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Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

ABSTRACT
In this paper, after introducing the concepts of quaternionic dual
group and the quaternionic valued character on locally compact
abelian group G2, the inverse of the quaternionic Fourier transform
(QFT) on locally compact abelian groups is investigated. Due to the
non-commutativity of multiplication of quaternions, there are dif-
ferent types of QFTs right, left and two-sided quaternionic Fourier
transform. We focus on the right-sided quaternionic Fourier trans-
form (RQFT) and two-sided quaternionic Fourier transform (SQFT).
We establish the quaternionic Plancherel and inversion theorems for
the square integrable quaternionic-valued signals on G2, the space
L2

(
G2,H

)
, where G is a locally compact abelian group. Also RQFT on

the space L2
(
G2,H

)
is studied. Furthermore relations between RQFT

and SQFT are discussed. These results provide new proofs for the
classical inverse Fourier transform, Plancherel theorem, etc. in L2(G).
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1. Introduction

In classical Fourier theory, for any f ∈ L1(R,C), the Fourier transform f̂ (ξ) is well-defined
by

f̂ (ξ) =
∫

R

f (x)e−iξx dx, (ξ ∈ R). (1)

There are several different definitions of the classical Fourier transformknown in the litera-
ture, see [1]. Via the inversion formula, the transform can be reversed, so that well-behaved
functions f can be represented as an infinite sum of trigonometric polynomials, where the
limit of which equals f (x) = ∫

R
f̂ (ξ)eiξx dξ , for almost every x ∈ R.

This transform is a very powerful tool in fields such as chemistry, physics, and computer
engineering. For example, complicated sound waves take the form of periodic functions,
and the infinite sums that represent them can be approximated very well by just a couple
of leading Fourier coefficients. Plancharel’s theorem is an application of the Fourier trans-
form that is used to analyze particles in quantum physics. This Fourier mapping and its
characteristics do not stem from properties of the real numbers, but instead from certain
mathematical spaces. The Fourier transform can thus be generalized to sets other than the
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real line, such as the circle, the integers, and in fact any locally compact abelian group (LCA
group) (see [2–4]). Studying the Fourier transform of LCA groups allows us to explain
many of the properties that we take for granted about the everyday Fourier transform of
real numbers.

The previous contributions on inversion theorem and energy-preserved property of
QFTs are developed in [5–7]. The generalization of the classical Fourier analysis into
the quaternionic case is not trivial and lacks some important features due to the non-
commutativity. There has been a lot of interest recently in the quaternionic Fourier
transform. Hartmann compared the two best-known quaternionic Fourier transforms, the
one-sided version and the two-sided version in [7]. The one-sided version and the derived
structure behind it lacks some needed properties, which the two-sided (or sandwiched)
version has.

In light of this, the inversion theorem on L1(G2,H) and Plancherel theorem of QFTs are
investigated thoroughly in this paper, where G is a locally compact abelian group. There-
fore, it is of great interest to progress the function theory of QFT for square integrable
functions with respect to the locally compact abelian groups. To achieve this goal, we want
to adopt the method of approximation to the identity by (good kernels). This method is
commonly used in classical Fourier analysis [2–4].

For the case G = R, the quaternion Fourier transforms (QFTs) play a vital role in the
representation of (hypercomplex) signals [6, 8]. In [9–11], authors used the QFT to pro-
ceed the color image analysis. Bayro-Corrochano et al. in [12] applied the QFT to image
pre-processing and neural computing techniques for speech recognition. The closest gen-
eralizationwould be to use two characters on the same side. This approachwas already used
in [13]. Following [14], the pioneering works of Ell and Sangwine, Hitzer studied the QFTs
(including right-sided QFT and two-sided QFT) applied to quaternion-valued functions
[15] and presented a series of further generalizations for QFTs [16–18]. In 2016, D. Alpay
et al. in [19] studied the quaternion-valued positive definite functions on locally compact
abelian groups, real countably Hilbertian nuclear spaces and on the space Rn, endowed
with the Tychonoff topology.

This paper is organized as follows: Section 2 recalls some basic knowledge of quaternion
algebra. In this section, we introduce the notion of a characters on G2 over H and two-
dimensional quaternionic dual group of G2. Next an essential tool in our study, which is a
generalization of Poisson kernel on a locally compact abelian group is constructed. Thiswill
play a substantial role in this paper. Section 3 investigates the inversion right side quater-
nionic Fourier transform theorem on L2(G2,H) and Plancherel theorem of right-sided
QFT. In Section 4, we establish the relation between RQFT and two-sided QFT (SQFT)
and study some properties of SQFT.

2. Preliminaries

In this section, we provide some basic concepts of quaternions which are essential for our
study.

Quaternions were introduced by W. Hamilton in 1843. We don’t intend to describe the
properties of quaternions and refer the readers to [20–24] for more pertinent details.
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Throughout the paper, let

H = {q : q = a + bi + cj + dk with a, b, c, d ∈ R},
be the Hamiltonian skew field of quaternions, where the elements i, j and k are imaginary
units with Hamilton’s multiplication rules:

ij = −ji = k, ki = −ik = j, jk = −kj, ii = jj = kk = −1.

For every quaternion q = a+ bi+ cj+ dk, the scalar and vector parts of q are defined as
Sc(q) = a and vec(q) = bi + cj + dk, respectively. If Sc(q) = 0, then q is called pure imag-
inary quaternion. The set of all pure imaginary quaternions is denoted by Im(H). The
quaternion conjugate is defined by q̄ := a − bi − cj − dk, and the norm |q| of q defined as
|q| := √

qq̄ = √
a2 + b2 + c2 + d2. Then we have ¯̄q = q, p + q = p + q̄, pq = q̄ p, |pq| =

|p||q|, for all p, q ∈ H. Using the conjugate and norm of q, one can define the inverse of
q ∈ H\{0} by q−1 = q̄/|q|2. The multiplication of two quaternions is noncommutative,
but

Sc
(
pq

) = Sc
(
qp

)
(p, q ∈ H). (2)

Put S := {q ∈ Im(H) : |q| = 1}, which is called the sphere of unit pure imaginary quater-
nion. For anyμ ∈ S, the quaternion has subsetsCμ := {α + μβ ∈ H : α,β ∈ R}. For each
fixed μ ∈ S, the set Cμ is isomorphic to the complex plane. Equivalently, H = ⋃

μ∈S
Cμ.

We denote by the set TCμ
= {q ∈ Cμ : |q| = 1}.

As usual, we denote by Cc(G2,H) the set of all H-valued continuous compact support
functions, and C0(G2,H) the set of all H-valued continuous functions, which vanish of
infinity.

The space Lp(R2,H), 1 ≤ p < ∞ is considered in [7, 15]. By a similar argument, for a
locally compact abelian group G, we may define the space Lp(G2,H).

The space Lp(G2,H), 1 ≤ p < ∞, is the left module of all quaternion-valued measur-
able functions f : G2 → H with the finite norm:

∥∥f ∥∥p =
(∫

G2

∣∣f (x1, x2)
∣∣p d2μG2

(x1, x2)
)1/p

< ∞,

where d2μG2
(x1, x2) = dμGx1dμGx2 represents the Haar measure on G2.

For p = ∞, the space L∞(G2,H) is defined by

L∞ (
G2,H

) = {
f : G2 −→ H : f is measurable and

∥∥f ∥∥∞ < ∞}
,

where ∥∥f ∥∥∞ = ess sup
(x1,x2)∈G2

(∣∣f (x1, x2)
∣∣) .

With a similar argument of [7], we may define a real inner product on L2(G2,H) as:

〈f , g〉 = 1
2

∫
G2

((g(x1, x2)f (x1, x2) + f (x1, x2)g(x1, x2))d2μG2
(x1, x2)

= Sc
∫
G2

f (x1, x2) g (x1, x2)d2μG2
(x1, x2) .
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It is also possible to define an inner product on L2(G2,H) by

(
f , g

) =
∫
G2

f (x1, x2) g (x1, x2)d2μG2
(x1, x2) . (3)

Clearly 〈f , g〉 = Sc(f , g), and the induced norms of 〈·, ·〉, and (·, ·) are equals.
It is not difficult to verify that

(
pf , qg

) = p
(
f , g

)
q̄ (f , g ∈ L2(G2,H), p, q ∈ H). (4)

Now, we can state the following lemma which is important in our work.

Lemma 2.1: A quaternion-valued function f = f0 + if1 + jf2 + kf3 is an element of
Lp(G2,H) if and only if every component fm ∈ Lp(G2,R),m = 0, 1, 2, 3, for 1 ≤ p ≤ ∞.

Proof: First let 1 ≤ p < ∞ and fm ∈ Lp(G2,R), m = 0, 1, 2, 3, we have

∥∥f ∥∥pp =
∫
G2

∣∣f0(x1, x2) + if1(x1, x2) + jf2(x1, x2) + kf3(x1, x2)
∣∣pd2μG2

(x1, x2)

≤
∫
G2

(
∣∣f0(x1, x2)∣∣ + ∣∣f1(x1, x2)∣∣ + ∣∣f2(x1, x2)∣∣ + ∣∣f3(x1, x2)∣∣)pd2μG2

(x1, x2)

≤ 4p
∫
G2

∣∣f0(x1, x2)∣∣p + ∣∣f1(x1, x2)∣∣p + ∣∣f2(x1, x2)∣∣p + ∣∣f3(x1, x2)∣∣pd2μG2
(x1, x2)

= 4p
(∥∥f0∥∥pp + ∥∥f1∥∥pp + ∥∥f2∥∥pp + ∥∥f3∥∥pp) .

Conversely, if f ∈ Lp(G2,H), then from |fn(x1, x2)|p ≤ |f (x1, x2)|p, trivially fm∈Lp(G2,R),
m = 0, 1, 2, 3.

For p = ∞, we can see that |f |2 = ∑3
m=0 |fm|2 and therefore |f | ≤ 4max{|fm| : m = 0,

1, 2, 3} ≤ 4
∑3

m=0 |fm|. Thus ‖f ‖∞ ≤ 4
∑3

m=0 ‖fm‖∞, ‖f ‖1 ≤ 4
∑3

m=0 ‖fm‖1, and ‖f ‖22 ≤
16

∑3
m=0 ‖fm‖22. �

Form Lemma 2.1, we can conclude the following results.

Remark 2.2: For any f , g ∈ Lp(G2,H), 1 ≤ p ≤ ∞, we have

(i) From the fact that any q ∈ H has the form q = x+ yj, for some x, y ∈ C, we may
conclude f = f1 + f2j, where f1, f2 ∈ Lp(G2,C), and ‖f ‖pp ≤ 2p(‖f1‖pp + ‖f1‖pp).

(ii) From (i) we can conclude the Cc(G2,H) is a dense subspace of Lp(G2,H) and
C0(G2,H) is the closure of Cc(G2,H) in the uniform metric.

(iii) Similar to the part (i), for any μ ∈ S, f = f1 + f2μ, for some f1, f2 ∈ Lp(G2,C).
Thus we can consider every f ∈ Lp(G2,H), (1 ≤ p ≤ ∞) as a linear combination
of real (complex) Lp-functions.
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(iv) If f = f0 + f1i + f2j + f3k and g = g0 + g1i + g2j + g3k, then one can see that

〈f , g〉 = Sc
(∫

G2
f0 (x1, x2) g0 (x1, x2) d2μG2

(x1, x2)

+
∫
G2

f1 (x1, x2) g1 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f2 (x1, x2) g2 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f3 (x1, x2) g3 (x1, x2) d2μG2
(x1, x2)

)
.

Therefore, some properties of real (complex) Lp-functions can be naturally extended to
quaternionic Lp-functions.

We refer to the usual text books about locally compact groups [2–4, 25–29]. In the fol-
lowing, we introduce the concept of a quaternionic character on G2. This leads us to a
two-dimensional quaternionic dual group of the group G2.

Definition 2.3: Let G be a locally compact abelian group. For any continuous characters
ωi : G → TCi and ωj : G → TCj define ω : G2 → TQ by

ω (x1, x2) = ωi (x1) ωj (x2) , (x1, x1 ∈ G) (5)

where TQ := {q ∈ H : |q| = 1}. We call ω a H-valued character of G2 and the set of all
H-valued characters of the form ω is denoted by Ĝ2. The set Ĝ2 is called the quaternionic
dual group of G2.

Letting ĜCi and ĜCj be the set of all characters of the form ωi : G → TCi and ωj : G →
TCj , respectively, we get Ĝ2 = ĜCi × ĜCj . But form the fact that Ci ∼= C and Cj ∼= C, we
get ĜCi

∼= Ĝ and ĜCj
∼= Ĝ, where Ĝ is the so called dual of G. Hence we may consider Ĝ2

as a topological group with its natural structure.
The Poisson kernel in the group R, plays a substantial role in quaternionic Fourier

analysis in L2(R2,H) (see [5]). Now we provide some concepts which enable us to define
an appropriate generalization of the Poisson kernel for a general locally compact abelian
group.

Definition 2.4 ([30]): Let G be a second countable LCA group. For a topological auto-
morphism α on G2, we say α−1 is contractive if, for every compact subset K of G2 and any
neighborhood U of the identity, there exists a positive integer N, depending on K and U,
such that α−l(K) ⊆ U for any l > N.

Let α−1
i and α−1

j be contractive with respect to the automorphisms αi on ĜCi , and
the automorphism αj on ĜCj , respectively, and let �1 ∈ L1(ĜCi ,R) ∩ C0(ĜCi ,R), �2 ∈
L1(ĜCj ,R) ∩ C0(ĜCj ,R)). We say � := (�1,�2) is increasing to 1 with respect to the
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(αi,αj), if

lim
l−→∞

�1(α
−l
i (ωi)) = �1 (0) = 1 and lim

l−→∞
�2(α

−l
j

(
ωj

)
) = �2 (0) = 1,

for every ωi ∈ ĜCi , and ωj ∈ ĜCj .
Given l ∈ N and (x1, x2) ∈ G2, set

Pli (x1) :=
∫
ĜCi

�1(α
−l
i (ωi))ωi (x1) dωi

Plj (x2) :=
∫
ĜCj

�2(α
−l
j

(
ωj

)
)ωj (x2) dωj,

and put Pl(x1, x2) = Pli(x1)P
l
j(x2). Then∫

G2
Pli (x1) P

l
j (x2) d

2
μG2

(x1, x2) = �1 (0) �2 (0) = 1.

For example, when G = R (see [5]), one may consider α the automorphism on R

defined by α(ω) = 2ω which implies that α−l(ω) = 2−lω. Also we may consider

�1(ω) = �2(ω) = e−|ω|.

Therefore

�k
(
α−l(ω)

) = e−|2−lω|, �k(0) = 1, k = 1, 2.

Putting εl = 2−l
1 , we see that εl → 0 as l → ∞. Also one may show from definition of Pli

and Plj that

Pli (x1) = 1
π

εl

(ε2l + x1)
, and Plj (x1) = 1

π

εl

(ε2l + x2)
, l > 0.

Thus

Pl (x1, x2) = Pli (x1) P
l
j (x2) = 1

π2
ε2l

(ε2l + x1)(ε2l + x2)
, l > 0,

which is the so-called Poisson kernel. We need the following result of [30] for the group
G2.

Lemma 2.5 ([30]): Let α ∈ Aut(G) be contractive and let K be a closed neighborhood of e.
For every l ∈ N, let Kl :=

⋂{α−k(K), k ≥ l, k ∈ N}. Then

(i) Kl ⊃ Kl+1 and α−l(Kl) = Kl+1 for all l ∈ N;
(ii)

⋃
l∈N

α−l(Kl) = G.

Let us begin with a lemma. As usual, we denote by L(y1,y2)g and R(y1,y2)g the left and
right translation of g on G2 respectively.

Now using Lemma 2.1 and [2, Proposition 2.41], we have the following result.
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Lemma2.6: For given 1 ≤ p < ∞, and g ∈ Lp(G2,H), themap (y1, y2) �→ L(y1,y2)g is con-
tinuous from G2 to Lp(G2,H). Then ‖L(y1,y2)g − g‖p and ‖R(y1,y2)g − g‖p tends to zero as
(y1, y2) −→ (0, 0).

Proof: From Lemma 2.1 and Remark 2.2, every g ∈ Lp(G2,H) is of the form g = g1 + jg2
for some g1, g2 ∈ Lp(G2,C). By using [2, Proposition 2.41], we get the maps (y1, y2) �→
L(y1,y2)gm, (y1, y2) �→ R(y1,y2)gm, m = 1, 2 are continuous from G2 to Lp(G2,C). Further-
more, ‖L(y1,y2)gm − gm‖p and ‖R(y1,y2)gm − gm‖p, m = 1, 2 tends to zero as (y1, y2) −→
(0, 0).

Then by using Lemma 2.1 and Remark 2.2, we get
∥∥∥L(y1,y2)g − g

∥∥∥p
p

=
∥∥∥L(y1,y2)(g1 + jg2) − (g1 + jg2)

∥∥∥p
p

=
∥∥∥(L(y1,y2)g1 − g1) + (L(y1,y2)g2 − g2)j

∥∥∥p
p

≤ 2p
(∥∥∥L(y1,y2)g1 − g1

∥∥∥p
p
+

∥∥∥L(y1,y2)g2 − g2
∥∥∥p
p

)
.

Therefore, ‖L(y1,y2)g − g‖p as (y1, y2) −→ (0, 0), and by a likewise technique for R(y1,y2)f .
�

The next theorem underlies many of the important applications of convolutions of H-
valued functions on G2.

Theorem 2.7: Suppose that � = (�1,�2) : Ĝ2 → R is increasing to 1 with respect to
(αi,αj), then

(i) liml→∞ ‖f ∗ Pl − f ‖p = 0 for every f ∈ Lp(G2,H), p = 1, 2;
(ii) liml→∞ f ∗ Pl(x1, x2) = f (x1, x2) if f ∈ L∞(G2,H) is continuous at point (x1, x2).

Where Pl and � are defined in 2.4.

Proof: Wewill prove assertions (i) and (ii) together. Let f = f1 + jf2 ∈ Lp(G2,H) be given,
for some f1, f2 ∈ Lp(G2,C). By [2, Proposition 2.42], we have

(i) liml→∞ ‖fm ∗ Pl − fm‖p = 0 for every fm ∈ Lp(G2,C),m, p = 1, 2;
(ii) liml→∞ fm ∗ Pl(x1, x2) = fm(x1, x2) if fm ∈ L∞(G2,C) is continuous at point

(x1, x2).

Thus

f ∗ Pl(y1, y2) − f (y1, y2)

=
∫
G2

(f1 + f2j)(y1 + x1, y2 + x2)Pl(−x1,−x2)d2μG2
(x1, x2)
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− (f1 + f2j)(y1, y2)
∫
G2

Pl(x1, x2)d2μG2
(x1, x2)

=
∫
G2
[(R(x1,x2)f1(y1, y2) − f1(y1, y2)) + (R(x1,x2)f2(y1, y2)

− f2(y1, y2))]Pl(x1, x2)jd2μG2
(x1, x2) .

Hence, by Minkowski’ s inequality for integrals∥∥∥f ∗ Pl − f
∥∥∥
p

≤
∫
G2

(∥∥R(x1,x2)f1 − f1
∥∥
p + ∥∥R(x1,x2)f2 − f2

∥∥
p

)
Pl(x1, x2)d2μG2

(x1, x2).

On the other hand

(
∥∥R(x1,x2)f1 − f1

∥∥
p + ∥∥R(x1,x2)f2 − f2

∥∥
p)P

l(x1, x2)

≤ 2(
∥∥f1∥∥p + ∥∥f2∥∥p)Pl(x1, x2) ∈ L1(G2,C).

This together with Lebesgue dominated convergence theorem (see [31]), we get∥∥R(x1,x2)f − f
∥∥
pP

l(x1, x2) −→ 0. �

Lemma 2.8: The space (Lp(G2,H), ‖.‖p), 1 ≤ p ≤ ∞ is a Banach space. In particular, if
{fn} is a Cauchy sequence in Lp(G2,H), 1 ≤ p ≤ ∞,with limit f, then {fn} has a subsequence
which converges pointwise for almost every (x1, x2) ∈ G2 to f.

Proof: Let {fn} be a Cauchy sequence in Lp(G2,H). For each n, {fn} can be written
as fn = fn1 + ifn2 + jfn3 + kfn4 where fnm ∈ Lp(G2,R),m = 1, 2, 3, 4. From Minkowski’s
inequality, we get ‖f + g‖p ≤ ‖f ‖p + ‖g‖p. It follows that each of the sequences fnm,
m = 1, 2, 3, 4, are Cauchy sequences in the Banach space Lp(G2,R). Thus there exist
functions f m, m = 1, 2, 3, 4, in Lp(G2,R) such that limn fnm = fm, m = 1, 2, 3, 4. Apply-
ing the Minkowski’s inequality again it follows that the function f = f1 + if2 + jf3 + kf4
is in Lp(G2,H) and limn fn = f . Therefore, Lp(G2,H) is complete. Thus (Lp(G2,H), ‖.‖p),
1 ≤ p ≤ ∞, is Banach space.

Now, by using Lemma 2.1, and [3, 25, Theorem 3.12 and B4.3, respectively], we have
the rest of the lemma. �

It is not difficult to see that the space L2(G2,H) with the inner product in (3) is a left
H-module Hilbert space.

3. Fourier analysis on G2 over H

3.1. Right-Sided QFT on locally compact abelian groups

The quaternion Fourier transform (QFT) is first defined by Ell to analyze linear time invari-
ant systems of partial differential equations [32]. An excellent introduction to the history
and developments of QFT was given by Brackx et al. [33]. The non-commutativity of the
quaternion multiplication leads to different types of quaternion Fourier transformations



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 9

(see [7]). In this section, we consider the right-sided quaternion Fourier transformation
(RQFT) on locally compact abelian group.

The RQFT of f ∈ L2(R2,H) is considered in [7]. By a similar argument, we may define
the RQFT of f ∈ L2(G2,H), which is a function from Ĝ2 to H:

Fr
(
f
) (

ωi,ωj
) = f̂

(
ωi,ωj

) =
∫
G2

f (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2) .

We are now ready to invert the RQFT. If f ∈ L1(G2,H), then we define

Fr
−1f (x1, x2) = Frf (−x1,−x2) =

∫
Ĝ2

f
(
ωi,ωj

)
ωj (x2) ωi (x1) dωi dωj.

We claim that if f ∈ L1(G2,H) and Frf ∈ L1(Ĝ2,H), then Fr
−1(Frf ) = f .

The following results are related to our study of the inversion theorem and Plancherel’s
theorem of RQFT. We use the integral representations to express the convolutions.

Proposition 3.1: Let f = f1 + f2j ∈ L1(G2,H). Put f̃ (x1, x2) = f (−x1,−x2) and define
g(x1, x2) = (f̃ ∗ f )(x1, x2); then

g (x1, x2) =
∫
G2

f
(
y1, y2

)
f
(
y1 + x1, y2 + x2

)
d2μG2

(
y1, y2

)
,

(f ∗ Pl)(x1, x2) =
[ ∫

Ĝ2
[�1(α

−l
i (ωi))�2(α

−l
j (ωj))][ωi(x1)Fr(f1)(ωi,ωj)ωj (x2)

+ ωi (x1)Fr
(
f2j

) (
ωi,ωj

)
ωj (x2)]

]
d2μ

Ĝ2

(
ωi,ωj

)
and

Sc
((

f ∗ Pl
)

(0, 0)
)

=
∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)
∣∣Fr

(
f
) (

ωi,ωj
)∣∣2d2μ

Ĝ2

(
ωi,ωj

)
,

where �1,�2 and Pl are defined in Definition 2.4.

Proof: We compute

Pl
(
x1 − y1, x2 − y2

)
= Pli

(
x1 − y1

)
Plj

(
x2 − y2

)
=

∫
ĜCi

�1

(
α−l
i (ωi)

)
ωi(x1)ωi(y1)dμĜCi

(ωi)

∫
ĜCj

�2(α
−l
j

(
ωj

)
)ωj(x2)ωj(y2)dμĜCj

(ωj)

=
∫
ĜCi

∫
ĜCj

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi(x1)ωi(y1) ωj(y2)ωj(x2)dμĜCi

(ωi)dμĜCj
(ωj)

=
∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi(x1)ωi(y1) ωj(y2)ωj(x2)d2μ

Ĝ2
(ωi,ωj).
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Now,
(
f ∗ Pl

)
(x1, x2) =

∫
G2

f
(
y1, y2

)
Pl

(
x1 − y1, x2 − y2

)
dμG(y1)dμG(y2)

=
∫
G2

∫
Ĝ2

f
(
y1, y2

)
�1(α

−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi(x1)ωi

(
y1

)
ωj

(
y2

)
ωj(x2)d2μG2 μ

Ĝ2
(ωi,ωj)d2μG2

(
y1, y2

)
=

∫
G2

∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)(f1

(
y1, y2

)
+ f2

(
y1, y2

)
j) ωi(x1)ωi

(
y1

)
ωj

(
y2

)
ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
d2μG2

(
y1, y2

)
=

∫
Ĝ2

∫
G2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi (x1) f1

(
y1, y2

)
ωi

(
y1

)
ωj

(
y2

)
ωj (x2) d2μG2

(
y1, y2

)
d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

∫
G2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi (x1)f2

(
y1, y2

)
jωi

(
y1

)
ωj

(
y2

)
ωj (x2) d2μG2

(
y1, y2

)
d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

(�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)(ωi (x1)Fr

(
f1

) (
ωi,ωj

)
ωj (x2)

+ ωi (x1)Fr
(
f2j

) (
ωi,ωj

)
ωj (x2))d2μ

Ĝ2

(
ωi,ωj

)
.

Note that

g (x1, x2) =
(
f̃ ∗ f

)
(x1, x2)

=
∫
G2

f
(−y1,−y2

)
f
(
x1 − y1, x2 − y2

)
d2μG2

(
y1, y2

)
=

∫
G2

f
(
y1, y2

)
f
(
x1 + y1, x2 + y2

)
d2μG2

(
y1, y2

)
.

Then

Sc
((

f ∗ Pl
)

(0, 0)
)

= Sc(
∫
G2

g
(
y1, y2

)
Pl

(−y1,−y2
)
d2μG2

(
y1, y2

)
)

= Sc
(∫

G2

[∫
G2

f (s1, s2)f
(
s1+y1, s2+y2

)
d2μG2

(s1, s2)
]
Pl

(−y1,−y2
)
d2μG2

(
y1, y2

))

= Sc
(∫

G2

∫
G2

f (s1, s2)f
(
s1 + y1, s2 + y2

)
Pl

(−y1,−y2
)
d2μG2

(s1, s2) d2μG2

(
y1, y2

))

= Sc
(∫

G2

∫
G2

f (s1, s2)f (z1, z2)Pl (s1−z1, s2 − z2) d2μG2
(s1, s2) d2μG2

(z1, z2)
)
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= Sc
(∫

G4

∫
Ĝ2

f (s1, s2)f (z1, z2) d2μG2
(z1, z2)�1(α

−l
i (ωi))�2(α

−l
j

(
ωj

)
)ωi (z1) ωj (z2)

ωj (s2) ωi (s1) d2μG2
(s1, s2) d2μ

Ĝ2

(
ωi,ωj

)
d2μG2

(z1, z2)
)

= Sc
(∫

G4

∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)d2μ

Ĝ2

(
ωi,ωj

)
ωj (s2) ωi (s1) f (s1, s2)f (z1, z2) ωi (z1) ωj (z2)d2μG2

(s1, s2) d2μG2
(z1, z2)

)

=
∫
Ĝ2

∣∣Fr
(
f
) (

ωi,ωj
)∣∣2d2μ

Ĝ2

(
ωi,ωj

)
,

hence

Sc
((

f ∗ Pl
)

(0, 0)
)

=
∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)
∣∣Fr

(
f
) (

ωi,ωj
)∣∣2d2μ

Ĝ2

(
ωi,ωj

)
,

which completes the proof. �

Using Lemmas 2.6 and 2.8, Theorem 2.7, and Proposition 3.1, we give an inversion
theorem of RQFT.

Theorem 3.2 (Inversion of RQFT): If f ∈ L1(G2,H), Frf ∈ L1(Ĝ2,H) and

g (x1, x2) =
∫
Ĝ2

Frf
(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
,

then f (x1, x2) = g(x1, x2) for almost every (x1, x2) ∈ G2.

Proof: Form Proposition 3.1,(
f ∗ Pl

)
(x1, x2)

=
∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)Fr

(
f
) (

ωi,ωj
)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
. (6)

The integrands on the right-hand side of (6) are bounded by |Fr(f )(ωi,ωj)|, for large
enough l. Hence, the right-hand side of (6) converges to g(x1, x2), for every (x1, x2) ∈
G2, by the dominated convergence theorem as l → ∞. So by Theorem 2.7, we get
liml→∞ ‖f ∗ Pl − f ‖p = 0. Thus by Lemmas 2.6, 2.8 we see that f ∗ Pl has a pointwise
convergent subsequence f ∗ Pln converging to f almost every where. Hence f (x1, x2) =
g(x1, x2), for almost every (x1, x2) ∈ G2. �

Corollary 3.3 (Uniqueness of RQFT): If f , g ∈ L1(G2,H) and

Fr
(
f
) (

ωi,ωj
) = Fr

(
g
) (

ωi,ωj
)

for almost every (ωi,ωj) ∈ Ĝ2, then f (x1, x2) = g(x1, x2), for almost every (x1, x2) ∈ G2.
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Now we see that, under suitable conditions, by the inverse right-sided quaternion
Fourier transform (IRQFT), the original signal f can be reconstructed from Frf .

Definition 3.4 (IRQFT): For every f ∈ L1(Ĝ2,H), the inverse right-sided quaternion
Fourier transform of f is defined by

(Fr
−1f

)
(x1, x2) =

∫
Ĝ2

f
(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
.

Remark 3.5: Simply, we can see that the transform Fr is a bounded linear transfor-
mation from L1(G2,H) into L∞(Ĝ2,H) and the transform Fr

−1 is a bounded linear
transformation from L1(Ĝ2,H) and into L∞(G2,H).

We show later, Fr|L1(G2,H)∩L2(G2,H) (respectively, Fr
−1|L1(Ĝ2,H)∩L2(Ĝ2,H)

) can be
extended to L2(G2,H) (respectively, L2(Ĝ2,H)), and as an operator on L2(Ĝ2,H), Fr

−1

is the inversion of Fr.
An important result, the so-called multiplication formula in classical Fourier analy-

sis, can be generalized to RQFT. Before stating the formula, we introduce an auxiliary
transformof f (x1, x2) = f0(x1, x2) + if1(x1, x2) + jf2(x1, x2) + kf3(x1, x2), which is defined
by

βf (x1, x2) := f0(x1, x2) + if1(x1,−x2) + jf2(−x1, x2) + kf3(−x1,−x2).

Then we obtain the following result.

Theorem 3.6 (Modified Multiplication Formula): Suppose that f ∈ L1(G2,H), g ∈
L1(Ĝ2,H), h := βg, Fr := Frf , and Hr(x1, x2) := Fr

−1 h(−x1,−x2), for (x1, x2) ∈ G2;
then∫

Ĝ2
Fr

(
ωi,ωj

)
g(ωi,ωj)d2μ

Ĝ2

(
ωi,ωj

) =
∫
G2

f (x1, x2)Hr (x1, x2)d2μG2
(x1, x2) . (7)

Moreover, if g is in L2(Ĝ2,H), then ‖g‖2 = ‖h‖2.

Proof: Write g = g0 + ig1 + jg2 + kg3, then∫
Ĝ2

ωi(x1) ωj(x2)g
(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

g0
(
ωi,ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

ig1
(
ωi,ωj

)
ωi(x1)ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

jg2
(
ωi,ωj

)
ωi(x1)ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
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+
∫
Ĝ2

kg3
(
ωi,ωj

)
ωi(x1)ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

g0
(
ωi,ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

ig1
(
ωi,−ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

jg2
(−ωi,ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
+

∫
Ĝ2

kg3
(−ωi,−ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

βg
(
ωi,ωj

)
ωi(x1) ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

h
(
ωi,ωj

)
ωi(x1) ωj(x2)d2μĜ2

(
ωi,ωj

)
=

∫
Ĝ2

h
(
ωi,ωj

)
ωi(−x1)ωj(−x2)d2μ

Ĝ2

(
ωi,ωj

)
= Hr (x1, x2) .

Applying Fubini’s theorem, we get∫
Ĝ2

Fr(f )
(
ωi,ωj

)
g(ωi,ωj)d2μ

Ĝ2

(
ωi,ωj

)
=

∫
Ĝ2

(∫
G2

f (x1, x2)ωi(x1) ωj(x2)d2μG2
(x1, x2)

)
g
(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
=

∫
G2

f (x1, x2)
(∫

Ĝ2
ωi(x1) ωj(x2)g

(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

))
d2μG2

(x1, x2)

=
∫
G2

f (x1, x2)Hr (x1, x2)d2μG2
(x1, x2) .

If g ∈ L2(Ĝ2,H), then it is easy to verify that ‖g‖2 = ‖h‖2 by the definition of β . �

Remark 3.7: The multiplication formula of complex Fourier transform has the form∫
Ĝ2

Fs
(
f
) (

ωi,ωj
)Fs

(
g
) (

ωi,ωj
)
d2μ

Ĝ2

(
ωi,ωj

) =
∫
G2

f (x1, x2)g (x1, x2)d2μG2
(x1, x2) .

But when f ∈ L1(G2,H) and g ∈ L1(Ĝ2,H), this standard formula is not valid for RQFT
of integrable functions. Using the auxiliary transform β , we may obtain an analogous
formula (7) for quaternion-valued integrable functions.

3.2. The Plancherel theorem of RQFT

Based on the complex version of the Plancherel theorem, we are going to show that if
f ∈ L1(G2,H) ∩ L2(G2,H), then it turns out that f̂ ∈ L2(Ĝ2,H) and ‖f̂ ‖2 = ‖f ‖2, where f̂
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is the RFT of f. Moreover, this isometry of L1(G2,H) ∩ L2(G2,H) into L2(G2,H) extends
to an isometric of L2(G2,H) onto L2(G2,H), and this extension defines the Fourier trans-
form of every f ∈ L2(G2,H). The convolution theorem plays a vital role in proving the
Plancherel theorem. However, the classical convolution theorem no longer holds for the
QFT. The Plancherel theorem of QFT was discussed in recent research papers (see [5, 7])
in the caseG = R. We give a restatement of the Plancherel theorem here, since the prereq-
uisites for setting up of the theorem may not be put forward, so clearly in recent research
papers. It is probably worth pointing out that Proposition 3.2 plays a key role in our proof.

Theorem 3.8: If f ∈ L1(G2,H) ∩ L2(G2,H), thenFrf ∈ L2(Ĝ2,H) and Parseval’s identity
‖Frf ‖22 = ‖f ‖22 holds.

Proof: We fix f ∈ L1(G2,H) ∩ L2(G2,H). Put f̃ (x1, x2) := f (−x1,−x2) and define
g(x1, x2) = (f̃ ∗ f )(x1, x2). Trivially

g (x1, x2) =
∫
G2

f
(
y1, y2

)
f
(
x1 + y1, x2 + y2

)
d2μG2

(
y1, y2

)
.

Since by Lemma 2.5 (x1, x2) �→ L(−x1,−x2)f is a continuous mapping of G2 into L2(G2,H)

and by the continuity of the inner product, we see that g(x1, x2) is a continuous function.
The function g is bounded by the Cauchy–Schwarz inequality;

∣∣g (x1, x2)
∣∣ ≤

∥∥∥L(−x1,−x2)f
∥∥∥
2

∥∥f ∥∥2 = ∥∥f ∥∥22.
Furthermore, g ∈ L1(G2,H), since f ∈ L1(G2,H) and f̂ ∈ L1(Ĝ2,H). Moreover g is con-
tinuous and bounded and Lemma 2.8 shows that

lim
l→∞

Sc
((

g ∗ pl
)

(0, 0)
)

= Sc
(
g (0, 0)

) = ∥∥f ∥∥22.
On the other hand, since g ∈ L1(G2,H), by Proposition 3.1 we have

Sc
((

g ∗ Pl
)

(0, 0)
)

=
∫
Ĝ2

�1(α
−l
i (ωi))�2(α

−l
j

(
ωj

)
)
∣∣Fr

(
f
) (

ωi,ωj
)∣∣2d2μ

Ĝ2

(
ωi,ωj

)
.

Since 0 ≤ �1(α
−l
i (ωi))�2(α

−l
j (ωj))|Fr(f )(ωi,ωj)|2 increases to |Fr(f )(ωi,ωj)|2 as l →

∞, the dominated convergence theorem gives

lim
l → ∞

Sc
((

g ∗ Pl
)

(0, 0)
)

=
∫
Ĝ2

∣∣Fr
(
f
) (

ωi,ωj
)∣∣2d2μ

Ĝ2

(
ωi,ωj

) = ∥∥Frf
∥∥2
2.

Therefore, Frf ∈ L2(Ĝ2,H) and ‖Frf ‖22 = ‖f ‖22. �

By Theorem 3.8, Fr|L1(G2,H)∩L2(G2,H) is an isometry of L1(G2,H) ∩ L2(G2,H) into
L2(Ĝ2,H). Since L1(G2,H) ∩ L2(G2,H) is a dense subset of L2(G2,H), therefore, there
exists a unique bounded extension, say	r, ofFr|L1(G2,H)∩L2(G2,H) to all of L2(G2,H). If f ∈
L2(G2,H) and Fr = 	rf is defined by the L2-limit of the sequence {Frfl}l∈N, where {fl}l∈N

is any sequence in L1(G2,H) ∩ L2(G2,H) converging to f in the L2-norm. If fl(x1, x2) =
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f (x1, x2)χ⋃
n=1l α

−n(K0)(x1, x2), where K0 is a compact symmetric neighborhood of identity
in G2 and α is as in Lemma 2.4, then

Fr
(
ωi,ωj

) = lim
l →∞

∫
⋃l

n=1α
−n(K0)

f (x1, x2) ωi(x1) ωj(x2)d2μG2
(x1, x2),

where f = liml→∞ fl means ‖f − fl‖2 → 0 as l → ∞.
We call Fr = 	rf the RQFT from L2(G2,H) into L2(Ĝ2,H).The multiplication for-

mula (7) easily extends to L2(Ĝ2,H). The left H-linear operator 	r on L2(Ĝ2,H) is an
isometry. So 	r is a one-to-one mapping. Moreover, we can show that 	r is onto.

Theorem 3.9: The RQFT, 	r, is a unitary operator from L2(G2,H) onto L2(Ĝ2,H).

Proof: Firstly, we show that the range of 	r, denoted by R(	r), is a closed sub-
space of L2(Ĝ2,H). Let Frl := 	r(fl), l ∈ N, be a sequence in R(	r) converging to F in
L2-norm sense. The isometric property shows that 	r is continuous and {fl}l∈N

is also a
Cauchy sequence. The completeness of L2(G2,H) implies that {fl}l∈N

converges to some
f ∈ L2(G2,H), and the continuity of 	r shows that

	rf = lim
l→∞

	r
(
fl
) = F.

If R(	r) is not all of L2(Ĝ2,H), as every closed subspace of the Hilbert space L2(G2,H) has
an orthogonal complement, we could find a function u such that

∫
Ĝ2

	r(f )
(
ωi,ωj

)
u(ωi,ωj)d2μ

Ĝ2

(
ωi,ωj

) = 0

for all f ∈ L1(G2,H) and ‖u‖2 �= 0. Let g = u, h = βg; then by multiplication formula,

∫
Ĝ2

Fr
(
ωi,ωj

)
g(ωi,ωj)d2μ

Ĝ2

(
ωi,ωj

) =
∫
G2

f (x1, x2)Hr (x1, x2)d2μG2
(x1, x2) = 0

for all f ∈ L2(G2,H) ∩ L2(G2,H). Pick f = Hr, this implies thatHr(x1, x2) = 0 for almost
every (x1, x2) ∈ G2, contradicting the fact that ‖Hr‖2 = ‖h‖2 = ‖g‖2 = ‖u‖2 �= 0. �

Next result shows that the mapping 	r is a Hilbert space isomorphism of L2(Ĝ2,H),
that is, preserving inner product or so-called the Parseval theorem.

Theorem 3.10: Let f , g ∈ L2(G2,H) and Fr = 	rf , �r = 	rg. Then

∫
G2

f (x1, x2) g (x1, x2)d2μG2
(x1, x2) =

∫
Ĝ2

Fr
(
ωi,ωj

)
�r

(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
.
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Proof: Let

p0 + ip1 + jp2 + kp3 =
∫
G2

f (x1, x2)g (x1, x2)d2μG2
(x1, x2)

and

q0 + iq1 + jq2 + kq3 =
∫
Ĝ2

Frf
(
ωi,ωj

)
�r

(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
.

From the Parseval’s identity, we have
∥∥f + g

∥∥2
2 = ∥∥f ∥∥22 + ∥∥g∥∥22 + 2p0 = ‖Fr + �r‖22 = ‖Fr‖22 + ‖�r‖22 + 2q0.

Thus p0 = q0. By using properties of L2-norm and applying Parseval’s identity to the equal-
ities ‖f + ig‖22 = ‖Fr + i�r‖22, ‖f + jg‖22 = ‖Fr + j�r‖22 and ‖f + kg‖22 = ‖Fr + k�r‖22,
respectively, we can get pm = qm, (m = 1, 2, 3), which completes the proof. �

Theorem 3.11: The inverse f = 	r
−1Fr is the L2-limit of the sequence {Fr

−1Frl}l∈N
,where

{Frl}l∈N
is any sequence in L1(Ĝ2,H) ∩ L2(Ĝ2,H) converging to Fr in the L2(Ĝ2,H) norm.

If Frl = Frχ⋃l
n=1 α−l(K0)

, where K0 is a compact neighborhood of identity in Ĝ2 and α is an

automorphism in Ĝ2, then

f (x1, x2) = lim
l→∞

∫
⋃l

n=1 α−n(K0)
Fr

(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
.

In particular, if Fr ∈ L1(Ĝ2,H) ∩ L2(Ĝ2,H), then

f (x1, x2) =
∫
Ĝ2

Fr
(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
.

Proof: The quaternionic Riesz representation theorem (see [22]) guarantees that there
exists a unique operator 	∗

r ∈ B(L2(Ĝ2,H), L2(G2,H)), which is called the adjoint of 	r,
such that for all f ∈ L2(G2,H) and g ∈ L2(Ĝ2,H), (	rf , g) = (f ,	∗

r g). Since 	r is uni-
tary, then 	r

−1 = 	∗
r . For any fixed Fr ∈ L2(Ĝ2,H), let {Frl}l∈N

be an arbitrary sequence
in L1(Ĝ2,H) ∩ L2(Ĝ2,H) converging to Fr in the L2(Ĝ2,H)norm; then

(g,	∗
r Fr) = (�r, Fr) = lim

l→∞
(
�r, Frl

)
= lim

l→∞

∫
Ĝ2

( ∫
Ĝ2

g
(
ωi,ωj

)
ωi (x1) ωj (x2)d2μG2

(
ωi,ωj

) )
Frl

(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
= lim

l→∞

∫
Ĝ2

g
(
ωi,ωj

) ( ∫
Ĝ2

Frl
(
ωi,ωj

)
ωi (x1) ωj (x2)d2μ

Ĝ2

(
ωi,ωj

) )
d2μ

Ĝ2

(
ωi,ωj

)
= lim

l→∞
〈
g,Fr

−1Frl
〉 =

〈
g, lim

l→∞
Fr

−1Frl

〉
.

For all g ∈ L1(Ĝ2,H) ∩ L2(Ĝ2,H). Thus f = 	r
−1Fr = 	∗

r Fr = liml→∞ Fr
−1Frl .
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In particular, if Fr ∈ L1(Ĝ2,H) ∩ L2(Ĝ2,H), then

f (x1, x2) =
∫
Ĝ2

Fr
(
ωi,ωj

)
ωj (x2) ωi (x1) d2μ

Ĝ2

(
ωi,ωj

)
,

which completes the proof. �

4. The two-sided quaternion Fourier transform on locally compact abelian
group

In this section, based on the proof of the inversion formula for right-sided quaternionic
Fourier transform, we are going to prove the inversion formula for two-sided (sandwich)
quaternion Fourier transform (SQFT).

4.1. The two-sided quaternion Fourier transform in L2(G2,H)

We have seen that the right-sided quaternionic Fourier transform lacks some needed
properties. Therefore we are going to sandwich the function in between the two Fourier
characters, in order to obtain some more symmetric features. The two-sided quaternionic
Fourier transform (SQFT) of f ∈ L2(R2,H) is considered in [5, 7, 10, 14, 32, 34]. By a
similar argument, we may define two-sided quaternionic Fourier transform (SQFT) of
f ∈ L2(G2,H), which is a function from Ĝ2 to H as follows:

Fs
(
f
) (

ωi,ωj
) =

∫
G2

ωi(x1) f (x1, x2) ωj(x2) d2μG2
(x1, x2) .

Unlike the RQFT, SQFT is not a leftH-linear operator. But SQFT is leftCi-linear and right
Cj-linear. Moreover, SQFT could establish relationship with RQFT through the following
transform.

Definition 4.1: For any function f (x1, x2) = f0(x1, x2) + if1(x1, x2) + jf 2(x1, x2)
+ kf3(x1, x2), we define the transformW of f by

W f (x1, x2) := f0 (x1, x2) + if1(x1, x2) + jf 2 (−x1, x2) + kf3 (−x1, x2) .

One can simply see that the transform W is a bijection mapping on Lp(G2,H), p = 1, 2.
So the inverse ofW can be defined andW−1 is actually equal toW itself.

Proposition 4.2: Let f , g ∈ Lp(G2,H), p = 1, 2. Then the following assertions hold:

(i) The transformW is a left Ci-linear mapping on Lp(G2,H).
(ii) If f ∈ Lp(G2,H), then

Fsf = Fr(W f ). (8)

Moreover, if f is Ci-valued or f is even with respect to first variable, then Fsf = Frf .
(iii) If f , g ∈ L2(G2,H), then〈W f ,Wg

〉 = 〈
f , g

〉
, Sc

(
i
(
f , g

)) = Sc(i
(W f ,Wg

)
).

In particular ‖f ‖2 = ‖W f ‖2.
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Proof: (i) From the definition ofW , we get

W (
if

)
(x1, x2) = if0 (x1, x2) + iif1(x1, x2) + ijf 2 (−x1, x2) + ikf3 (−x1, x2)

= i
(
f0 (x1, x2) + if1(x1, x2) + jf 2 (−x1, x2) + kf3 (−x1, x2)

)
= iW (

f
)
(x1, x2) ,

thenW is a Ci-linear transform.
To prove (ii), let h := W f . Then

Fs
(
f
) (

ωi,ωj
) =

∫
G2

ωi(x1) f (x1, x2) ωj(x2) d2μG2
(x1, x2)

=
∫
G2

f0 (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2)

+
∫
G2

if1 (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2)

+
∫
G2

j f2 (x1, x2) ωi(x1)ωj(x2) d2μG2
(x1, x2)

+
∫
G2

k f3 (x1, x2) ωi(x1)ωj(x2) d2μG2
(x1, x2)

=
∫
G2

f0 (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2)

+
∫
G2

if1 (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2)

+
∫
G2

j f2 (−x1, x2) ωi (x1) ωj(x2) d2μG2
(x1, x2)

+
∫
G2

k f3 (−x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2)

=
∫
G2

h (x1, x2) ωi(x1) ωj(x2) d2μG2
(x1, x2) = Frh

(
ωi,ωj

)
.

If f is Ci-valued or f is an even function with respect to first variable, then W f = f . It
follows that Fsf = Fr(W f ).

Now we prove (ii). If f , g ∈ L2(G2,H), then

〈W f ,Wg
〉 = Sc

( ∫
G2

f0 (x1, x2) g0 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f1 (x1, x2) g1 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f2 (−x1, x2) g2 (−x1, x2) d2μG2
(x1, x2)

+
∫
G2

f3 (−x1, x2) g3 (−x1, x2) d2μG2
(x1, x2)

)



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 19

= Sc
( ∫

G2
f0 (x1, x2) g0 (x1, x2) d2μG2

(x1, x2)

+
∫
G2

f1 (x1, x2) g1 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f2 (x1, x2) g2 (x1, x2) d2μG2
(x1, x2)

+
∫
G2

f3 (x1, x2) g3 (x1, x2) d2μG2
(x1, x2)

)
= 〈

f , g
〉
.

SinceW is left Ci-linear, then

Sc
(
i
∫
G2

f (x1, x2) g (x1, x2) d2μG2
(x1, x2)

)

= Sc
(∫

G2
if (x1, x2) g (x1, x2) d2μG2

(x1, x2)
)

= Sc
(∫

G2
W(if ) (x1, x2)W(g) (x1, x2) d2μG2

(x1, x2)
)

= Sc(i
((W f ,Wg

))
.

Finally ∥∥W f
∥∥2
2 = ∥∥f0∥∥22+ ∥∥f1∥∥22+ ∥∥f2∥∥22+ ∥∥f3∥∥22 = ∥∥f ∥∥22,

which completes the proof. �

Theorem 4.3 (Inversion of SQFT): If f ∈ L1(G2,H), Fsf ∈ L1(Ĝ2,H) and

g (x1, x2) =
∫
Ĝ2

ωi(x1)Fsf
(
ωi,ωj

)
ωj(x2)d2μĜ2

(
ωi,ωj

)
, (9)

then f (x1, x2) = g(x1, x2) for almost every (x1, x2) ∈ G2.

Proof: By Proposition 4.2 (ii), we have Fsf = Fr(W f ). Let h := Fr
−1(Fsf ), then by

Theorem 3.2,

h (x1, x2) = Fr
−1(FrW f ) (x1, x2) = (W f ) (x1, x2)

for almost every (x1, x2) ∈ G2. To prove f (x1, x2) = g(x1, x2), for almost every (x1, x2) ∈
G2, it is enough to verifyWg = h. Note that

h (x1, x2) =
∫
Ĝ2

Fsf
(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
.

From (9), we can see that Sc(h(x1, x2)) = Sc(g(x1, x2)).



20 M. J. SAADAN ET AL.

Since

h (x1, x2) j =
∫
Ĝ2

Fsf
(
ωi,ωj

)
ωj(x2)ωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
j

=
∫
Ĝ2

Fsf
(
ωi,ωj

)
ωj(x2)jωi(x1)d2μ

Ĝ2

(
ωi,ωj

)
,

then

Sc
(
h (x1, x2) j

) = Sc
( ∫

Ĝ2
Fsf

(
ωi,ωj

)
ωj(x2)jωi (x1)d2μ

Ĝ2

(
ωi,ωj

) )

= Sc
( ∫

Ĝ2
ωi (x1)Fsf

(
ωi,ωj

)
ωj(x2)jd2μ

Ĝ2

(
ωi,ωj

) )
= Sc

(
g (−x1, x2) j

)
.

Similarly we have

Sc (h (x1, x2) i) = Sc(g (x1, x2) i) and Sc (h (x1, x2) k) = Sc
(
g (−x1, x2) k

)
.

Hence we conclude thatWg = h. �

So we can define the inverse two-sided quaternion Fourier transform by (9) or equiva-
lently byW−1Fr

−1Fs.

Definition 4.4 (ISQFT): For every f ∈ L1(G2,H), the inverse two-sided quaternion
Fourier transform of Fs is defined by

(Fs
−1f

)
(x1, x2) =

∫
Ĝ2

ωi(x1)f
(
i,ωj

)
ωj(x2)d2μ

Ĝ2

(
ωi,ωj

)
.

4.2. The Plancherel theorem of SQFT

In Section 3.2, we extended Fr|L1∩L2 to L2(G2,H). The RQFT on L2(G2,H) hasmore sym-
metry than RQFT in L1(G2,H). The relation Fsf = Fr(W f ) drives us to extend Fs|L1∩L2
to L2(G2,H).

Definition 4.5: For every f ∈ L2(G2,H), the SQFT of 	sf is defined by

	sf := 	r(W f ). (10)

In fact, we can define 	s starting from the original definition of Fs and then taking
L2- norm limit. Equation (10) gives us a different but actually equivalent form of 	s.

Theorem 4.6: Suppose that f ∈ L2(G2,H), and g ∈ L2(Ĝ2,H). Then the assertions hold:

(i) TheSQFT	sf defined by (10) is equal to the L2-limit of the sequence {Fsfl}l, where
{fl}l is any sequence in L1(G2,H) ∩ L2(G2,H) converging to f in the L2-norm. If f ∈
L1(G2,H) ∩ L2(G2,H), then 	sf = Fsf .
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(ii) The transform 	s is a bijection on L2(Ĝ2,H) and 	s
−1g = W−1	r

−1g. Fur-
thermore, 	s

−1g is equal to the L2-limit of the sequence {Fq
−1gl}l, where {gl}l

is any sequence in L1(Ĝ2,H) ∩ L2(Ĝ2,H) converging to g in the L2-norm. If g ∈
L1(Ĝ2,H) ∩ L2(Ĝ2,H), then

	s
−1g = Fs

−1g.

Proof: The part (i) is a consequence of (10) and the definition of 	r. The part (ii) is a
consequence of (10) and Theorem 3.11. �

As an immediate consequence of Theorems 3.10 and 3.11, we present the following
result.

Theorem 4.7: If f , g ∈ L2(G2,H), then 〈	sf , g〉 = 〈W f ,	r
−1g〉.

Having defined the SQFT for functions in L2(Ĝ2,H), we obtain the Parseval’s identity.

Theorem 4.8: Suppose that f , g ∈ L2(G2,H), Fs = 	sf , and �s = 	sg; then

‖Fs‖2 = ∥∥f ∥∥2.
Furthermore if

p0 + ip1 + jp2 + kp3 =
∫
G2

f (x1, x2)g (x1, x2)d2μG2
(x1, x2)

and

q0 + iq1 + jq2 + kq3 =
∫
Ĝ2

Fsf
(
ωi,ωj

)
�s

(
ωi,ωj

)
d2μ

Ĝ2

(
ωi,ωj

)
,

then pm = qm, (m = 0, 1). Moreover, if both f and g are Ci-valued or even with respect to
first variable, then pm = qm (m = 0, 1, 2, 3).

Proof: Firstly, we show that the Parseval’s identity of SQFT holds. Applying Parseval’s
identity of RQFT and Proposition 4.2 (iii), we have

‖Fs‖22 = 〈
	sf ,	sf

〉 = 〈
	s(W f ),	s(W f )

〉 = 〈W f ,W f
〉 = ∥∥W f

∥∥2
2 = ∥∥f ∥∥22.

By using Parseval’s identity of SQFT to ‖f + g‖22 = ‖Fs + �s‖22, ‖f + ig‖22 = ‖Fs + i �s‖22
respectively, we get pm = qm(m = 0, 1). If both f and g are Ci-valued or even with respect
to the first variable, then	sf = 	rf and	sg = 	rg; therefore 〈	sf ,	sg〉 = 〈	rf ,	rg〉 =
〈f , g〉, that is, pm = qm(m = 0, 1, 2, 3). �
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5. Discussions and Conclusion

Due to the non-commutativity of multiplication of quaternions, there are at least eight
types of QFTs and we only consider two typical types of them. How about the rest of
QFTs?

(i) The left-sided QFT (LQFT) ωi(x1) ωj(x2)f (., .) follows a similar pattern to RQFT,
with the kernel moving to the left-hand side. As left-sided QFT is right H-linear,
if we change the definition of inner product in L2(G2,H) to be 〈f , g〉L2(G2,H) =∫
G2 f (x1, x2)g(x1, x2)d2μG2

(x1, x2). Then the results of RQFT still hold for the LQFT
case.

(ii) If i and j are substituted into μ1and μ2, respectively, where μ1 and μ2 are any two
perpendicular unit pure imaginary quaternions, all of above results still hold.

(iii) For a locally compact abelian group G, we may consider L2(G,C) as a C-subspace
of L2(G2,H), by the mapping f �−→ fH, where fH(x, y) = f (x), f ∈ L2(G,C). If f̂
is the classical Fourier transform of f, then f̂ (ω) = Fr(fH)(ω, 1). Therefore based
on the proof of inverse right quaternionic Fourier transform, we may prove the
classical inverse Fourier transform, Plancherel theorem and other properties. Our
technique is different and more visible from the classical one.
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