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Abstract
The aim of this paper is to classify all 2-capable 2-generator 2-groups of class two.
Obtaining the structure of the 2-nilpotent multipliers of these 2-groups is the other
aim.
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1 Introduction

A group G is called capable if there exists some group H such that G ∼= H/Z(H).
Capability of groups was first appeared in [3], where Baer succeeds to characterize
all capable abelian groups among the direct sums of cyclic groups. The concept of
capability for p-groups is used in the classification of p-groups into isoclinism classes
by Hall [7].

The notion of varietal capabilitywith respect to anyvariety of groupswas introduced
by Moghaddam and Kayvanfar [13]. Moreover, Burns and Ellis [6] generalized the
concept of capability of groups to the varietal capability with respect to the variety of
nilpotent groups of class at most c for c ≥ 1. Recall that a group G is called c-capable
if G ∼= H/Zc(H) for some group H , where Zc(H) is the c-th term of the upper
central series of H for c ≥ 1. As a result, every c-capable group is also 1-capable.
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When c = 1, 1-capable groups are indeed capable groups. Later in [6], Burns and Ellis
generalized the same results of Baer for the capability of finitely generated abelian
groups to c-capability. It is shown that there exists a finite 2-group that is capable but
not 2-capable [6, Theorem 1.4]. Therefore, the concepts of capability and c-capability
for groups are different from each other.
Let G be the quotient of a free group F by a normal subgroup R. Then, the 2-nilpotent
multiplier of G is defined as the abelian group

M(2)(G) ∼= R ∩ γ3(F)/[R, F, F],

where γ3(F) = [F, F, F]. This is a lesser extent of the Baer invariant of a group
G with respect to the variety of nilpotent groups of class at most 2, which has been
introduced in [4]. The 1-nilpotentmultiplier ofG ismore known as the Schurmultiplier
of G, M(G), and it is much more studied, for instance in [9,15]. Information about
the 2-nilpotent multiplier of groups may be used as an instrument in the connection
to the 2-capability of groups. Niroomand and Parvizi proved that all extra-special p-
groups are capable and 2-capable simultaneously by obtaining explicit structure of the
2-nilpotent multipliers of all extra-special p-groups in [16]. Recently, Niroomand et
al. [17] showed that “capability” and “c-capability” are equivalent for these groups.

A new classification for the 2-generator p-groups of nilpotency class two is pre-
sented in [1] that corrects and simplifies previous classifications for these groups
[2,8,18]. For the case p = 2, computations of the non-abelian tensor square are stated
in [8]. Determination of the capable groups among the 2-generator 2-groups of class
two is stated in [10]. This computation is based on a classification that is incomplete.
Thus, Magidin and Morse determined all capable 2-generator 2-groups of class two
by a new classification in [11]. They have also described the Schur multiplier of these
groups in [11, Theorem 50].

The main result of the present paper is to identify which of the 2-generator 2-
groups of class two are 2-capable. At first, we compute the 2-nilpotent multipliers
of all capable 2-generator 2-groups of class two. Then, we show that the concepts
“capable” and “2-capable” are equivalent for these 2-groups.

2 Preliminaries

This section is devoted to state concepts and results which will be used in the next
section. We use techniques involving the concept of the basic commutators. Here is
the definition.

Definition 2.1 Let X be an arbitrary subset of a free group and select an arbitrary total
order for X . The basic commutators on X , their weight wt , and the ordering among
them are defined as follows.

(i) The elements of X are basic commutators of weight one, ordered according to
the total order previously chosen.

(ii) Having defined the basic commutators of weight less than n, a basic commutator
of weight n is d = [s, k], where:
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(a) s and t are basic commutators and wt(s) + wt(k) = n, and
(b) s > k, and if s = [s1, s2], then k ≥ s2.

(iii) The basic commutators of weight n follow those of weight less than n. The basic
commutators of weight n are ordered among themselves in any total order, but
the most common used total order is lexicographic order, that is if [b1, a1] and
[b2, a2] are basic commutators of weight n, then [b1, a1] < [b2, a2] if and only
if b1 < b2 or b1 = b2 and a1 < a2.

The following theorem gives a formula for the 2-nilpotent multiplier of a direct
product of two finite groups.

Theorem 2.2 [14] Let G and H be two finite groups. Then,

M(2)(G × H) ∼=M(2)(G) ⊕ M(2)(H) ⊕ (
(G/G ′ ⊗ G/G ′) ⊗ H/H ′)

⊕ (
(H/H ′ ⊗ H/H ′) ⊗ G/G ′).

Let Z(r)
t denote the direct sum of r copies of Zt in which Zt is the cyclic group of

order t . The following theorem determines the structure of the 2-nilpotent multipliers
for finite abelian p-groups, which can be found in [12, Theorem 2.4] and [16, Theorem
2.3].

Theorem 2.3 Let G ∼= Zpm1 ⊕ · · · ⊕ Zpmk , where m1 ≥ m2 ≥ · · · ≥ mk. Then,

M(2)(G) ∼=
k⊕

i=2

Z
(i2−i)
pmi .

The notion of the epicenter Z∗(G) is defined for a group G by Beyl et al. [5]. They
have proved that every group G possesses a uniquely determined central subgroup
Z∗(G) which is the smallest central subgroup of G whose factor group is capable.
It gives a criterion for detecting capable groups. In fact G is capable if and only if
Z∗(G) = 1. To prove the 2-capability of groups, we need the following results, which
can be found in [6,13].

Let F/R be a free presentation for a group G, and π : F/[R, F, F] → G be the
canonical surjection. The subgroup Z∗

2(G) of G is defined as follows:

Z∗
2(G) = π(Z2(F/[R, F, F])).

Lemma 2.4 [6, Proposition 1.2] A group G is 2-capable if and only if Z∗
2(G) = 1.

Theorem 2.5 ([13, Theorem 4.4] and [6, Lemma 2.1 (vii)]) Let N be a normal sub-
group of a group G contained in Z2(G). Then, N ⊆ Z∗

2(G) if and only if the natural
map M(2)(G) −→ M(2)(G/N ) is a monomorphism.

Our computations in this paper are based on the classification of the 2-capable
2-generator 2-groups of class two. The following theorem determines all capable 2-
generated 2-groups of class two and is an immediate consequence of [11, Theorems
1 and 67].
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Theorem 2.6 Let G be a capable 2-generated 2-group of class two. Then, G is iso-
morphic to one of the following groups.

(i) G1 = 〈a, b | [a, b]2β = a2
β = b2

β = [a, b, b] = [a, b, a] = 1〉,
(ii) G2 = 〈a, b | [a, b]2β = a2

β+1 = b2
β = [a, b, b] = [a, b, a] = 1〉,

(iii) G3 = 〈a, b | [a, b]2γ = a2
α = b2

α = [a, b, b] = [a, b, a] = 1, α > γ 〉,
(iv) G4 = 〈a, b | [a, b]2γ = a2

α = [a, b, b] = [a, b, a] = 1, b2
β = [a, b]2σ 〉, where

α − β > δβγ , α − β = γ − σ , α > β and γ > σ , δi j is the Kronecker delta.

3 2-Nilpotent Multipliers of All Capable 2-Generator 2-Groups of
Class Two

We know that every 2-capable group is capable. Theorem 2.6 shows that there are
only four capable 2-generator 2-groups of class two. Now, we just need to discuss
the 2-capability of these 2-groups. Here, we intend to obtain the structure of the 2-
nilpotent multipliers of all capable 2-generator 2-groups of class two, and then in
the next section, we will show that capability and 2-capability for these groups are
equivalent. In what follows, by considering every capable 2-generator 2-group G of
class two, we compute the 2-nilpotent multiplier of G depending on the nilpotency
class and the free presentation of G.

Let G be the quotient of a free group F by a normal subgroup R. Then, we have
γ3(F) ⊆ R. Hence,

M(2)(G) ∼= R ∩ γ3(F)

[R, F, F]
∼= γ3(F)/γ5(F)

[R, F, F]/γ5(F)
.

Since G is 2-generator, we conclude that F is the free group on the set {a, b}. We
know that γ3(F)/γ5(F) is a free abelian group with the basis of all basic commutators
of weights 3 and 4 on {a, b} that is the set

{[a, b, b], [a, b, a], [a, b, a, a], [a, b, a, a], [a, b, b, b]}, in which a > b.

The following lemma is obtained by Theorem 2.6.

Lemma 3.1 Let G be a capable 2-generator 2-group of class two. Then, the group G
is isomorphic to one of the following groups:

(i) G1 = 〈a, b | [a, b]2β = a2
β = b2

β = [a, b, b] = [a, b, a] = 1〉 ∼= F/R1,
(ii) G2 = 〈a, b | [a, b]2β = a2

β+1 = b2
β = [a, b, b] = [a, b, a] = 1〉 ∼= F/R2,

(iii) G3 = 〈a, b | [a, b]2γ = a2
α = b2

α = [a, b, b] = [a, b, a] = 1, α > γ 〉
∼= F/R3,

(iv) G4 = 〈a, b|[a, b]2γ = a2
α = [a, b, b] = [a, b, a] = 1, b2

β = [a, b]2σ 〉
∼= F/R4,

in which F is the free group on the set {a, b} and Ri denotes normal closure generated
by the relations of Gi , for all 1 ≤ i ≤ 4.
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In what follows, to compute M(2)(Gi ), we will find a suitable basis for the free
abelian group [Ri , F, F]/γ5(F) for all 1 ≤ i ≤ 4.

Proposition 3.2 Let G be a capable 2-generator 2-group of class two.

(i) If G1 = 〈a, b | [a, b]2β = a2
β = b2

β = [a, b, b] = [a, b, a] = 1〉, then
[R1, F, F] ≡ 〈[a, b, b]2β [a, b, a]−2β

, [a, b, a, a]2β−1 [a, b, a]2β
, [a, b, a]2β [a,

b, b, b]2β−1
, [a, b, a]2β+1

, [a, b, a]2β [a, b, b, a]2β−1〉 mod γ5(F)

(ii) If G2 = 〈a, b | [a, b]2β = a2
β+1 = b2

β = [a, b, b] = [a, b, a] = 1〉,
then [R2, F, F] ≡ 〈[a, b, b]2β+1

, [a, b, a]2β+1
, [a, b, a, a]2β

, [a, b, b]2β [a, b,
b, b]2β−1

, [a, b, a]2β [a, b, b, a]2β−1〉, mod γ5(F).
(iii) If G3 = 〈a, b | [a, b]2γ = a2

α = b2
α = [a, b, b] = [a, b, a] = 1, α > γ 〉,

then [R3, F, F] ≡ 〈[a, b, b]2α
, [a, b, a]2α

, [a, b, a, a]2γ
, [a, b, b, b]2γ

, [a, b, b,
a]2γ 〉, mod γ5(F), where α > γ .

(iv) If G4 = 〈a, b|[a, b]2γ = a2
α = [a, b, b] = [a, b, a] = 1, b2

β = [a, b]2σ 〉, then
[R4, F, F] ≡ 〈[a, b, a]2α

, [a, b, b, a]2σ
, [a, b, b, b]2σ

, [a, b, a]2β [a, b, b, a]2σ
,

[a, b, b]2β 〉, mod γ5(F), where α −β > δβγ , α −β = γ −σ , α > β and γ > σ ,
δi j is Kronecker delta.

Proof (i) Clearly,

[R1, F, F]/γ5(F) = 〈[a2β

, f1, f2], [b2β

, f3, f4], [[a, b]2β

, f5, f6] |
fi ∈ F, 1 ≤ i ≤ 6〉γ5(F)/γ5(F).

By using [16, Lemma 3.3], we have the following relations

[a2β

, f1, f2] ≡ [a, f1, f2]2β [a, f1, a, f2]
(
2β
2

)

≡ ([a, f1, f2]2[a, f1, a, f2](2β−1))2
β−1

(mod γ5(F)),

[b2β

, f3, f4] ≡ [b, f3, f4]2β [b, f3, b, f4]
(
2β
2

)

≡ ([b, f3, f4]2[b, f3, b, f4](2β−1))2
β−1

(mod γ5(F)),

[[a, b]2β

, f5, f6] ≡ [a, b, f5, f6]2β

(mod γ5(F)).

For any element f ∈ F, f = anbm[a, b]t s, such that s ∈ γ3(F) and n,m, t ∈ Z. By
using the Hall–Witt identity and easy commutator calculations, we have

[b, a, b] ≡ [a, b, b]−1, [b, a, b, b] ≡ [a, b, b, b]−1 (mod γ5(F)),

[b, a, a] ≡ [a, b, a]−1, [b, a, b, a] ≡ [a, b, b, a]−1, [a, b, a, b] ≡ [a, b, b, a]
(mod γ5(F)).
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Now, we conclude that [R1, F, F]/γ5(F) is generated by the set

{[a, b, b]2β [a, b, b, a](2β−1)2β−1
, [a, b, a]2β [a, b, a, a](2β−1)2β−1

, [a, b, a, a]2β

,

[a, b, b, a]2β

, [a, b, b, b]2β

,

[a, b, b]−2β [a, b, b, b]−2β−1(2β−1), [a, b, a]−2β [a, b, b, a]−2β−1(2β−1)}

modulo γ5(F).
We also know that

[a, b, b, a](2β−1)2β−1[a, b, b, a]2β = [a, b, b, a]2β−1(2β+1),

and so

[a, b, b]2β [a, b, b, a](2β−1)2β−1[a, b, b, a]2β

= [a, b, b]2β [a, b, b, a]2β−1
([a, b, b, a]2β

)2
β−1

.

By a similar process, we have

[a, b, a]2β [a, b, a, a](2β−1)2β−1[a, b, a, a]2β

= [a, b, a]2β [a, b, a, a]2β−1
([a, b, a, a]2β

)2
β−1

,

[a, b, b]2β [a, b, b, b]2β−1(2β−1)[a, b, b, b]2β

= [a, b, b]2β [a, b, b, b]2β−1
([a, b, b, b]2β

)2
β−1

,

[a, b, a]2β [a, b, b, a]2β−1(2β−1)[a, b, b, a]2β

= [a, b, a]2β [a, b, b, a]2β−1
([a, b, b, a]2β

)2
β−1

.

Therefore, [R1, F, F]/γ5(F) is generated by the set

{[a, b, b]2β [a, b, b, a]2β−1
, [a, b, a]2β [a, b, a, a]2β−1

, [a, b, a, a]2β

, [a, b, b, b]2β

,

[a, b, b, a]2β

, [a, b, b]−2β [a, b, b, b]−2β−1
, [a, b, a]−2β [a, b, b, a]−2β−1

,

[a, b, a, a]2β }.

By a similar method, we can obtain that

{([a, b, b][a, b, a]−1)2
β

, ([a, b, a]2[a, b, a, a])2β−1
, ([a, b, a]2[a, b, b, b])2β−1

,

[a, b, a]2β+1
, ([a, b, a]2[a, b, b, a])2β−1}.

is a basis of [R1, F, F]/γ5(F).
Now the proof is complete.
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(ii) We have

[R2, F, F] = 〈[a2β+1
, f1, f2], [b2β

, f3, f4], [[a, b]2β

, f5, f6] | fi ∈ F, 1 ≤ i ≤ 6〉

modulo γ5(F). Using a similar method to the proof of part (i), [R2, F, F]/γ5(F) is
generated by the set

{([a, b, b]2[a, b, a, b](2β+1−1))2β

,
([a, b, a]2[a, b, a, a](2β+1−1))2β

,

[a, b, a, a]2β

, [a, b, b, a]2β

,

[a, b, b, b]2β

,
([b, a, b]2[b, a, b, b](2β−1))2β−1

,
([b, a, a]2[b, a, b, a](2β−1))2β−1}

modulo γ5(F). One can easily check that

[R2, F, F] ≡〈[a, b, b]2β+1
, [a, b, a]2β+1

, [a, b, a, a]2β

, ([a, b, b]2[a, b, b, b])2β−1
,

([a, b, a]2[a, b, b, a])2β−1〉

modulo γ5(F). Now the proof is complete.
For (iii) and (iv), we use a similar method to parts (i) and (ii). Then, for α > γ ,

[R3, F, F] ≡ 〈[a, b, b]2α

, [a, b, a]2α

, [a, b, a, a]2γ

, [a, b, b, b]2γ

, [a, b, b, a]2γ 〉,

mod γ5(F) and for α − β > δβγ , α − β = γ − σ , α > β and γ > σ ,

[R4, F, F] ≡ 〈[a, b, b]2β

, [a, b, a]2α

, [a, b, b, a]2σ

, [a, b, b, b]2σ

,

[a, b, a]2β [a, b, b, a]2σ 〉

mod γ5(F), where δi j is the Kronecker delta. The proof is completed. ��
So far, all necessary information is gathered and now we are ready to compute the
2-nilpotent multipliers of the groups G1,G2,G3 and G4, which are introduced in
Lemma 3.1.

Theorem 3.3 Let G be isomorphic to the group Gi , 1 ≤ i ≤ 4, which is mentioned in
Lemma 3.1. Then,

(i) M(2)(G1) ∼= Z
(3)
2β−1 ⊕ Z2β ⊕ Z2β+1 .

(ii) M2(G2) ∼= Z
(2)
2β+1 ⊕ Z

(2)
2β−1 ⊕ Z2β .

(iii) M2(G3) ∼= Z
(2)
2α ⊕ Z

(3)
2γ .

(iv) M(2)(G4) ∼= Z2α ⊕ Z2β ⊕ Z
(3)
2σ .

Proof (i) We know that the set

{[a, b, a]2[a, b, a, a], [a, b, a]2[a, b, b, b], [a, b, a], [a, b, a]2[a, b, b, a],
[a, b, b][a, b, a]−1}
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is a basis for the free abelian group γ3(F)/γ5(F) and also

[R1, F, F] ≡ 〈([a, b, b][a, b, a]−1)2
β

, [a, b, a]2β+1
, ([a, b, a]2[a, b, a, a])2β−1

,

([a, b, a]2[a, b, b, a])2β−1
,

([a, b, a]2[a, b, b, b])2β−1〉 mod γ5(F)

according to Proposition 3.2(i). Therefore,

M(2)(G1) ∼= 〈[a, b, a]2[a, b, a, a]〉
〈([a, b, a]2[a, b, a, a])2β−1〉

⊕ 〈[a, b, a]2[a, b, b, b]〉
〈([a, b, a]2[a, b, a, a])2β−1〉

⊕ 〈[a, b, a]2[a, b, b, a]〉
〈([a, b, a]2[a, b, b, a])2β−1〉

⊕ 〈[a, b, b][a, b, a]−1〉
〈([a, b, b][a, b, a]−1)2

β 〉 ⊕ 〈[a, b, a]〉
〈[a, b, a]2β+1〉

∼= Z
(3)
2β−1 ⊕ Z2β ⊕ Z2β+1 .

To prove (ii), (iii) and (iv), we use the same process as the proof of part (i). It can be
concluded that the results hold for the remaining groups G2,G3 and G4. ��

4 2-Capability of 2-Generator 2-Groups of Class Two

In this section, we detect the 2-generator 2-groups of class two which are 2-capable.
The following results are used in the proof of Theorem 4.3.

Proposition 4.1 Let G be isomorphic to one of the following groups

(i) G1 = 〈a, b | [a, b]2β = a2
β = b2

β = [a, b, b] = [a, b, a] = 1〉,
(ii) G2 = 〈a, b | [a, b]2β = a2

β+1 = b2
β = [a, b, b] = [a, b, a] = 1〉,

(iii) G3 = 〈a, b | [a, b]2γ = a2
α = b2

α = [a, b, b] = [a, b, a] = 1, α > γ 〉.
Then, Z∗

2(G) is trivial.

Proof LetG ∼= G1. Then,G1/G ′
1

∼= Z
(2)
2β and so [6, Theorem 1.3] implies thatG1/G ′

1
is 2-capable. Now, using [13, Theorem 2.3], we conclude that Z∗

2(G1) ⊆ 〈[a, b]〉.
Assume x = [a, b]r such that 1 ≤ r ≤ 2β − 1. If gcd(2, r) = 1, then 〈x〉 = 〈[a, b]〉.
Let gcd(2, r) �= 1. Then r = 2t r1 for some t > 1 such that gcd(r1, 2) = 1 and so
〈x〉 = 〈[a, b]2t 〉 for some t > 1.

Consider y to denote the image of y ∈ G1 in G1/〈x〉. Then,

G1/〈x〉 = 〈a, b|a2β = b
2β = [a, b]2β−t = [a, b, a] = [a, b, b] = 1, t > 1〉

or G1/〈x〉 = G1/G ′
1. According to Theorems 2.3, 3.3(i) and (iii), we conclude that

M(2)(G1/G ′
1)

∼= Z
(2)
2β ,M(2)(G1/〈x〉) ∼= Z

(2)
2β ⊕Z

(3)
2β−t andM(2)(G1) ∼= Z

(3)
2β−1 ⊕Z2β

⊕Z2β+1 . Since |M(2)(G1)| > |M(2)(G1/〈x〉)|,wegetM(2)(G1) −→ M(2)(G1/〈x〉)
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is not a monomorphism and so x /∈ Z∗
2(G1), by Theorem 2.5. Hence, Z∗

2(G1) = 1.

Now, let G ∼= G2. Then using [11, Section 5.1 p.28], Z(G2) = 〈a2β
, [a, b]〉. There-

fore, 〈a2β 〉 � G and 〈a2β 〉 ∼= Z2. We denote the image of y ∈ G2 in G2/〈a2β 〉 by y.
Since

G2/〈a2β 〉 = 〈a, b | a2β = b
2β = [a, b]2β = [a, b, a] = [a, b, b] = 1〉 ∼= G1,

Z∗
2(G2/〈a2β 〉) = 1, and soLemma2.4 implies thatG2/〈a2β 〉 is 2-capable.Nowby [13,

Theorem 2.3], Z∗
2(G2) ⊆ 〈a2β 〉. Using the results of Theorem 3.3, it is straightforward

that |M(2)(G2)| > |M(2)(G2/〈a2β 〉)|. As a consequence, the map M(2)(G2) −→
M(2)(G2/〈a2β 〉) is not a monomorphism and so Z∗

2(G2) �= 〈a2β 〉, by Theorem 2.5.
Hence, Z∗

2(G2) is trivial. By a similar process, we can obtain Z∗
2(G3) = 1. The result

follows. ��
Proposition 4.2 Let

G4 = 〈a, b | [a, b]2γ = a2
α = [a, b, b] = [a, b, a] = 1, b2

β = [a, b]2σ 〉,

where α − β > δβγ , α − β = γ − σ , α > β and γ > σ , δi j is the Kronecker delta.
Then, Z∗

2(G4) is trivial.

Proof Using [11, Section 5.1 p.28], we have Z(G4) = 〈a2γ
, [a, b], b2γ 〉. Therefore,

〈a2β
, b2

β 〉 � G4. We denote the image of y ∈ G4 in G4/〈a2β
, b2

β 〉 by ỹ. As a result,

G4/〈a2β

, b2
β 〉=〈ã, b̃ | ã2β = b̃2

β =[ã, b̃]2σ =[ã, b̃, ã]=[ã, b̃, b̃]=1, β >σ 〉∼=G3.

By Proposition 4.1, we know that G4/〈a2β
, b2

β 〉 is 2-capable and consequently by
[13, Theorem 2.3], Z∗

2(G4) ⊆ 〈a2β
, b2

β 〉. We claim that Z∗
2(G4) = 1. By contrary,

let 1 �= d ∈ Z∗
2(G4) be an arbitrary element. Then, d = ai2

β
b j2β

such that i and j
are integers. Then,

H = G4/〈d〉 ∼= 〈a1, b1 | a2α

1 = b2
α

1 = [a1, b1]2γ = 1, b2
β

1 = [a1, b1]2σ

,

ai2
β

1 = b− j2β

1 , [a1, b1, b1] = [a1, b1, a1] = 1〉

Suppose that i = i ′2k2 , j = j ′2k1 and gcd(2, i ′) = gcd(2, j ′) = 1, where k1 and
k2 are integers. As a consequence,

H = 〈a1, b1 | a2α

1 = b2
α

1 = [a1, b1]2γ = 1, b2
β

1 = [a1, b1]2σ

, ai
′2β+k2
1 = b− j ′2β+k1

1 ,

[a1, b1, b1] = [a1, b1, a1] = 1〉

Without loss of generality, take i ′ = j ′ = 1, by [11, Proposition 3.1]. Therefore,

H = 〈a1, b1 | a2α

1 = b2
α

1 = [a1, b1]2γ = 1, b2
β

1 = [a1, b1]2σ

, a2
β+k2

1 = b−2β+k1

1 ,

[a1, b1, b1] = [a1, b1, a1] = 1〉.
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Since |a2β+k2
1 | = |b2β+k1

1 |, we obtain k1 = k2. Putting k1 = k2 = k, we have

H = 〈a1, b1 | a2α

1 = b2
α

1 = [a1, b1]2γ = 1, b2
β

1 = [a1, b1]2σ

, a2
β+k

1 = b−2β+k

1 ,

[a1, b1, b1] = [a1, b1, a1] = 1〉.

On the other hand, 〈a2β+k

1 〉 � H , since a2
β+k

1 ∈ Z(H). We denote the image of

y ∈ H in H/〈a2β+k

1 〉 by y. As a result,

H1 = H/〈a2β+k

1 〉 = 〈a1, b1 | a12β+k = [a1, b1]2σ+k = 1, b1
2β = [a1, b1]2

σ

,

[a1, b1, b1] = [a1, b1, a1] = 1〉.

If β + k = α, then H = H1 = G4, so d = 1. Thus it quickly becomes apparent that
β + k < α. It is a contradiction. Now by using [16, Theorem 2.1 (i) (b)], the sequence

M(2)(H)
η−→ M(2)(H1) −→ 〈a2β+k

1 〉 ∩ γ3(H) −→ 1

is exact. Since H is of class two, we have 〈a2β+k

1 〉 ∩ γ3(H) = 1 and so the homo-
morphism η is surjective. By using [5, Proposition 1.1] and [6, Lemma 2.1 (viii)],
we get a2

β+k

1 ∈ Z∗(H) ⊆ Z∗
2(H). We simply note that the homomorphism η is the

monomorphism, by applying Theorem 2.5. As a result,

M(2)(G4/〈d〉) ∼= M(2)(H) ∼= M(2)(H1) ∼= Z2β+k ⊕ Z2β ⊕ Z
(3)
2σ

and

M(2)(G4) ∼= Z2α ⊕ Z2β ⊕ Z
(3)
2σ ,

byTheorem3.3(iv).Now it canbe simplydeduced that |M(2)(G4)|> |M(2)(G4/〈d〉)|.
Theorem 2.5 implies that d /∈ Z∗

2(G4)which is a contradiction since 1 �= d ∈ Z∗
2(G4).

Consequently, Z∗
2(G4) = 1, as required. ��

In what follows, we determine all 2-capable 2-generated 2-groups of class two.

Theorem 4.3 Let G be a 2-generated 2-group of class two. Then, G is 2-capable if
and only if G ∼= G1, G ∼= G2, G ∼= G3 or G ∼= G4.

Proof Let G be 2-capable. Then, G is capable. Theorem 2.6 implies that G ∼= G1,
G ∼= G2,G ∼= G3 orG ∼= G4. The converse holds by Lemma 2.4 and Propositions 4.1
and 4.2 . ��

Corollary 4.4 Let G be a 2-generator 2-group of class two. Then, G is capable if and
only if G is 2-capable.
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