). Also, 
a hierarchical divisive algorithm (i.e., modified TWIN-
SPAN) (Roleček et al. 2009), and two non-hierarchical 
methods, k-means clustering (Hartigan & Wong 1979) 
and partitioning around medoids (PAM) (Kaufman & 
Rousseeuw 1990) were used. 

Ward’s linkage, complete linkage and average linkage 
were calculated using the vegan package (Oksanen et al. 
2017), flexible-β linkage, k-means, and PAM were per-
formed by using the cluster package (Maechler et al. 
2016) and modified TWINSPAN by using the TWINS-
PAN package (Zeleny et al. 2016) in the R ver.3.3 (R Core 
Team, 2018).

Assessing the effectiveness of the classification 
algorithms

We used the mean lambda (as an index to evaluate the 
classification stability) and internal evaluators (as indices 
to evaluate the quality of classification results) to assess 
the effectiveness of the seven selected algorithms. At first, 
data were classified into 20 classification levels (2–21 
clusters) by using the seven classification algorithms. The 
values of mean lambda and internal evaluators were cal-
culated for each of these resulted levels in each algorithm.

To compute the mean lambda for each level in every 
classification algorithm, 50 subsamples were generated 
from the original dataset. Each subsample contained 
about 63% of relevés without replacements. These sub-
samples were classified to the same number of clusters by 
using the same classification method (e.g., to compute 
mean lambda for third classification level in complete 
linkage method, 50 generated subsamples were classified 
to 4 clusters using complete linkage method). Then, the 
lambda value was calculated for each of the classified sub-

samples. Therefore, 50 lambda values were computed and 
the mean of these 50 values was considered as a stability 
criterion of the classification levels (Lengyel et al. 2017). 

To calculate internal evaluators, some geometric and 
non-geometric evaluators were considered. Geometric 
evaluators were: ASW, C-index (Hubert & Levin 1976), 
PARTANA (Roberts 2016b), and PBC (Brogden 1949). 
Non-geometric evaluators were: ISA average p-value α = 
0.05 (ISA.pval) and ISA number of significant indicators 
(ISA.sig.inds) (Dufrene & Legendre 1997), ISAMIC 
(Roberts 2016a), and Morisita’s index of niche overlap.

The calculated mean lambda and evaluator’s scores for 
each algorithm were used by three methods to determine 
the effective classification algorithm(s).These methods 
are:
A) Ranking the responses of the algorithms
In this approach, 20 calculated values for mean lambda 
and evaluators for each classification methods were sepa-
rately ranked. To rank these values, the lowest score was 
ranked as 1 and the highest score was ranked as 20 and 
the average was used for the tied values. Then, for each 
algorithm by using these ranks, boxplots were drawn. 
The number of outliers was considered as a criterion to 
interpret the boxplots. Algorithm(s) with the highest 
number of outliers were considered as poor functioning 
algorithm(s).

B) Comparing the statistical quartiles
The second step in decision-making to select the effective 
classification algorithm(s) was comparing 25, 50, and 75 
quartiles. At first, means of 20 calculated values for mean 
lambda and eight evaluators for each algorithm was meas-
ured. Then, statistical quartiles of these values of means 
were computed. Algorithm(s), in which data are presumed 
to be distributed systematically not haphazardly in quar-
tiles, was considered as an effective algorithm.

C) Comparing the medians
Medians of those 20 calculated values for mean lambda 
and every evaluator from each algorithm were deter-
mined. Interquartile range (IQR) was employed to deter-
mine the confidence interval of medians (McGill et al. 
1978). The Kruskal-Wallis multiple comparison tests 
(Kruskal & Wallis 1952) and Dunn’s post hoc test (Dunn 
1964) were performed on the resulted scores to assess the 
statistically significant differences among the seven clas-
sification algorithms. The best scores of nine criteria in 
the seven classification algorithms were determined and 
the number of times that each algorithm had the highest 
(or tied for highest) median scores were counted. The 
classification algorithm(s) with the highest median scores 
was selected as the more effective classification algorithm. 
To perform these analyses the packages viz. ASW: cluster 
(Maechler et al. 2016), C-Index and Morisita: plant.ecol 
(Aho 2015), PARTANA: optpart (Roberts 2016b), PBC: 
asbio (Aho 2016), ISA: indicspecies (De Caceres & Leg-
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endre 2009), ISAMIC: labdsv (Roberts 2016a), mean 
lambda: vegan (Oksanen et al. 2017), isopam (Schmidtlein 
et al. 2010) and tcltk (R core team, 2018) were used. Com-
putations of the quartiles were performed by using SPSS 
24 (IBM Corp 2016). The boxplots were drawn using the 
ggplot2 (Wickham 2016) and reshape2 (Wickham 2007) 
packages were used in the R software.

Optimum number of clusters

As suggested by Aho (2006), the responses of the evalua-
tors and mean lambda in all classification levels (20 levels) 
in the selected classification methods were used to deter-
mine the optimum number of clusters. By combining dif-
ferent evaluators, their diverse properties can help us to 
achieve better results in determining the optimal clusters 
(Bolshakova & Azuaje 2006).

To eliminate the bias caused by the variability of the 
numerical values of the evaluators and mean lambda, the 
data were standardized by using relativization by the 
maximum (Equation 3). Relativization usually has a small 
effect on the outcome of the analysis, if variability (Coef-
ficient of Variation: CV%) among rows (or columns) be 
smaller than 50 (McCune et al. 2002).

bij = xij ⁄xmaxj
 (Equation 3)

Where rows (i) are the number of clusters and columns (j) 
are evaluators, xmaxj is the largest value in the matrix for 
evaluator j. 

Totally, nine standardized values (one for mean lambda 
index and eight for evaluators) were calculated for each 
classification level. Then, the average of these nine stan-
dardized values was computed. Classification level show-
ing the highest average value indicated the optimum 
number of clusters.

Verification of the selected optimum number of 
clusters

Environmental features can be used as the external attri-
butes when the classification is based on species composi-
tion. Therefore, by using discriminant analysis, the degree 
of differentiation among the clusters is evaluated using 
those external attributes (Tichý et al. 2010). So, these re-
sults can be used to evaluate the percentage of correct clas-
sification and/or the accuracy of the optimum number of 
clusters determined in previous steps. The higher percent-
age of the samples matching between assigning plots to 
groups using discriminant analysis and those obtained 
from optimal groups (generated by selected algorithm(s)) 
indicate a higher accuracy of classification.

Discriminant analysis was performed by using SPSS 24 
(IBM Corp 2016). Environmental data were included in 

the analysis using a stepwise approach. Wilks’ lambda 
and kappa statistics were used as evaluators of the analy-
sis.

Results

The effectiveness of the classification methods

Rank the algorithms

The boxplots of showing the performances of various 
classification algorithms are shown in Figure 1. The aver-
age linkage, flexible-β linkage (β = -0.25), and k-means 
algorithms were selected as the best methods because 
they have a lesser number of outliers compared to the 
other methods.

Comparing the quartiles

Considering the 25, 50, and 75 quartiles (Table 1), k-
means, flexible-β and average linkage were selected as the 
most effective algorithms. The distribution of data in 
their quartiles was systematic. In PAM, Modified TWIN-
SPAN, and complete linkage the rationale between the 
quartiles were not justified. Data distribution in quartiles 
in Ward’s linkage showed an intermediate trend.

Comparing the medians

K-means and flexible-β linkage (β = -0.25) tied for best 
performance in five of eight Kruskal-Wallis tests compar-
ing geometric and non-geometric evaluator scores. The 
median scores of three geometric (ASW, 1-C-index, 
PARTANA) and two non-geometric (1-ISA p-val, ISA 
sig inds) evaluators were the highest for these algorithms. 
K-means was the only algorithm chosen by the mean 
lambda index. 

Average linkage had a weaker performance compared 
to that of the flexible-β linkage and k-means algorithm. It 
was the best in the two non-geometric evaluators and tied 
for best in two geometric evaluators. PAM tied for best in 
two of four Kruskal-Wallis tests comparing non-geomet-
ric evaluator scores. Moreover, none of the geometric 
evaluators selected PAM. Modified TWINSPAN showed 
the weakest performance and was not selected by evalua-
tors. Ward’s algorithm tied for the best in one geometric 
and two non-geometric evaluators. Complete linkage 
tied for best in two of four Kruskal-Wallis tests compar-
ing the scores of geometric evaluators. None of the non-
geometric evaluators selected this method (Table 2).

Accordingly, across 20 cut levels, k-means produced 
results with more stability than the others. In terms of 
quality of results (evaluated by the eight internal evalua-
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tors), k-means and flexible-β linkage showed similar per-
formance (across 20 cut levels). They were best or tied for 
the best in the five evaluators. In the rest of algorithms, 
average linkage had a better quality of results because it 
was best or tied for best in four evaluators. The perfor-
mance of others was weak.

In total, comparing the boxplots and quartiles showed 
similar findings with Kruskal-Wallis tests. Therefore, 
among the chosen algorithms in this study, k-means, 
flexible-β linkage and average linkage showed a better 
performance comparing to the other methods. Consider-
ing the number of selection by evaluators as the best or 
tied for best algorithms, these algorithms did not differ 
remarkably. They were selected as appropriate algo-
rithms to perform the next step analyses.

Optimum number of clusters

The results of selecting the optimum number of clusters 
are presented in Table 3. The optimum number of clus-
ters for average linkage, flexible-β linkage and k-means 
methods were 13, 12 and 20, respectively.

 Verification of the selected optimum number of 
clusters

The accuracy of the generated groups by each selected 
algorithm was evaluated using discriminant analysis 
(complete results are presented in the supplementary ma-
terials: tables S1 to S18). The percentage of samples 
matching between assigning plots to groups by using dis-
criminant analysis and those obtained from optimal 
groups generated by the average linkage, flexible-β link-
age and k-means algorithms were 48.2, 56.9 and 50.3, re-
spectively.

The kappa coefficient also showed that the accuracy of 
the optimal clusters obtained from the average linkage, 

Table 1. Statistical quartiles calculated for algorithms based 
on evaluators and mean lambda values.

Classification algorithms Quartiles

25 50 75

Average Linkage 5.47 14.84 23.69

Flexible β-Linkage 4.83 14.92 23.45

K-means 5.13 14.98 23.93

Wards Linkage 5.05 14.52 23.18

PAM 4.66 15 22.85

Modified TWINSPAN 4.62 15.71 22.82

Complete Linkage 4.63 15.14 22.77
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method is not advisable and simultaneous use of various 
evaluators can lead to more acceptable results (Bolsha-
kova & Azuaje 2006). In the present study, internal eval-
uators and lambda index were simultaneously used to 
evaluate the performance of the algorithms as well as the 
optimal number of clusters. Although flexible-β linkage 
and k-means showed a similar performance considering 
internal evaluators only their stability results were differ-
ent in the lambda statistic.

In the previous studies, based on the evaluators, the 
differences among the responses of the algorithms were 
statistically investigated and visualization of the behav-
iour of each algorithm was not done in response to the 
evaluators at each cut-off level. 

In comparing the boxplots, the number of outliers was 
used as a criterion to compare the performance of different 
algorithms at different cut-off levels. The resulted outliers 
in this study (Fig. 1) were not computational errors and 
they were generated due to the variability in the respon-
siveness of the algorithms. So, they were capable of caus-
ing problems in further statistical analyses (Maddala 1992). 

Table 4. Summary result of discriminant analysis.

Algorithm Optimum number 
of clusters

Total 
variable

Variable used 
in the analysis

Number of significant 
canonical function

% of 
adaption

Kappa Sig.

Average linkage 13 10 3 3 48.2 0.415 .000

flexible-β linkage 12 10 5 5 56.9 0.523 .000

K-means 20 10 5 5 50.3 0.475 .000

Table 3. The optimum number of clusters predicted by using Standardized evaluators and “mean lambda” index in selected 
classification algorithms. Max Clusters (optimum number of clusters) = the number of clusters at the cut level of classification 
on which the evaluators, “mean lambda” and the average of them show the highest value. Min cluster = the number of clus-
ters at the cut level of classification on which the evaluators, “mean lambda” and the average of them show the lowest value. 
Avg = Average of standardized values of evaluators and mean lambda. CV%: coefficient of variance.

A B C D E F G H I Avg

Average linkage

CV% 45.77 5.91 4.84 22.38 19.53 28.62 3.35 9.07 23.11

Max Clusters 2 17 2 15 10 10 21 2 14 13

Min Clusters 21 3 6 2 2 2 4 8 2 2

Flexible-β linkage

CV% 8.85 6.36 8.20 15.87 3.83 7.47 4.74 18.42 10.71

Max Clusters 11 21 19 12 6 10 21 18 20 12

Min Clusters 4 2 3 3 2 3 2 2 2 2

K-means

CV% 12.10 4.8 5.6 8.01 4.08 7.80 4.62 16.16 7.98

Max Clusters 2 20 20 6 20 13 20 20 2 20

Min Clusters 21 2 2 21 2 2 2 2 18 2

flexible-β, and the k-means method, 0.41, 0.52, and 0.47, 
respectively (Table 4). Accordingly, 12 groups presented 
as optimal numbers in the flexible-β linkage (β = -0.25), 
had more adaptation with groups created using environ-
mental factors.

Discussion

Choosing the right criteria for classification analysis is a 
critical step toward gaining an interpretable classification 
(Roberts 2015). Here, we aimed to extend and improve 
the previous knowledge about this process. Compared to 
the previously published methods (e.g., Bolshakova & 
Azuaje 2006; Aho et al. 2008; Tichý et al. 2011; Lotter et 
al. 2013; Roberts 2015), we used comprehensive evalua-
tors and visualized the pattern of the performances of the 
classification methods.

Evaluation of the efficiency of the classification algo-
rithms is a complicated process to find the most suitable 
algorithm (Roberts 2015). Using a single evaluation 
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Using the quartiles was another method to assess the 
effectiveness of the algorithms. Understanding how data 
are distributed in quartiles, is the importance of this 
method. Algorithm(s) with a more systematic distribu-
tion of data in the quartiles was considered as best method 
(Table 1). Systematic data distribution in quartiles indi-
cates a smaller number of outlier data from quartile 25 to 
50 and 50 to75. In fact, systematic distribution is related 
to outliers (Pallant 2001). As mentioned before, we used 
the average of evaluators and mean lambda to determine 
the optimum number of clusters in effective algorithm(s). 
Since the mean is generally sensitive to outlier data, there-
fore, to achieve more reasonable means and acceptable 
results, the appropriate algorithm(s) must generate the 
smallest number of outliers.

As suggested by Aho et al. (2008), the statistical analy-
ses were performed using the medians. The results of the 
boxplots along with those of the medians (Table 2) 
showed a better performance of flexible-β linkage, k-
means, and average linkage than the other algorithms. 
Furthermore, the results of both statistical and graphical 
methods were similar. So, our study revealed that box-
plots also can be used to evaluate the efficiency of classi-
fication algorithms. Previous studies also reported k-
means, flexible-β, and average linkage algorithms as the 
most efficient methods (e.g., Lance & Williams 1967; 
Milligan 1980; Kaufman & Rousseeuw 1990; McCune & 
Grace 2002; Aho et al. 2008; Lotter et al. 2013).

The k-means and flexible-β linkage are space-conserv-
ing algorithms that create spherical clusters (McCune et 
al. 2002; Kaufman & Rousseeuw 1990). This property 
may affect the selection of these algorithms by geometric 
evaluators which prefer spherical clusters. The average 
linkage is also space-conserving and generates spherical 
clusters, but may create chaining state comparing to the 
other space-conserving methods (McCune & Grace 
2002). High chaining state can lead to individual clusters 
with relatively specific species composition that lacks 
species with an intermediate intra-group constancy. This 
phenomenon may contribute to the selection of this algo-
rithm by non-ISA (i.e., Morisita and ISAMIC) evaluators 
(Table 2). ISA evaluators penalize species with low con-
stancy, however non-ISA evaluators penalize those with 
intermediate intra-group constancy. In fact, the opposite 
performance of two groups of non-geometric evaluators 
(ISA and non-ISA evaluators) in the selection of average 
linkage is due to differences in the optimality criteria of 
them (Aho et al. 2008).

In determining the optimum number of clusters, the 
results of all the statistics (e.g., geometric, non-geometric 
evaluators, and the mean lambda) were combined be-
cause, in each of these, the attributes considered to select 
the optimal cut-off level are not the same. The geometric 
evaluators examine the performance of a classification 
based on the sampled plots and select the cut-off levels 
with high intra-cluster consistency. However, non-geo-

metric evaluators acted on the basis of species, preferring 
a level of classification in which the number of indicator 
species (those most often present in one cluster and not in 
other clusters) was higher (Aho et al. 2008).

In the mean lambda statistic at each cut level of the al-
gorithm, the classification of all sampling units is com-
pared to the created subgroups (Lengyel et al. 2017). This 
statistic also selects the cut level(s) in which the most 
similarity between the original data and its subgroups is 
observed. Higher similarity indicates greater consistency 
of classification against casual changes in the dataset 
(Tichý et al. 2011). In fact, the mean lambda statistic is 
also an internal evaluator because it uses the algorithms’ 
features to evaluate their stability.

Our results showed that the values of the ISA.sig.inds 
evaluator were different from those of the others (Table 
2). Since the optimal number of clusters was evaluated 
based on the averaging of all the numerical values at each 
cut level, this difference has a significant effect on the re-
sulted average and led to bias in the estimation. We stan-
dardized the results to eliminate such and for further 
studies, we advise to do so.

We determined the optimum number of clusters using 
the three selected algorithms. By using all three algo-
rithms, we aimed not only to show how the optimum 
number of clusters varies based on the type of algorithm 
but also to compare them to estimate the optimal number 
of clusters that are interpretable in the study area. Since 
there is a close relationship between plant communities 
and the environmental conditions, environmental factors 
(as external evaluators) were used to compare and verify 
the optimal classification level specified in each algo-
rithm. In the discriminant analysis based on environmen-
tal factors in addition to evaluating the accuracy of each 
of the optimum number of clusters, those affecting their 
separation were identified. 

Accordingly, 12 clusters were found as the optimal 
numbers in flexible-β linkage (β = -0.25). In comparison 
with other numbers (i.e., 13 and 20), it showed more ad-
aptation with groups created using the environmental 
factors. This adaptation indicates that these 12 clusters 
were more interpretable or have a higher justification in 
the study area. Because in terms of environmental charac-
teristics, these clusters show the higher intra group and 
lower inter group differences.

Conclusion

Our findings imply that (a) selecting the effective 
algorithm(s) before an objective classification of any data, 
is not avoidable; (b) there is no absolute classification al-
gorithm for all vegetation types and combination of eval-
uation indices used in this study can help the researchers 
to find the best classification methods for each dataset; (c) 
the results of different classification methods in deter-
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mining the optimum number of clusters are disparate, 
and comparing these results is valuable and highlights 
dissimilarities of the various classifications.
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According to the results of the discriminant analysis, the 12 optimal groups of flexible-β linkage 
showed higher compliance with the groups obtained from the discriminant analysis and its accuracy 
was higher than the other optimal groups in k-means and average linkage. The results of the 
discriminant analysis for flexible-β linkage also revealed that of the 10 environmental variables 
entered into the analysis, only five (altitude, slope, pH, northness and soil clay%) were included in 
the five canonical discriminant function (Table S2). Based on the contribution of variance, the 
importance of these functions decreased sharply from the first function (55.8) to the fifth function 
(2.6) (Table S3). The first function based on altitude variable, the second function based on slope%, 
the third function based on northness degree, the fourth function based on pH and finally the fifth 
function based on soil clay%) with standardized canonical discriminant function coefficients 85.3%, 
62.6%, 96.8%, 90.1% and 79.1% were formed respectively (Table S4). 
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Table S1- Tests of Equality of Group Means 
 Wilks' 


Lambda 


F df1 df2 Sig. 


sand .620 10.326 11 185 .000 


silt .700 7.222 11 185 .000 


clay .723 6.441 11 185 .000 


OC .732 6.172 11 185 .000 


N .718 6.611 11 185 .000 


pH .521 15.442 11 185 .000 


Altitude .336 33.228 11 185 .000 


Slope .599 11.271 11 185 .000 


Northness .652 8.993 11 185 .000 


Eastness .853 2.901 11 185 .002 


Table S2- Variables in the Analysis 


Step Tolerance F to 


Remove 


Wilks' 


Lambda 


1 Altitude 1.000 33.228  


2 Altitude 1.000 29.801 .521 


pH 1.000 13.265 .336 


3 Altitude 1.000 28.884 .359 


pH .989 12.073 .227 


Northness .990 7.102 .187 


4 Altitude .999 28.728 .259 


pH .961 8.575 .144 


Northness .983 6.770 .133 


Slope .961 6.400 .131 


5 Altitude .988 27.120 .194 


pH .904 6.425 .102 


Northness .964 7.013 .104 


Slope .914 7.449 .106 


clay .884 4.841 .095 


Table S3- Summary of Canonical Discriminant Function 
Function Eigenvalue % of 


Variance 


Canonical 


Correlation 


Wilks' 


Lambda 


Chi-


square df Sig. 


1 2.354a 55.8 .838 .073 490.277 55 .000 


2 1.100a 26.1 .724 .245 263.377 40 .000 


3 .420a 10.0 .544 .515 124.269 27 .000 


4 .233a 5.5 .434 .732 58.471 16 .000 


5 .108a 2.6 .313 .902 19.275 7 .007 


a. First 5 canonical discriminant functions were used in the analysis. 







  
 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Table S4- Standardized Canonical Discriminant Function Coefficients 


 Function 


1 2 3 4 5 


clay .093 -.492 -.377 .338 .791 


pH -.352 .355 -.031 .901 .208 


Altitude .853 .424 -.244 .178 .115 


Slope -.196 .626 .098 -.681 .437 


Northness .188 .039 .968 .095 .232 


Table S5-  Kappa coefficient to determine the accuracy of predicted groups 


by discriminate analysis 
Measure of Agreement Value Std. Error Approx. Sig. 


Kappa .523 .038 .000 


Bflex 
Groups 


Table S6- Predicted Group Membership Total 1 2 3 4 5 6 7 8 9 10 11 12 
1 (count) 26 2 0 0 2 1 2 0 0 1 0 4 38 


2 1 0 3 0 0 2 1 1 0 1 0 2 11 
3 2 0 7 4 0 4 4 5 2 3 2 1 34 
4 0 0 0 5 0 0 0 0 0 0 1 0 6 
5 0 1 0 0 24 0 0 0 2 0 0 0 27 
6 2 0 0 0 0 8 3 0 0 2 0 0 15 
7 0 0 0 0 0 1 5 4 1 1 0 0 12 
8 0 0 1 0 0 1 5 7 0 0 0 0 14 
9 0 0 0 1 3 0 1 0 6 0 0 0 11 
10 0 0 0 0 0 0 0 0 0 6 0 0 6 
11 0 0 0 3 0 0 0 0 1 0 9 1 14 
12 0 0 0 0 0 0 0 0 0 0 0 9 9 


1 (%) 68.4 5.3 0.0 0.0 5.3 2.6 5.3 0.0 0.0 2.6 0.0 10.5 100.0 
2 9.1 0.0 27.3 0.0 0.0 18.2 9.1 9.1 0.0 9.1 0.0 18.2 100.0 
3 5.9 0.0 20.6 11.8 0.0 11.8 11.8 14.7 5.9 8.8 5.9 2.9 100.0 
4 0.0 0.0 0.0 83.3 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 100.0 
5 0.0 3.7 0.0 0.0 88.9 0.0 0.0 0.0 7.4 0.0 0.0 0.0 100.0 
6 13.3 0.0 0.0 0.0 0.0 53.3 20.0 0.0 0.0 13.3 0.0 0.0 100.0 
7 0.0 0.0 0.0 0.0 0.0 8.3 41.7 33.3 8.3 8.3 0.0 0.0 100.0 
8 0.0 0.0 7.1 0.0 0.0 7.1 35.7 50.0 0.0 0.0 0.0 0.0 100.0 
9 0.0 0.0 0.0 9.1 27.3 0.0 9.1 0.0 54.5 0.0 0.0 0.0 100.0 
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 
11 0.0 0.0 0.0 21.4 0.0 0.0 0.0 0.0 7.1 0.0 64.3 7.1 100.0 
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 


56.9% of original grouped cases correctly classified. 







  
 


K-means Algorithm 


 


 


 


 


 


 


 


 


 


Table S7 - Tests of Equality of Group Means 
  Wilks' 


Lambda 


F df1 df2 Sig. 


sand .634 5.382 19 177 .000 


silt .688 4.229 19 177 .000 


clay .744 3.199 19 177 .000 


OC .751 3.087 19 177 .000 


N .678 4.419 19 177 .000 


pH .550 7.622 19 177 .000 


Altitude .354 17.003 19 177 .000 


Slope .621 5.674 19 177 .000 


Northness .551 7.586 19 177 .000 


Eastness .546 7.753 19 177 .000 


Tale S8- Variables in the Analysis 


Step Tolerance F to 


Remove 


Wilks' 


Lambda 


1 Altitude 1.000 17.003  
2 Altitude .991 16.389 .546 


Eastness .991 7.374 .354 


3 Altitude .971 16.132 .308 


Eastness .989 7.090 .198 


Northness .979 7.005 .197 


4 Altitude .969 15.018 .174 


Eastness .972 7.215 .118 


Northness .945 6.834 .115 


pH .944 6.426 .112 


5 Altitude .951 15.370 .118 


Eastness .964 7.161 .079 


Northness .916 7.018 .078 


pH .881 5.157 .069 


Slope .851 4.519 .066 


Table S9- Summary of Canonical Discriminant Function 


Function Eigenvalue % of Variance Canonical 


Correlation Wilks' Lambda Chi-square df Sig. 


1 1.980a 41.8 .815 .044 573.324 95 .000 


2 1.122a 23.7 .727 .131 372.983 72 .000 


3 .810a 17.1 .669 .278 234.953 51 .000 


4 .525a 11.1 .587 .503 126.121 32 .000 


5 .304a 6.4 .483 .767 48.683 15 .000 


a. First 5 canonical discriminant functions were used in the analysis. 


Table S10- Standardized Canonical Discriminant Function Coefficients 
 Function 


1 2 3 4 5 


pH -.280 .185 .669 -.232 .721 


Altitude .944 -.235 .254 -.061 .190 
Slope .206 .100 .593 .416 -.773 
Northness .062 .752 .017 .681 .238 


Eastness -.093 -.752 -.082 .617 .273 


Table S11- Kappa coefficient to determine the accuracy of predicted groups 


by discriminate analysis 
Measure of Agreement Value Std. Error Approx. Sig. 


Kappa 0.475 .037 .000 







  
 


Kmeans 
Groups 


Table S12- Predicted Group Membership Total 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 


1 (count) 2 0 0 1 0 2 1 0 0 0 2 1 2 0 0 0 2 2 1 1 17 
2 0 7 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 10 
3 0 2 3 0 0 1 1 0 0 1 0 0 1 2 2 0 1 1 0 1 16 
4 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 
5 0 1 0 1 5 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 9 
6 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 
7 0 0 0 0 0 0 0 4 0 0 0 2 0 1 0 0 0 3 0 1 11 
8 0 0 0 0 1 0 0 9 1 0 0 0 0 0 0 0 0 0 0 0 11 
9 0 0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 11 


10 0 0 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 8 
11 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0 1 0 0 6 
12 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 5 
13 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 6 
14 0 0 1 0 0 0 0 0 1 0 0 0 1 14 0 0 0 0 0 1 18 
15 0 0 0 0 0 0 0 0 0 0 1 1 0 0 9 3 0 3 0 1 18 
16 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 3 0 0 0 0 6 
17 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 7 0 0 0 9 
18 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 6 0 0 9 
19 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 4 
20 0 0 1 0 0 0 0 0 0 0 0 2 0 0 2 0 0 3 0 3 11 


1 (%) 11.8 0.0 0.0 5.9 0.0 11.8 5.9 0.0 0.0 0.0 11.8 5.9 11.8 0.0 0.0 0.0 11.8 11.8 5.9 5.9 100.0 
2 0.0 70.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
3 0.0 12.5 18.8 0.0 0.0 6.3 6.3 0.0 0.0 6.3 0.0 0.0 6.3 12.5 12.5 0.0 6.3 6.3 0.0 6.3 100.0 
4 0.0 0.0 0.0 14.3 28.6 42.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 100.0 
5 0.0 11.1 0.0 11.1 55.6 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
6 0.0 0.0 0.0 0.0 0.0 80.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.4 0.0 0.0 0.0 18.2 0.0 9.1 0.0 0.0 0.0 27.3 0.0 9.1 100.0 
8 0.0 0.0 0.0 0.0 9.1 0.0 0.0 81.8 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
9 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 90.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 


10 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 87.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
11 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0 66.7 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0 100.0 
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
13 0.0 16.7 0.0 0.0 0.0 16.7 0.0 16.7 16.7 0.0 0.0 0.0 0.0 16.7 0.0 0.0 16.7 0.0 0.0 0.0 100.0 
14 0.0 0.0 5.6 0.0 0.0 0.0 0.0 0.0 5.6 0.0 0.0 0.0 5.6 77.8 0.0 0.0 0.0 0.0 0.0 5.6 100.0 
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 5.6 0.0 0.0 50.0 16.7 0.0 16.7 0.0 5.6 100.0 
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 16.7 0.0 50.0 0.0 0.0 0.0 0.0 100.0 
17 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 77.8 0.0 0.0 0.0 100.0 
18 0.0 0.0 11.1 0.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 66.7 0.0 0.0 100.0 
19 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 25.0 0.0 100.0 
20 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 0.0 0.0 18.2 0.0 0.0 27.3 0.0 27.3 100.0 
50.3% of original grouped cases correctly classified.        







  
 


Average linkage Algorithm 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Table S13- Tests of Equality of Group Means 
 Wilks' 


Lambda 


F df1 df2 Sig. 


sand .652 8.200 12 184 .000 


silt .712 6.211 12 184 .000 


clay .736 5.489 12 184 .000 


OC .739 5.407 12 184 .000 


N .722 5.912 12 184 .000 


pH .548 12.667 12 184 .000 


Altitude .332 30.840 12 184 .000 


Slope .753 5.036 12 184 .000 


Northness .684 7.074 12 184 .000 


Eastness .896 1.783 12 184 .054 


Table S14- Variables in the Analysis 


Step Tolerance F to 


Remove 


Wilks' 


Lambda 


1 Altitude 1.000 30.840  
2 Altitude .994 27.928 .548 


pH .994 10.934 .332 


3 Altitude .993 27.115 .392 


pH .972 10.190 .235 


Northness .977 5.717 .193 


Table S15- Summary of Canonical Discriminant Function 


Function Eigenvalue % of 


Variance 


Canonical 


Correlation 


Wilks' 


Lambda 


Chi-


square df Sig. 


1 2.140a 67.6 .826 .140 369.006 36 .000 


2 .672a 21.2 .634 .441 153.867 22 .000 


3 .356a 11.2 .512 .738 57.205 10 .000 
a. First 3 canonical discriminant functions were used in the analysis. 


Table S17-  Kappa coefficient to determine the accuracy of predicted 


groups by discriminate analysis 
Measure of Agreement Value  Std. Error Sig. 


Kappa 0.415 0.038 .000 


Table S16- Standardized Canonical Discriminant Function 


Coefficients 
 Function 


1 2 3 


pH -.244 .921 .347 


Altitude .931 .363 -.094 


Northness .134 -.173 .988 







  
 


 


Average 
Groups 


Table S18- Predicted Group Membership   Total 
1 2 3 4 5 6 7 8 9 10 11 12 13 


1 (count) 28 20 6 6 10 2 2 1 0 4 1 2 6 88 
2 0 2 0 0 0 0 0 0 0 0 0 0 1 3 
3 0 1 13 0 3 0 0 0 0 0 0 0 0 17 
4 0 1 0 4 7 2 0 5 0 0 0 3 0 22 
5 0 0 0 0 10 3 1 1 0 0 0 0 0 15 
6 0 0 0 0 0 2 0 0 0 0 0 0 0 2 
7 0 0 0 0 1 0 8 0 0 0 0 0 1 10 
8 0 0 0 1 1 0 0 4 0 0 0 0 0 6 
9 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
10 0 0 0 0 0 0 1 0 0 19 0 0 3 23 
11 0 0 0 0 0 0 0 0 0 0 3 3 0 6 
12 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
13 0 0 1 0 0 0 0 0 0 2 0 0 0 3 


1 (%) 31.8 22.7 6.8 6.8 11.4 2.3 2.3 1.1 0.0 4.5 1.1 2.3 6.8 100.0 
2 0.0 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 100.0 
3 0.0 5.9 76.5 0.0 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
4 0.0 4.5 0.0 18.2 31.8 9.1 0.0 22.7 0.0 0.0 0.0 13.6 0.0 100.0 
5 0.0 0.0 0.0 0.0 66.7 20.0 6.7 6.7 0.0 0.0 0.0 0.0 0.0 100.0 
6 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 
7 0.0 0.0 0.0 0.0 10.0 0.0 80.0 0.0 0.0 0.0 0.0 0.0 10.0 100.0 
8 0.0 0.0 0.0 16.7 16.7 0.0 0.0 66.7 0.0 0.0 0.0 0.0 0.0 100.0 
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 
10 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 82.6 0.0 0.0 13.0 100.0 
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 50.0 0.0 100.0 
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0 
13 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 0.0 0.0 100.0 


48.2 of original grouped cases correctly classified.    
 


 


 







