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Abstract

This paper deals with systems consisting of independent and heterogeneous expo-
nential components. Since failures of components may change lifetimes of surviving
components because of load sharing, a linear trend for conditionally proportional
hazard rates is considered. Estimates of parameters, both point and interval esti-
mates, are derived on the basis of observed component failures for s(≥ 2) systems.
Fisher information matrix of the available data is also obtained which can be used
for studying asymptotic behaviour of estimates. The generalized likelihood ratio test
is implemented for testing homogeneity of s systems. Illustrative examples are also
given.
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1 Introduction

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) random variables with

a common distribution function (DF), say F , and abbreviated by X1, · · · , Xn
i.i.d.∼ F .

Denote in magnitude order of X1, · · · , Xn by X1:n ≤ · · · ≤ Xn:n, which are known as
order statistics (OSs). The theory of OSs has been widely studied in literature specially in
system reliability analyses. For example, lifetimes of known r-out-of-n systems coincide
to Xr:n where X1, · · · , Xn stand for component lifetimes; For more information, see
Barlow and Proschan [3] and David and Nagaraja [11] and references therein. In order
to introduce more flexible models for analysing practical systems, various generalizations
of OSs such as fractional order statistics and generalized order statistics have been
proposed. The former is useful for providing more flexible tools and the later is a setting
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to unify similar results (David and Nagaraja [11], p. 21). In this paper, we deal with
another unified concept, called sequential order statistics (SOS). There is also another
motivation in reliability analyses for implementing SOS. Specifically, when component
lifetimes are i.i.d., the OSs are suitable for describing the r-out-of-n system lifetime.
Thus failing a component does not effect the DFs of lifetimes of surviving components.
As motivated by Cramer and Kamps [7], in practice the failure of a component may
result in a higher load on the surviving components and hence causes lifetime distributions
change. This property may be due to load sharing and/or common working environments
and hence dependent component lifetimes. More precisely, suppose that Fj and fj , for
j = 1, · · ·n, denote the common DF and probability density function (PDF) of the
component lifetimes when n−j+1 components are jointly working. Then, the components
begin to work independently at time t = 0 with the common DF F1. When at time x1,
the first component failure occurs, the remaining n−1 components are working with the
(left truncated) common DF F2 at x1. This process continues up to n−r+1 components
with the common DF Fr work until the r-th failure occurs at time xr and hence the whole
system fails. This system is called sequential r-out-of-n system (or dynamic system) and
the system lifetime is then r-th observed component failure time, denoted by X(r). In the
literature, (X(1), · · · , X(r)) is called SOSs. Let x = (x1, . . . , xr) be the observed values
from SOSs (X(1), · · · , X(r)) with DFs (F1, . . . , Fr) and PDFs (f1, . . . , fr) of component
lifetimes. The joint PDF of X(1), · · · , X(r) (r ≤ n) is

L(F1, · · · , Fr;x) =

(
n!

(n− r)!

)
r−1∏
j=1

fj(xj)

(
F̄j(xj)

F̄j+1(xj)

)n−j
 fr(xr)F̄r(xr)

n−r, (1)

where x1 < x2 < · · · < xn and F̄j(xj) = 1−Fj(xj), j = 1, . . . , r. Statistical properties of
SOSs have been studied by Kamps [15, 16], Cramer and Kamps [7, 8], Balakrishnan et
al. [1], Beutner and Kamps [6], Esmailian and Doostparast [12], Bedbur [5], Hashempour
and Doostparast [13] and references therein. In Equation (1), Fj(j = 1, . . . , r) depends
usually on some unknown parameters. Let the number of independent parameters of

Fj be kj . Thus, Equation (1) depends on
r∑

j=1
kj parameters. We consider a simplified

statistical model to reduce the dimension of the parameter space in Equation (1) which
is called proportional hazard rate model.

A large family of models introduced by Cox (1972) focuses directly on the haz-
ard rate function. The simple member of the family is the proportional hazard rate
model. Different kinds of proportional hazard models may be obtained by making dif-
ferent assumptions about the baseline survival function, or equivalently, the baseline
hazard rate function. Let F0(.) be a absolutely continuous DF with a corresponding
PDF f0(.). The hazard rate function is defined by h0(t) = f0(t)/F̄0(t) for t > 0, where
F̄0(t) = 1 − F0(t) is the survival function of the DF F0(.). If X is a member of propor-
tional hazard family with the baseline DF F0(.), then the survival function of X becomes
F̄ (t; θ) = F̄ θ

0 (t), t ∈ S, where θ is the proportional parameter and F0(.) is the baseline
DF and S is the support of the baseline DF. In this case, the hazard rate function of X
is given by h(t; θ) = f(t; θ)/F̄ (t; θ) = θh0(t) for t > 0.

In this paper, we consider the problem of estimating the parameters on the basis of
s (≥ 2) independent SOSs samples under a proposed linear trend conditional propor-
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tional hazard rates (LTCPHR) model, defined by F̄j(t) = F̄ aj
0 (t) for j = 1, · · · , r, where

aj = a × j, a > 0 and F0(t) is the underlying DF. Remember that the hazard rate
function of the DF F defined by h(t) = f(t)/F̄ (t) for t > 0, where f(t) = ∂F (t)/∂t is
the probability density function (PDF) of the DF F (t). Therefore, hj(t) = ajh0(t), for
j = 1, · · · , r, is the proportional hazard rate function of the DF Fj , where h0(t) is hazard
rate function of the baseline DF F0 for all t. The LTCPHR model is a new defined sta-
tistical concept for modelling engineering systems in which components share the system
load. In fact, impact of failing a component on the surviving components are modeled
via hazard rate components. Notice that Fi is the common component distribution func-
tion when n− i+ 1 components are jointly working. The connection between Fi is done
by assuming a proportional hazard rate among them. Hence, it is called conditionally
proportional hazard rate models.
In this paper, we consider the problem of the estimation parameters of the LTCPHR
model with independent multiple SOS samples coming from heterogeneous exponential
populations. Thus, this paper is organized as follows: In Section 2, the maximum like-
lihood estimates (MLEs) of parameters are derived and the generalized likelihood ratio
test (GLRT) is used for testing homogeneity of the parent exponential populations. In
Section 3, we analyse a simulated data set. Finally, some concluding remarks are given
in Section 4.

2 Statistical inference for the LTCPHR model parameters

In this section, we obtain MLEs of LTCPHR model parameters. Also, GLRT is derived
for testing homogeneity of populations. To do these, two scenarios, namely, (i) the
parameter a is known; and (ii) the parameter a is unknown, are considered.

2.1 Maximum likelihood estimation

Suppose that we observed s (≥ 2) independent heterogeneous SOS samples. The available
data may be represented as

x = [[xij ]]i=1,··· ,s,j=1,··· ,r, (2)

where the i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th
system. The likelihood function (LF) of the available data given by (2) is then derived
from (4) as

L(F ;x) =

(
n!

(n− r)!

)s s∏
i=1

r−1∏
j=1

f [i]
j (xij)

(
F̄

[i]
j (xij)

F̄
[i]
j+1(xij)

)n−j
 f [i]

r (xir)F̄
[i]
r (xir)

n−r

 , (3)

where F = {F [i]
j , i = 1, · · · , s, j = 1, · · · , r} and for i = 1, · · · , s, j = 1, · · · , r, F̄j

[i]
(x) =

1 − F
[i]
j (x), F

[i]
j and f

[i]
j denote the survival function, DF and PDF of jth component

lifetime of the i−th dynamic system, respectively. For more details, see Cramer and
Kamps [8, 9] and Hashempour and Doostparast [13]. Suppose that the baseline DF of the
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i-th dynamic system (i = 1, · · · , s) follows the exponential distribution with the mean
σi, i.e.

F0(t) = 1− exp{− t

σi
}, t > 0, σi > 0. (4)

It should be mentioned that the baseline DFs for the considered LTCPHR model for com-
ponent lifetimes are heterogeneous with different scale parameters. Therefore under the

earlier mentioned LTCPHR model in Section 1, we have F̄j
[i]
(xij) = exp{−ajxij/σi} and

fj
[i](xij) = ajσ−1

i exp{−ajxij/σi} for i = 1, · · · , s and j = 1, · · · , r. Then, Equation(3)
yields the LF of the available data as

L(σ1, · · · , σs, a;x) =
(

r!n!

(n− r)!

)s (
a
)rs( s∏

i=1

σi

)−r

exp
{
−

s∑
i=1

r∑
j=1

(xijmj

σi

)}
, (5)

where a > 0, and mj = (n−j+1)ja−(n−j)(j+1)a with convention (n−r)(r+1)a ≡ 0.
For sake of brevity, we assumed that the proportional parameter a are the same among
the s sequential r-out-of-n systems. Following Cramer and Kamps [8] and Hashempour
and Doostparast [13], two cases are considered in sequel: (i) a is known, and (ii) a is
unknown.

Case I: The parameter a is known

Suppose that the parameter a in Equation (5) is known. If σ1 = · · · = σs, the ML
estimate of the common mean of the s baseline exponential populations, say σ0, is derived
by maximizing (5) with respect to σ0 as

σ̂0 =
a

rs

s∑
i=1

r∑
j=1

(n− j + 1)jDij

=
1

rs

s∑
i=1

r∑
j=1

xijmj , (6)

where Dij = xij − xi,j−1, for j = 1, · · · , r, with convention xi0 := 0 for i = 1, · · · , s.
Notice that

∑r
j=1 xijmj =

∑r
j=1 j(n− j + 1)aDij , for i = 1, · · · , s.

If baseline exponential populations are heterogeneous, the (unique) ML estimate of
σi (i = 1, · · · , s) is derived from Equation (5) as

σ̂i =
a

r

r∑
j=1

(n− j + 1)jDij =
1

r

r∑
j=1

xijmj . (7)

Under the LTCPHR with the one-parameter exponential baseline DF, we have

Qi :=

r∑
j=1

(n− j + 1)jaDij ∼ Γ(r, σi), i = 1, · · · , s, (8)
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where Γ(m,n) calls for the gamma distribution with the shape and the scale parameters

m and n, respectively. From Equation (8) and for i = 1, · · · , s, σ̂i ∼ Γ(r, σi/r) , and

then E(σ̂i) = σi and V ar(σ̂i) = σ2
i /r. Notice that the ML estimate σ̂0 in Equation (6) is

the arithmetic mean of the ML estimates σ̂i for the mean populations given by Equation
(7), i.e. σ̂0 =

∑s
i=1 σ̂i/s. So, E(σ̂0) = σ̄ and V ar(σ̂0) = σ2/sr where σ̄ =

∑s
i=1 σi/s and

σ2 =
∑s

i=1 σ
2
i /s.

Case II: The parameter a is unknown

Suppose that the parameter a in Equation (5) is unknown. In this case, calculations are
complicated. The logarithm of LF in Equation (5) can be written as

l(σ1, · · · , σs, a;x) = rs ln a− r
s∑

i=1

lnσi − a
s∑

i=1

r∑
j=1

j(n− j + 1)Dij

σi
. (9)

The ML estimates of the parameters which are shown by ˆ̂σi and â for i = 1, . . . , s, (if
exist) are obtained (numerically) by solving the following likelihood equations:

∂l

∂a
=

rs

a
−

s∑
i=1

r∑
j=1

j(n− j + 1)Dij

σi
= 0, (10)

and

∂l

∂σk
=

a

σ2
k

r∑
j=1

j(n− j + 1)Dkj −
r

σk
= 0, k = 1, . . . , s. (11)

From Equations (10) and (11), we have

â(σ1, . . . , σk−1, σk+1, . . . , σs) =
r(s− 1)

s∑
i=1i̸=k

r∑
j=1

j(n−j+1)Dij

σi

, (12)

and

ˆ̂σk(σ1, . . . , σk−1, σk+1, . . . , σs) =

(s− 1)
r∑

j=1
j(n− j + 1)Dkj

s∑
i=1i̸=k

r∑
j=1

j(n−j+1)Dij

σi

, k = 1, . . . , s. (13)

Equations (12) and (13) cannot be solved analytically. The the matrix of second
derivatives of the likelihood with respect to the parameters is called Hessian matrix
(HM), that is HM = [[(∂2 log(L)/∂θi∂θj)1≤i,j≤s+1]], where θi = σi, (1 ≤ i, j ≤ s) and
θi = a, (i, j = s + 1). For more information, see Khuri [17]. After some algebraic
calculations, we have

HM =

(
B11 B12

B21 B22

)
, (14)
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where

B11 =

{
d

r

σ2
i

−
2a
∑r

k=1 k(n− k + 1)Dij

σ3
i

}
i=1,··· ,s

,

B22 =

{
−sr

a2

}
j=1,··· ,r

,

B12 = BT
21 =

[[∑r
j=1(n− j + 1)Dij

σ2
i

]]
i=1,··· ,s,j=1,··· ,r

,

and {
d
ai} denotes a diagonal matrix with element ai on the main diagonal. The Hes-

sian matrix (14) is not necessary negative definite on the parameter space. Therefore,
one needs to use numerically methods for maximizing the LF (9) with respect to a and
σ1, · · · , σs by using Equations (12) and (13).

2.2 Generalized likelihood ratio test

In this section, we consider the problem of homogeneity testing on the basis of indepen-
dent SOS samples from different exponential populations, i.e.,

H0 : σ1 = · · · = σs v.s H1 : σi ̸= σj ∃i ̸= j. (15)

Case I: The parameter a is known

The GLRT statistic for testing the problem of hypotheses (15) is

Λ1 =
supΩ0

L(σ1, · · · , σs;x)
supΩ L(σ1, · · · , σs;x)

=
s∏

i=1

(
σ̂i
σ̂0

)r

exp
{ s∑

i=1

r∑
j=1

( 1

σ̂i
− 1

σ̂0

)
mjxij

}
, (16)

where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} =: R+s is the whole parameter space and
Ω0 = {(σ1, . . . , σs) : σ1 = · · · = σs, σi > 0, i = 1, · · · , s} denotes the parameter space
under the null hypothesis H0. After some algebraic manipulations, the logarithm of the
GLRT statistic Λ1 given by Equation (16) reduces to

log Λ1 = r

s∑
i=1

log

(
sQi∑s
j=1Qj

)
, (17)

where Qi is defined by Equation (8) and “ log ” stands for the natural logarithm. Then,
the null hypothesis H0 is rejected if

A(Q,a) > c, (18)

where Q = (Q1, · · · , Qs) and

A(Q,a) = −
s∑

i=1

log

(
Qi∑s
j=1Qj

)
.
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The constant c in Equation (18) is obtained subject to the level of the test, say γ. To
derive the constant c in Equation (18), we need the distribution of the vector Q under
the null hypothesis H0 in (15). To do this, we need the following lemma.

Lemma 2.1. (Balakrishnan and Nevzorov [2])
Let Z1, · · · , Zk be independent random variables and Zi ∼ Γ(ai, 1), for i = 1, · · · , k.
Then (U1, · · · , Uk) ∼ D(a1, · · · , ak) where Ui = Zi/

∑k
j=1 Zj , for i = 1, · · · , k. Here,

D(a1, · · · , ak) stands for the Dirichlet distribution with PDF

f(u1, · · · , uk) =
Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

(
k∏

i=1

uai−1
i

)
, 0 ≤ ui ≤ 1,

k∑
i=1

ui = 1.

Let Vi = Qi/
∑s

j=1Qj , for i = 1, · · · , s− 1 and Vs = −
∑s

i=1 log
(
Qi/

∑s
j=1Qj

)
. The

Jacobian transformation is then

J = exp{−vs}/
s−1∏
i=1

vi. (19)

The joint PDF of (V1, · · · , Vs) under the homogeneity hypothesis H0 in (15) is derived
from Equations (8) and (19) and Lemma 2.1 as

fV1,··· ,Vs
(v1, · · · , vs) =

Γ(sr)

Γ(r)s

(
s−1∏
i=1

vr−1
i

)
exp{−(r − 1)vs}∏s−1

i=1 v
r−1
i

exp{−vs}∏s−1
i=1 vi

=
Γ(sr)

Γ(r)s
exp{−rvs}∏s−1

i=1 vi
,

(20)

for vi ≥ 0, 1 ≤ i ≤ s and
∑s−1

i=1 vi + exp{−vs}/
∏s−1

i=1 vi = 1. Therefore, the marginal
PDF of Vs is readily obtained from Equation (20) as

fVs(vs) =

B︷ ︸︸ ︷∫ ∫
· · ·
∫

Γ(sr)

Γ(r)s
exp{−rvs}∏s−1

i=1 vi
dv1 · · · dvs−1, (21)

where B =
{
(v1, · · · , vs−1)|vi ≥ 0,

∑s−1
i=1 vi + exp{−vs}/

∏s−1
i=1 vi = 1

}
. In practice, one

may use numerical methods such as Monte Carlo simulation to derive the threshold c in
the rejection region (18). For more details, see Hashempour [14].

Remark 2.2. It is easy to verify that the distribution family (5) is invariant with respect
to the group of the scale transformations

G = {gd : gd(x) = dx = {dx⋆ij}1≤i≤s,1≤j≤r, d > 0}. (22)

Also, the problem of hypotheses testing (15) remains invariant under G in (22) since
Ḡ(Ω) = Ω and Ḡ(Ω0) = Ω0 where Ω = {(σ1, · · · , σs) : σi > 0, i = 1, · · · , s} = R+s, Ω0 =
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{(σ1, . . . , σs) : σ1 = · · · = σs, σi > 0, i = 1, · · · , s} and Ḡ = ḡd(σ1, · · · , σs) = (dσ1, · · · , dσs)
is the induced group of transformations by the group of transformations G in Equation
(22) on the parameter space Ω. Finding the uniformly most powerful invariant test (if
exists) for the problem (15) remains as an open problem.

From Equation (8), one can see that 2r (σ̂i/σi) ∼ χ2
2r, where χ

2
ν stands for the chi-square

distribution with ν degrees of freedom. So, an equi-tailed confidence interval at level
100γ% for σi (i = 1, · · · , s) is(

2rσ̂i
χ2
2r,(1+γ)/2

,
2rσ̂i

χ2
2r,(1−γ)/2

)
, (23)

where χ2
ν,p calls for the p-th quantile of the χ2

ν-distribution.

Note that the observed Fisher Information (FI), denoted by Ijk(σ̂1, · · · , σ̂s), on the
basis of the available SOSs data (2) is equal to minus of the Hessian matrix (HM) at the
point of MLEs, i.e.

Ijk(σ̂1, · · · , σ̂s) = [[(−∂2 log(L)/∂σi∂σj)1≤i,j≤s]]|σ1=σ̂1,··· ,σs=σ̂s .

It is well known that the unique MLEs follow asymptotically the multivariate normal dis-
tribution with mean vector (σ1, · · · , σs) and the variance-covariance matrix [Ijk(σ̂1, · · · , σ̂s)]−1

(see, e.g., Lehmann and Romano, [18]). Therefore, an approximate equi-tailed 100γ%
confidence interval for σi is

(
σ̂i − z(1−γ)/2

√
σ̂2
i

r
, σ̂i + z(1−γ)/2

√
σ̂2
i

r

)
, (24)

where zγ stands for the γ-quantile of the standard normal distribution.

Case II: The parameter a is unknown

It is easy to verify that the unique ML estimates of the parameters under the null hy-
pothesis H0 are

ˆ̂σ0 =

∑s
i=1

∑r
j=1 xijm̂0,j

rs
=

â0
rs

s∑
i=1

r∑
j=1

(n− j + 1)jDij , (25)

and

â0 =
rs∑s

i=1

∑r
j=1(n− j + 1)jDij

ˆ̂σ0, (26)

where m̂0,j = (n− j+1)jâ0− (n− j)(j+1)â0, with convention â0(r+1) ≡ 0. Therefore,
the GLRT statistic for the hypotheses testing problem (15) is

Λ2 =

r∏
j=1

(
â0
â

)rs s∏
i=1

(
ˆ̂σi
ˆ̂σ0

)r

exp
{ s∑

i=1

r∑
j=1

(m̂j

ˆ̂σi
− m̂0,j

ˆ̂σ0

)
xij

}
, (27)
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where m̂j = (n − j + 1)α̂j − (n − j)α̂j+1. The logarithm of the GLRT statistic Λ2 in
Equation (27) reads

log Λ2 = rs log

(
â0
â

)
+ r

s∑
i=1

log

(
ˆ̂σi
ˆ̂σ0

)
+

s∑
i=1

r∑
j=1

(
m̂j

ˆ̂σi
− m̂0,j

ˆ̂σ0

)
xij . (28)

The null hypothesis H0 rejects if

−2 log Λ2 > c, (29)

where −2 log Λ2 follows asymptotically chi-square distribution. Exact distribution of
the statistic log Λ2 in Equation (28) under the null hypothesis H0 is complicated and
we could not obtained an explicit expression. This remains as an open problem. In
practice, one may use numerical methods such as the Monte Carlo simulation to derive
the threshold c in the rejection region (29). Bedbur [5] obtained the uniformly most
powerful unbiased tests under the conditionally proportional hazard rates model based
on multiple homogeneous SOS samples from a common exponential distribution.

3 An illustrative example

In order to assess the performance of the derived estimates in the preceding sections a sim-
ulation study was conducted. In the case of unknown parameter a, N = 104 multiple SOS
samples were generated for some selected values parameters parameter. For this purpose,
we assume that a = 0.9, 1, 1.1, n = 10, 20, s = 4, r = 4, 6, 15 and (σ1, . . . , σs) = (1, . . . , 1).
Here, Bias and MSE stand for estimated bias and mean squared error of estimators. The
Bias and MSE of the ML estimates of parameters (σ1, . . . , σs) and a are reported in rows
of Table 1 from up to down, respectively.

For n = 10, s = 1, a = 1.1 and r = 4, the equi-tailed confidence intervals at level
95% for unknown parameters σi (i = 1, . . . , n ) in Equation (23) are (0.4570, 3.6768),
(0.4658, 3.7471), (0.4477, 3.6018) and (0.4614, 3.7120), respectively. The length of afore-
mentioned confidence intervals for unknown parameters σi for i = 1, . . . , s are 3.2208,
3.2813, 3.1540 and 3.2506, respectively. Also, from Equation (24), the approximate
95% confidence intervals for the unknown parameters σi for i = 1, . . . , s are given by
(0.0200, 1.9835), (0.0200, 1.9835), (0.0200, 1.9835) and (0.0200, 1.9835), respectively.
The length of approximate confidence intervals for unknown parameters σi for i = 1, . . . , s
are 1.9635, 2.0010, 1.9234 and 1.9823, respectively.
Empirical evidences from Table 1 are summarized as follow;

• The MSEs are decreasing in n and r.

• The Biases are negligible and negative.

• The MSE of the obtained numerical estimator of parameter a is increasing in a.
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Table 1: The MSE and Bias for unknown a.
a = 0.9 a = 1 a = 1.1

n r Bias MSE Bias MSE Bias MSE

10 4 -0.0121 0.0662 -0.0129 0.0541 -0.0114 0.0504
-0.0259 0.0579 -0.0165 0.0533 -0.0151 0.0537
-0.0277 0.0538 -0.0209 0.0466 -0.0224 0.0486
-0.0109 0.0484 -0.0257 0.0449 -0.0164 0.0516
-0.0699 0.0514 -0.0782 0.0668 -0.0900 0.0828

10 6 -0.0095 0.0436 -0.0247 0.0494 -0.0130 0.0448
-0.0247 0.0518 -0.0262 0.0531 -0.0241 0.0506
-0.0245 0.0534 -0.0157 0.0451 -0.0136 0.0469
-0.0202 0.0455 -0.0127 0.0432 -0.0135 0.0506
-0.0706 0.0508 -0.0797 0.0652 -0.0855 0.0757

20 4 -0.0186 0.0560 -0.0184 0.0427 -0.0133 0.0479
-0.0125 0.0514 -0.0172 0.0474 -0.0853 0.0438
-0.0231 0.0481 -0.0198 0.0433 -0.0185 0.0464
-0.0159 0.0401 -0.0154 0.0493 -0.0164 0.0411
-0.0712 0.0500 -0.0808 0.0628 -0.0857 0.0763

20 15 -0.0092 0.0510 -0.0130 0.0412 -0.0247 0.0410
-0.0141 0.0400 -0.0109 0.0461 -0.0065 0.0421
-0.0239 0.0426 -0.0204 0.0420 -0.0024 0.0441
-0.0082 0.0396 -0.0230 0.0430 -0.0116 0.0406
-0.0797 0.0442 -0.0850 0.0537 -0.0961 0.0633

4 Conclusions and further remarks

In this paper, based on independent SOSs coming from heterogeneous exponential pop-
ulations under a linear trend model, the MLEs parameters were obtained on the basis
of multiple SOS samples. The GLR tests were derived for testing homogeneity of the
exponential populations. Some open problems were also mentioned. The results of this
paper may be extended in some directions. For example, derivation of the uniformly
most powerful scale-invariant test (if exist) is worth for further consideration.
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