CRYSTALLOGRAPHIC
COMMUNICATIONS

ISSN: 2056-9890
journals.iucr.org/e

A redetermination of the crystal structure of the mannitol complex $\mathrm{NH}_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$: hydrogen-bonding scheme and Hirshfeld surface analysis

Masoud Mirzaei, Morteza Tahmasebi and Joel T. Mague

Acta Cryst. (2020). E76, 518-522

This open-access article is distributed under the terms of the Creative Commons Attribution Licence https://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Received 24 December 2019
Accepted 2 March 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; mannitol; molybdenum complex; hydrogen bond.

CCDC reference: 1965028

Supporting information: this article has supporting information at journals.iucr.org/e

A redetermination of the crystal structure of the mannitol complex $\mathrm{NH}_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$: hydrogen-bonding scheme and Hirshfeld surface analysis

Masoud Mirzaei, ${ }^{\text {a }}$ Morteza Tahmasebi ${ }^{\text {a }}$ and Joel T. Mague ${ }^{\text {b }}{ }^{\text {* }}$

${ }^{\text {a D Department of Chemistry, Ferdowsi University of Mashhad (FUM), Mashhad, PO Box 917751436, Iran, and }}$
${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: joelt@tulane.edu

The redetermined structure [for the previous study, see: Godfrey \& Waters (1975). Cryst. Struct. Commun. 4, 5-8] of ammonium μ-oxido- μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V$)$] monohydrate, $\mathrm{NH}_{4}\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right) \mathrm{O}_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, was obtained from an attempt to prepare a glutamic acid complex from the $\left[\mathrm{Co}_{2} \mathrm{Mo}_{10} \mathrm{H}_{4} \mathrm{O}_{38}\right]^{6-}$ anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A Hirshfeld surface analysis was also performed.

1. Chemical context

Over the past few years, there has been considerable interest in derivatives of polyoxo- and heteropolyxometallates for both biological and materials applications, particularly where chirality may be conferred by the attachment of chiral ligands (Arefian et al., 2017; Proust et al., 2012; Mirzaei et al., 2014; An et al., 2006). Recently our group prepared the aspartate complex $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{4}\right)_{2}\left(\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ from $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Co}_{2} \mathrm{Mo}_{10} \mathrm{H}_{4} \mathrm{O}_{38}\right]$, and L-aspartic acid (Tahmasebi et al., 2019) and have now proceeded to explore the generality of this reaction with other chiral amino acids. We report here on the reaction of the heteropolyoxometallate with L-glutamic acid from which a mannitol complex of molybdenum was obtained as a result of the unexpected presence of a substantial impurity of mannitol in the glutamic acid sample used.

OPEN \bigodot ACCESS

Table 1
Comparison of the geometries of the $\left\{\mathrm{Mo}_{2} \mathrm{O}_{9}\right\}$ fragment $\left(\AA,{ }^{\circ}\right)$.

	This work	XMANMO a	MANMOL10 b
Mo1~Mo2	$3.1579(7)$	$3.147(2)$	$3.1435(3)$
Mo1-O1	$1.720(2)$	$1.722(5)$	$1.727(3)$
Mo1-O2	$1.703(2)$	$1.679(5)$	$1.693(3)$
Mo1-O5	$1.937(2)$	$1.940(5)$	$1.936(2)$
Mo1-O6	$1.939(2)$	$1.998(5)$	$1.931(2)$
Mo1-O7	$2.454(2)$	$2.469(5)$	$2.459(2)$
Mo1-O8	$2.1733(19)$	$2.175(5)$	$2.162(1)$
Mo2-O3	$1.713(2)$	$1.711(5)$	$1.716(2)$
Mo2-O4	$1.710(2)$	$1.690(5)$	$1.703(2)$
Mo2-O5	$1.955(2)$	$1.952(5)$	$1.950(1)$
Mo2-O9	$1.941(2)$	$1.958(5)$	$1.925(2)$
Mo2-O7	$2.478(2)$	$2.530(5)$	$2.489(2)$
Mo2-O8	$2.1220(19)$	$2.120(5)$	$2.113(1)$
O1-Mo1-O2	$105.18(12)$	$107.0(5)$	$103.00(11)$
O3-Mo2-O4	$106.63(12)$	$107.3(5)$	$104.19(11)$
O2-Mo1-O5	$104.04(11)$	$103.6(5)$	$105.02(9)$
O4-Mo2-O5	$102.25(11)$	$102.0(5)$	$100.90(8)$
O5-Mo1-O8	$72.27(8)$	$72.9(4)$	$72.33(5)$
O5-Mo2-O8	$73.08(8)$	$73.9(4)$	$73.18(5)$

Notes: (a) Godfrey \& Waters (1975); (b) Hedman (1977).

2. Structural commentary

Instead of the expected complex containing glutamate ligands, the crystals obtained were found to have a unit cell essentially identical to that reported previously for a compound formulated as $\mathrm{NH}_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Godfrey \& Waters, 1975) and the structure obtained indicates that it is the same complex. Subsequent to the identification of the product as a mannitol complex, the original sample of glutamic acid was checked by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and found to contain a significant amount of mannitol as an impurity, thus explaining the formation of the title complex. A comparison of the geometry of the $\left\{\mathrm{Mo}_{2} \mathrm{O}_{9}\right\}$ skeleton found in the present study with that in the previous report (Table 1) indicates the

Figure 1
The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. The hydrogen bonds from the cation to the anion and from the anion to the water molecule of crystallization are shown by dashed lines.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.46	3.272 (4)	154
$\mathrm{N} 1-\mathrm{H} 1 E \cdots \mathrm{O} 2^{\text {ii }}$	0.88	2.22	3.066 (4)	162
$\mathrm{N} 1-\mathrm{H} 1 F \ldots \mathrm{O} 1^{\text {iii }}$	0.88	1.95	2.831 (4)	177
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 5^{\text {iii }}$	0.87	1.72	2.589 (3)	178
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 8^{\text {iv }}$	0.87	2.37	3.137 (3)	148
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\text {v }}$	0.87	2.01	2.845 (4)	162
$\mathrm{O} 12-\mathrm{H} 12 B \cdots \mathrm{O} 11^{\text {vi }}$	0.87	2.02	2.812 (3)	151
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 10^{\text {iv }}$	1.00	2.37	3.243 (4)	145
C5-H5 . OO10 ${ }^{\text {vii }}$	1.00	2.58	3.491 (4)	151

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1, y-1, z$; (iii) $-x+1, y-\frac{1}{2},-z$; (iv) $-x+1, y-\frac{1}{2},-z+1$; (v) $\quad x, y-1, z$; (vi) $\quad-x, y-\frac{1}{2},-z+1$; (vii) $-x+1, y+\frac{1}{2},-z+1$.
two to be essentially identical, although the present structure, using low-temperature data and more modern instrumentation and software, is of improved precision. A particular feature is that all hydrogen atoms could be located in a difference map and those attached to the oxygen atoms of the mannitol ligand could be refined (although we ultimately chose to fix them in idealized positions because of the presence of heavy metal atoms), making it abundantly clear that three hydroxyl groups on the ligand are deprotonated and also providing a more complete description of the intermolecular hydrogen-bonding scheme. The terminal $\mathrm{Mo}=\mathrm{O}$ distances (Table 1 and Fig. 1) are short, indicating a degree of multiple bonding while those to O 6 and O 9 are longer and consistent with single bonds. For the bridging oxygen atoms, $\mathrm{O} 5, \mathrm{O} 8$ and O 7 , the $\mathrm{Mo}-\mathrm{O}$ distances for O 7 are about the same as for those to O 6 and O 9 , consistent with this atom being a bridging oxide ion. Those to O 8 are somewhat longer, as expected for a bridging alkoxide ion, while those to O 7 are considerably longer. The previous authors (Godfrey \& Waters, 1975) attributed this 'at least in part to stereochemical strain' but there is no indication from the relevant bond angles that this is the case. Having located all of the hydrogen atoms, we see that O7 is a hydroxyl group and so would be expected to be less strongly bound to the metal than the anionic oxygen atoms. The Mo1 $\cdots \mathrm{Mo} 2$ separation is 3.1579 (7) \AA.

3. Supramolecular features

The presence of the ammonium ion, water molecule of crystallization and the remaining hydroxyl groups on the mannitol ligand generates an extensive hydrogen-bonding network in the crystal, which was alluded to in the previous work (Godfrey \& Waters, 1975) but not described. From Table 2, it may be seen that each ammonium ion connects three adjacent anions through $\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 1^{\mathrm{i}}, \mathrm{N} 1-\mathrm{H} 1 E \cdots \mathrm{O} 2^{\text {ii }}$ and $\mathrm{N} 1-$ $\mathrm{H} 1 F \cdots \mathrm{O} 1^{\text {iii }}$ hydrogen bonds [symmetry codes: (i) $-1+x, y, z$; (ii) $-1+x,-1+y, z$; (iii) $\left.1-x,-\frac{1}{2}+y,-z\right]$ while each water molecule connects anions by $\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\mathrm{v}}$ and $\mathrm{O} 12-$ $\mathrm{H} 12 B \cdots \mathrm{O} 11^{\mathrm{vi}}$ hydrogen bonds [symmetry codes: (v) $x,-1+y$, $\left.z ;(\mathrm{vi}) 1-x,-\frac{1}{2}+y, 1-z\right]$. The anion at x, y, z is connected to one at $\left(1-x,-\frac{1}{2}+y,-z\right)$ by an $\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O}{ }^{\text {iii }}$ hydrogen bond and to one at $\left(1-x,-\frac{1}{2}+y, 1-z\right)$ by an $\mathrm{O} 10-$

Figure 2
Packing viewed along the c-axis direction. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown, respectively, by red, blue and black dashed lines
$\mathrm{H} 10 \cdots \mathrm{O}^{\text {iv }}$ hydrogen bond. Two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, one relatively strong and the other weak (Table 2) complete the intermolecular interactions The result is a structure in which layers of anions, formed by the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between them, are arranged parallel to the $b c$ plane and are connected along the a-axis direction by the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to the cation and the water molecule of crystallization (Figs. 2 and 3).

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.41 updated to November 2019; Groom, et al., 2016) for a triply deprotonated mannitol ion with two Group 6 metals attached found only $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (XMANMO; Godfrey \& Waters, 1975) and $\mathrm{Na}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}(-\right.$

Figure 3
Packing viewed along the b-axis direction with intermolecular hydrogen bonds depicted as in Fig. 2.

Figure 4
Two views of the Hirshfeld surface for the anion mapped over $d_{\text {norm }}$ over the range -0.779 to +1.091 arbitrary units with the nearest hydrogenbonded neighbors added.
$\left.\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (MANMOL10; Hedman, 1977). From Table 1, the geometries of the $\left\{\mathrm{Mo}_{2} \mathrm{O}_{9}\right\}$ core in all three structures are quite comparable. The packing in MANMOL10 is also quite similar to that seen in the present work, particularly when viewed along the b-axis direction although the channel (Fig. 2) between anions contains sodium cations in place of ammonium cations so there are different hydrogenbonding interactions.

5. Hirshfeld surface analysis

The calculation and analysis of the Hirshfeld surface (McKinnon et al., 2007; Spackman \& Jayatilaka, 2009) can provide information on the presence and directionality of packing interactions in a crystal; for example, strong and weak hydrogen bonds and π-stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interactions. The characteristics and appearance of the Hirshfeld surface and related surfaces and fingerprint plots that can be generated with CrystalExplorer 17 (Turner et al., 2017) have been fully described (Tan et al., 2019). Two views of the Hirshfeld surface mapped over $d_{\text {norm }}$ are shown in Fig. $4 a$ and Fig. $4 b$, which include the entities making the closest contacts as listed in Table 2. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to and within the asymmetric unit are clearly shown by the dark-red circles while the light-red ones indicate weak C $\mathrm{H} \cdots \mathrm{O}$ interactions: these are consistent with the extensive hydrogen-bonding network depicted in Figs. 2 and 3. The Hirshfeld surface mapped over shape index (Fig. 5a) and curvedness (Fig. 5b) indicate, as expected from the X-ray structure, that the anion is compact with relatively little flat surface exposed to its neighboring ions. Fig. $6 a$ shows the overall fingerprint plot while Fig. $6 b$ and $6 c$ show delineation

Figure 5
The Hirshfeld surface for the asymmetric unit mapped over (a) the shapeindex property and (b) the curvedness property.

Figure 6
The full two-dimensional fingerprint plot for (a) the anion and those delineated into (b) $\mathrm{H} \cdots \mathrm{H}$ and $(c) \mathrm{O}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ plus $\mathrm{N}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ contacts.
into $\mathrm{H} \cdots \mathrm{H}$, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ plus $\mathrm{N}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ interactions, respectively. The former comprises 27.4% of the surface while the latter comprises 66%, again emphasizing the extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding present. Of particular note in Fig. $6 c$ are the two spikes at $d_{\mathrm{e}}+d_{\mathrm{i}}=1.56 \AA$, which is over $1.3 \AA$ less than the sum of the van der Waals radii and consistent with the prevalence of these two types of hydrogen bonding.

6. Synthesis and crystallization

$\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Co}_{2} \mathrm{Mo}_{10} \mathrm{H}_{4} \mathrm{O}_{38}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O} \quad(0.29 \mathrm{~g}, \quad 0.15 \mathrm{mmol}) \quad$ was dissolved in 8 ml of water and 4 ml of ethanol were added, giving a solution pH above 4 . Then, 8 ml of an aqueous solution of supposed l-glutamic acid, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}(0.13 \mathrm{~g}$, 0.9 mmol), was added leading to a solution pH of 3.2. The solution was stirred for 2 h and then transferred to a Teflonlined autoclave (30 ml) and kept at 383 K for 72 h . After the mixture had been cooled slowly to room temperature, it was filtered and with slow evaporation of the solution at room temperature, flat colorless crystals of the title compound were obtained in 73% yield (based on Mo). Subsequent to the identification of the crystals as a mannitol complex, the original sample of glutamic acid was examined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and these spectra clearly showed the glutamic acid to be contaminated by a substantial quantity of mannitol.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.99-1.00 \AA)$ while those attached to oxygen and to nitrogen were placed in locations derived from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give $\mathrm{O}-\mathrm{H}=0.87$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$. All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the parent atoms.

Acknowledgements

MM gratefully acknowledges the financial support by the Ferdowsi University of Mashhad and the Iran Science Elites Federation (ISEF), and also thanks the Cambridge Crystal-

Table 3
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

```
\(\mathrm{NH}_{4}\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right) \mathrm{O}_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}\)
487.08
Monoclinic, \(P 2_{1}\)
150
8.1775 (17), 6.7722 (14), 12.305 (3)
99.664 (3)
671.8 (2)
2
Mo \(K \alpha\)
1.93
\(0.28 \times 0.17 \times 0.07\)
```

Bruker SMART APEX CCD
Multi-scan $(S A D A B S ;$ Krause et
al., 2015)
$0.61,0.88$
$12645,3598,3407$

0.024
0.695

$0.019,0.050,1.05$
3598
190
1
H-atom parameters constrained
$0.91,-0.51$
Flack x determined using 1454
quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013).
$-0.026(16)$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 2012) and SHELXTL (Sheldrick, 2008).
lographic Data Centre (CCDC) for access to the Cambridge Structural Database. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

An, H.-Y., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Su, Z.-M. \& Xu, L. (2006). Angew. Chem. Int. Ed. 45, 904-908.

Arefian, M., Mirzaei, M., Eshtiagh-Hosseini, H. \& Frontera, A. (2017). Dalton Trans. 46, 550-558.

Brandenburg, K. \& Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Godfrey, J. E. \& Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hedman, B. (1977). Acta Cryst. B33, 3077-3083.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
McKinnon, J. J., Jayatilaka, D. \& Spakman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Mirzaei, M., Eshtiagh-Hosseini, H., Alipour, M. \& Frontera, A. (2014). Coord. Chem. Rev. 275, 1-18.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Proust, A., Matt, B., Villanneau, R., Guillemot, G., Gouzerh, P. \& Izzet, G. (2012). Chem. Soc. Rev. 41, 7605-7622.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Tahmasebi, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. \& Frontera, A. (2019). Acta Cryst. C75, 469-477.

Tan, S. L., Jotani, M. M. \& Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.

supporting information

Acta Cryst. (2020). E76, 518-522 [https://doi.org/10.1107/S2056989020002935]

A redetermination of the crystal structure of the mannitol complex $\mathrm{NH}_{4}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$: hydrogen-bonding scheme and Hirshfeld surface analysis

Masoud Mirzaei, Morteza Tahmasebi and Joel T. Mague

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ammonium μ-oxido- μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate

Crystal data

$\mathrm{NH}_{4}\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{6}\right) \mathrm{O}_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=487.08$
Monoclinic, $P 2_{1}$
$a=8.1775$ (17) \AA
$b=6.7722(14) \AA$
$c=12.305$ (3) \AA
$\beta=99.664(3)^{\circ}$
$V=671.8(2) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.61, T_{\text {max }}=0.88$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.050$
$S=1.05$
3598 reflections
190 parameters
$F(000)=480$
$D_{\mathrm{x}}=2.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9659 reflections
$\theta=2.5-29.6^{\circ}$
$\mu=1.93 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$0.28 \times 0.17 \times 0.07 \mathrm{~mm}$

12645 measured reflections
3598 independent reflections
3407 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=29.6^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-11 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 17$

1 restraint
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H -atom parameters constrained

supporting information

$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0303 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.91$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$

Absolute structure: Flack x determined using 1454 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013).

Absolute structure parameter: - 0.026 (16)

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at $\varphi=$ $0.00,90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at $\omega=-30.00$ and 210.00°. The scan time was $10 \mathrm{sec} /$ frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger. Hatoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.99-1.00 \AA$) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give $\mathrm{N}-\mathrm{H}=0.88$ and O $-\mathrm{H}=0.87 \% \mathrm{~A}$. All were included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Mo1	$0.73216(3)$	$0.83802(4)$	$0.15779(2)$	$0.00976(7)$
Mo2	$0.34681(3)$	$0.84715(3)$	$0.16065(2)$	$0.00929(7)$
O1	$0.8054(3)$	$0.7655(4)$	$0.04086(19)$	$0.0185(5)$
O2	$0.8566(3)$	$1.0290(4)$	$0.2099(2)$	$0.0189(5)$
O3	$0.2139(3)$	$0.7705(4)$	$0.04573(19)$	$0.0168(5)$
O4	$0.2581(3)$	$1.0501(4)$	$0.2096(2)$	$0.0182(5)$
O5	$0.5254(3)$	$0.9641(3)$	$0.09446(18)$	$0.0117(4)$
O6	$0.8084(3)$	$0.6119(3)$	$0.24906(19)$	$0.0127(4)$
O7	$0.5241(3)$	$0.5776(3)$	$0.10930(17)$	$0.0124(4)$
H7	0.506325	0.541607	0.040453	0.019^{*}
O8	$0.5670(2)$	$0.8230(4)$	$0.27874(15)$	$0.0095(4)$
O9	$0.2980(3)$	$0.6327(3)$	$0.25489(19)$	$0.0131(5)$
O10	$0.4487(3)$	$0.6669(3)$	$0.55252(18)$	$0.0148(5)$
H10	0.403779	0.570084	0.583505	0.022^{*}
O11	$0.1432(3)$	$0.5102(4)$	$0.5185(2)$	$0.0193(5)$
H11	0.142714	0.406135	0.477050	0.029^{*}
C1	$0.5738(4)$	$0.4105(5)$	$0.1814(3)$	$0.0137(6)$
H1A	0.640081	0.315372	0.145831	0.016^{*}
H1B	0.475537	0.341650	0.200268	0.016^{*}
C2	$0.6776(4)$	$0.4998(5)$	$0.2839(2)$	$0.0123(6)$
H2	0.725734	0.392308	0.335185	0.015^{*}
C3	$0.5819(4)$	$0.6456(4)$	$0.3449(3)$	$0.0107(6)$
H3	0.648235	0.674825	0.419035	0.013^{*}
C4	$0.4041(4)$	$0.5921(5)$	$0.3577(2)$	$0.0116(6)$

supporting information

H4	0.398270	0.448370	0.375349	0.014^{*}
C5	$0.3477(4)$	$0.7141(4)$	$0.4496(3)$	$0.0119(6)$
H5	0.365147	0.856715	0.433853	0.014^{*}
C6	$0.1656(4)$	$0.6852(5)$	$0.4567(3)$	$0.0160(6)$
H6A	0.124332	0.801416	0.492730	0.019^{*}
H6B	0.100498	0.673866	0.381457	0.019^{*}
O12	$0.1166(3)$	$0.1850(4)$	$0.3922(2)$	$0.0268(6)$
H12A	0.172118	0.125773	0.347290	0.040^{*}
H12B	0.039628	0.100843	0.401180	0.040^{*}
N1	$0.0369(3)$	$0.3889(4)$	$0.1356(2)$	$0.0167(6)$
H1C	0.107045	0.457351	0.183173	0.025^{*}
H1D	-0.050964	0.461341	0.111363	0.025^{*}
H1E	0.006546	0.282251	0.167903	0.025^{*}
H1F	0.085396	0.354261	0.079803	0.025^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	$0.00916(12)$	$0.00909(11)$	$0.01150(11)$	$-0.00040(13)$	$0.00308(8)$	$0.00066(13)$
Mo2	$0.00860(12)$	$0.00943(11)$	$0.00969(11)$	$0.00069(13)$	$0.00110(8)$	$0.00059(13)$
O1	$0.0198(13)$	$0.0200(11)$	$0.0174(11)$	$0.0015(10)$	$0.0078(10)$	$0.0001(10)$
O2	$0.0150(12)$	$0.0170(12)$	$0.0240(13)$	$-0.0051(10)$	$0.0007(10)$	$0.0000(10)$
O3	$0.0140(12)$	$0.0201(11)$	$0.0154(11)$	$-0.0008(9)$	$-0.0007(9)$	$0.0013(9)$
O4	$0.0171(13)$	$0.0155(12)$	$0.0235(14)$	$0.0050(10)$	$0.0076(11)$	$0.0009(10)$
O5	$0.0123(11)$	$0.0098(10)$	$0.0132(10)$	$0.0010(8)$	$0.0026(8)$	$0.0013(8)$
O6	$0.0116(11)$	$0.0103(11)$	$0.0166(11)$	$-0.0011(9)$	$0.0034(9)$	$0.0005(9)$
O7	$0.0177(12)$	$0.0097(10)$	$0.0100(10)$	$0.0007(9)$	$0.0026(8)$	$-0.0022(8)$
O8	$0.0111(9)$	$0.0068(10)$	$0.0107(8)$	$0.0006(9)$	$0.0022(7)$	$0.0018(9)$
O9	$0.0134(11)$	$0.0113(10)$	$0.0144(12)$	$-0.0025(9)$	$0.0020(9)$	$0.0006(9)$
O10	$0.0161(12)$	$0.0149(11)$	$0.0133(11)$	$-0.0009(9)$	$0.0020(9)$	$0.0005(8)$
O11	$0.0227(13)$	$0.0148(11)$	$0.0227(12)$	$-0.0041(10)$	$0.0104(10)$	$-0.0012(10)$
C1	$0.0159(16)$	$0.0085(13)$	$0.0179(14)$	$-0.0005(11)$	$0.0060(12)$	$0.0010(11)$
C2	$0.0128(15)$	$0.0108(14)$	$0.0142(14)$	$0.0011(11)$	$0.0051(12)$	$0.0027(11)$
C3	$0.0128(15)$	$0.0077(13)$	$0.0111(13)$	$0.0011(11)$	$0.0002(12)$	$0.0015(11)$
C4	$0.0144(15)$	$0.0093(13)$	$0.0113(14)$	$-0.0001(11)$	$0.0025(12)$	$0.0007(11)$
C5	$0.0142(15)$	$0.0084(13)$	$0.0132(14)$	$0.0016(11)$	$0.0025(12)$	$0.0014(11)$
C6	$0.0132(16)$	$0.0177(16)$	$0.0175(16)$	$0.0003(13)$	$0.0035(13)$	$0.0005(12)$
O12	$0.0233(14)$	$0.0271(14)$	$0.0336(15)$	$-0.0079(11)$	$0.0148(12)$	$-0.0136(12)$
N1	$0.0136(14)$	$0.0153(16)$	$0.0215(13)$	$0.0004(9)$	$0.0043(11)$	$-0.0041(10)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Mo1-O} 2$	$1.703(2)$	$\mathrm{O} 11-\mathrm{H} 11$	0.8699
$\mathrm{Mo1-O}$	$1.720(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.522(5)$
Mo1-O5	$1.937(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900
Mo1-O6	$1.939(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9900
Mo1-O8	$2.1733(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.532(4)$
$\mathrm{Mo} 1-\mathrm{O} 7$	$2.454(2)$	$\mathrm{C} 2-\mathrm{H} 2$	1.0000

Mo1-Mo2	3.1579 (7)	C3-C4	1.532 (4)
Mo2-O4	1.710 (2)	C3-H3	1.0000
Mo2-O3	1.713 (2)	C4-C5	1.532 (4)
Mo2-O9	1.941 (2)	C4-H4	1.0000
Mo2-O5	1.955 (2)	C5-C6	1.519 (4)
Mo2-08	2.1220 (19)	C5-H5	1.0000
Mo2-O7	2.478 (2)	C6-H6A	0.9900
O6-C2	1.435 (4)	C6-H6B	0.9900
O7-C1	1.453 (4)	O12-H12A	0.8700
O7-H7	0.8700	O12-H12B	0.8699
O8-C3	1.444 (4)	N1-H1C	0.8800
O9-C4	1.436 (4)	N1-H1D	0.8798
O10-C5	1.427 (4)	N1-H1E	0.8800
O10-H10	0.8700	N1-H1F	0.8800
O11-C6	1.437 (4)		
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 1$	105.18 (12)	C3-O8-Mo2	115.55 (17)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 5$	104.04 (11)	C3-O8-Mo1	114.93 (17)
$\mathrm{O} 1-\mathrm{Mo1-O5}$	101.08 (10)	Mo2-O8-Mo1	94.64 (7)
O2-Mo1-O6	105.54 (11)	$\mathrm{C} 4-\mathrm{O} 9-\mathrm{Mo} 2$	121.01 (19)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 6$	97.81 (11)	C5-O10-H10	109.5
O5-Mo1-O6	139.04 (9)	C6-O11-H11	110.2
$\mathrm{O} 2-\mathrm{Mo1-O8}$	100.26 (11)	O7- $\mathrm{C} 1-\mathrm{C} 2$	104.9 (2)
$\mathrm{O} 1-\mathrm{Mo1-O8}$	154.56 (10)	O7-C1-H1A	110.8
O5-Mo1-O8	72.27 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.8
O6-Mol-O8	75.09 (9)	O7-C1-H1B	110.8
$\mathrm{O} 2-\mathrm{Mo1-O} 7$	169.57 (10)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.8
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 7$	85.19 (10)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.8
O5-Mo1-O7	72.31 (8)	O6-C2-C1	107.6 (2)
O6-Mol-O7	73.48 (9)	O6-C2-C3	105.8 (2)
O8-Mol-O7	69.37 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	113.7 (3)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{Mo} 2$	121.00 (9)	O6-C2-H2	109.8
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{Mo} 2$	120.21 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	109.8
$\mathrm{O} 5-\mathrm{Mo} 1-\mathrm{Mo} 2$	35.97 (6)	C3-C2-H2	109.8
$\mathrm{O} 6-\mathrm{Mo} 1-\mathrm{Mo} 2$	103.50 (7)	$\mathrm{O} 8-\mathrm{C} 3-\mathrm{C} 2$	105.2 (2)
O8-Mo1-Mo2	42.05 (5)	O8-C3-C4	105.3 (2)
$\mathrm{O} 7-\mathrm{Mo} 1-\mathrm{Mo} 2$	50.52 (5)	C2-C3-C4	118.0 (3)
$\mathrm{O} 4-\mathrm{Mo} 2-\mathrm{O} 3$	106.63 (12)	O8-C3-H3	109.3
O4-Mo2-O9	104.41 (11)	C2-C3-H3	109.3
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{O} 9$	95.78 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	109.3
O4-Mo2-O5	102.25 (11)	O9-C4-C5	109.6 (2)
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{O} 5$	101.17 (10)	O9-C4-C3	107.9 (2)
O9-Mo2-O5	142.62 (10)	C5-C4-C3	110.9 (3)
O4-Mo2-O8	100.51 (11)	O9-C4-H4	109.5
O3-Mo2-O8	152.85 (11)	C5-C4-H4	109.5
O9-Mo2-O8	76.66 (9)	C3-C4-H4	109.5
O5-Mo2-O8	73.08 (8)	O10-C5-C6	110.3 (3)
O4-Mo2-O7	169.36 (10)	O10-C5-C4	109.5 (2)

O3-Mo2-O7	83.30 (10)
O9-Mo2-07	77.80 (9)
O5-Mo2-O7	71.48 (8)
O8-Mo2-O7	69.65 (8)
$\mathrm{O} 4-\mathrm{Mo} 2-\mathrm{Mo} 1$	120.20 (9)
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{Mo} 1$	118.74 (8)
O9-Mo2-Mo1	107.31 (7)
$\mathrm{O} 5-\mathrm{Mo} 2-\mathrm{Mo} 1$	35.58 (6)
O8-Mo2-Mo1	43.31 (5)
O7-Mo2-Mo1	49.85 (5)
$\mathrm{Mo} 1-\mathrm{O} 5-\mathrm{Mo} 2$	108.45 (10)
C2-O6-Mo1	114.04 (18)
C1-O7-Mo1	107.42 (18)
C1-O7-Mo2	122.26 (18)
$\mathrm{Mo} 1-\mathrm{O} 7-\mathrm{Mo} 2$	79.63 (7)
C1-07-H7	111.1
$\mathrm{Mo1-O7-H7}$	115.7
Mo2-O7-H7	116.5
$\mathrm{Mo} 1-\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2$	25.7 (3)
$\mathrm{Mo} 2-\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2$	-62.9 (3)
$\mathrm{Mo} 1-\mathrm{O} 6-\mathrm{C} 2-\mathrm{C} 1$	64.9 (3)
$\mathrm{Mo} 1-\mathrm{O} 6-\mathrm{C} 2-\mathrm{C} 3$	-57.1 (3)
O7-C1-C2-O6	-55.2 (3)
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	61.7 (3)
Mo2-O8-C3-C2	93.0 (2)
$\mathrm{Mo} 1-\mathrm{O} 8-\mathrm{C} 3-\mathrm{C} 2$	-15.7 (3)
$\mathrm{Mo} 2-\mathrm{O} 8-\mathrm{C} 3-\mathrm{C} 4$	-32.3 (3)
$\mathrm{Mo1-O8-C3-C4}$	-141.03 (18)
O6-C2-C3-O8	42.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 8$	-75.3 (3)
O6-C2-C3-C4	159.6 (3)

C6-C5-C4	$113.1(3)$
O10-C5-H5	107.9
C6-C5-H5	107.9
C4-C5-H5	107.9
O11-C6-C5	$110.5(3)$
O11-C6-H6A	109.6
C5-C6-H6A	109.6
O11-C6-H6B	109.6
C5-C6-H6B	109.6
H6A-C6-H6B	108.1
H12A-O12-H12B	104.1
H1C-N1-H1D	109.6
H1C-N1-H1E	109.5
H1D-N1-H1E	109.5
H1C-N1-H1F	109.3
H1D-N1-H1F	109.5
H1E-N1-H1F	109.4
C1-C2-C3-C4	$41.6(4)$
Mo2-O9-C4-C5	$88.7(3)$
Mo2-O9-C4-C3	$-32.1(3)$
O8-C3-C4-O9	$38.6(3)$
C2-C3-C4-O9	$-78.3(3)$
O8-C3-C4-C5	$-81.4(3)$
C2-C3-C4-C5	$161.7(3)$
O9-C4-C5-O10	$177.4(2)$
C3-C4-C5-O10	$-63.6(3)$
O9-C4-C5-C6	$54.0(3)$
C3-C4-C5-C6	$173.0(3)$
O10-C5-C6-O11	$-40.3(3)$
C4-C5-C6-O11	$82.6(3)$

Hydrogen-bond geometry $\left(\underset{A}{ },{ }^{\circ}\right)$

D-H $\cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 D^{\cdots} \mathrm{O}^{\mathrm{i}}$	0.88	2.46	3.272 (4)	154
$\mathrm{N} 1-\mathrm{H} 1 E^{\cdots} \mathrm{O}^{2 i}$	0.88	2.22	3.066 (4)	162
$\mathrm{N} 1-\mathrm{H} 1 F \cdots \mathrm{O} 1^{\text {iii }}$	0.88	1.95	2.831 (4)	177
O7-H7 ${ }^{\text {O }}{ }^{\text {iii }}$	0.87	1.72	2.589 (3)	178
O10-H10‥08 ${ }^{\text {iv }}$	0.87	2.37	3.137 (3)	148
$\mathrm{O} 12-\mathrm{H} 12 A \cdots{ }^{\text {a }}$	0.87	2.01	2.845 (4)	162
O12-H12B \cdots O11 ${ }^{\text {vi }}$	0.87	2.02	2.812 (3)	151
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 10^{\text {iv }}$	1.00	2.37	3.243 (4)	145
C5-H5 ${ }^{\text {O }} 100^{\text {vii }}$	1.00	2.58	3.491 (4)	151

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1, y-1, z$; (iii) $-x+1, y-1 / 2,-z$; (iv) $-x+1, y-1 / 2,-z+1$; (v) $x, y-1, z$; (vi) $-x, y-1 / 2,-z+1$; (vii) $-x+1, y+1 / 2,-z+1$.

