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Abstract

In this note, it is shown that if (f;, /), € L,(R?) x L,(R) is a Schauder frame for a closed subspace X of L,(R?), then
X embeds almost isometrically into /,. Also, the same conclusion holds, if for f € Lp(le), the translations f by {x; : x; €

RY} is a bounded minimal system for X. A basis (frame) for the Banach space L,0, 1]2, 1 <p< oo is constructed.
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1 Introduction

Frames are generalizations of orthonormal bases in Hilbert
spaces. In 1952, Duffin and Schaffer presented some problems
in non-harmonic Fourier series, and frame for Hilbert spaces.
The main property of frames which makes them useful is their
redundancy. Many properties of frames make them useful in
various applications in mathematics, science and engineering.
For a conclusive and comprehensive survey on various types
of frames, one may refer to Casazza (2000), Hardin (1981) and
the references therein. In 1991, Grocheing introduced a more
general concept of frame for Banach spaces called Banach
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frame. Schauder frames for Banach spaces were introduced by
Han and Larson (2000) and were further studied in Kaushik
et al. (2013), Liu (2009), Liu and Zheng (2010), Vashisht
(2012). In 1999, Casazza et al. (1999), presented various
definitions of frames for Banach spaces including that of
Schauder frames. In 2010, Liu and Zheng gave a characteri-
zation of Schauder frames which are close to the Schauder
bases, which generalized some result based on Liu and Zheng
(2010).

On the other hand, the isometry theory of Banach spaces
was born and developed in connection with other areas of the
Banach spaces theory. The important goal of this direction is
to generalize the isometric theory to other classes of spaces the
extension method for L,-isometries discovered in the 70s by
Plotkin (1969, 1970, 1971, 1972, 1976) and independently, by
Rudin (1976) and Hardin (1981). The problem of how to
check whether a given Banach space is isometric to a subspace
of L, was posed by Levy (1937). A well-known fact is that a
Banach space embeds isometrically in a Hilbert space if and
only if its norm satisfies the Parallelogram law (Fréchet 1935;
Jordan and Von-Neumann 1935). It is worthwhile to note that
a Hilbert space cannot be isomorphic to a subspace of /, when
p # 2 (Lindenstrauss and Tzafriri 1977).

In this paper, we show that if (f;,g;)°, € L,(RY) x
L,(R?) is a Schauder frame for the closed subspace X of
L,(R?), then X embeds almost isometrically into Z,. The
same conclusion holds if f € L,(R?), the set {L :x €

R} is a bounded minimal system for X.

52, €\ Springer
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2 Preliminaries and Notation

Let X be a Banach space and X* be its topological dual space.
Asequence {x, },~, C Xis called a Schauder basis of X if for
every x € X there is a unique sequence of scalars {a,}, -,
such that x = > 7| a,x,. A sequence {x,},, which is a
Schauder basis of its closed linear span is called a basic
sequence. It is known that {x, } ;~ | is a Schauder basis if and
only if span{x, }~, is dense in X, and there exists a constant
Csuch that for all m,n € N withm<n, and all {a;}}_, C R,
|00 aixi]| < C|| Y-, aixi]|. The smallest such C is called
the basic constant of {x,},~ . (See more details in Johnson
and Lindenstrauss (2001), Lindenstrauss and Tzafriri (1977),
Odell et al. (2011), Sari (2003)). A basis is called a monotone
basis if the basic constant is 1.

A Schauder frame or simply a frame for a Banach space
X is a sequence (x,,x%)>~, C X x X* such that for all
x€X, x=> 1 x:(x)x,. Note that any basis for X is a
frame for X, and nmoreover in this case,
sup{|| >0, xF(x)x;]l,n € N, ||x]| = 1} <oo, is known as
the frame constant.

3 Main Results

We start with the definition of a uniformly discrete set.

A set {x;:i €I} CR?is called uniformly discrete if
inf{|x; — x;| : i #j,i,j € N} > 0, in which |.| denotes the
usual distance in R?. Now, let {x;:i€ N} CRY be a
uniformly ~discrete set and f € L,(RY), the set
{L.f :i € N}, is called the sequences of uniformly dis-
crete of translate of f, in which L.f(x) = f(x — x;).

Lemma 1 If {x;} CR?
f € Li(R?) then

S g plly < 1L
i—1

is a uniformly discrete set and

Proof By using the invariant property of the Lebesgue
measure on R?, we get,

o0 o0
OIS Oy AT
i=1 i=1 )

= x)|dx
> / o 00

- /U?C1X[+[0‘l]d V(x)|de /[R{'I lf(x>|dx - ”f”l
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In the following proposition, we show that left transla-
tions of f € L,(R?) N L;(RY) by a uniformly discrete set
{x;} € R? is not a frame for L,(R?).

Proposition 1 Let f € L,(R?) N L;(RY), where 1<p<oo
and {x;} C R? be a uniformly discrete set and {L.f}°, be
the set of translates of f by {x;}. Then, there is no sequence
{8}, C L(R?), such that (Lyf,g:), is a frame for

L,(RY), where q is the conjugate exponent of p.

Proof Assume that (L.f,g)>, C L,(R?) x L,(RY) is a
frame. That is for any g GLP([R ), >0, (8, &)Lyf con-
verges to g in L,(R?).

So lim;— [|(g, &) Lufl, = 0. Now, using the fact

IZ:f 1l = lFll,» we have

This implies that g; — 0 in the w*-topology, thus {g;} -, is
bounded.

Put K =sup|lgil,, choose ng€N such that,
> ot ILef 1jg 1y 1y < < 4=.Choose 1 : RY — R? sothat || =
Lo,y and. | (B, i) < ooty for i < o, then [|Al], = [|A]l; = 1.

Also h = 3" (h, gi)L.f, (the series converging in L,(R))

and also hl[()l]" =32 <hgi >fo|[

converging in L;[0,1]¢, so by Minkowski inequality and
Lemma 1 we have,

e The series is

L= ally < D0 1 gLl el
i=1

no

< Z:\(hug'i)l\lfllmL > ||gin||Lx;f|[o,1]" |
i i=np+1
I£1l, + sup lgil, - = -
sup ||g; —.
gy, 1+l &2
which is a contradiction. O

Corollary 1 Let (Lyf,g), be a frame for L,(RY),
i—&— }1 =1, such that {L.f};>, is a sequence of uniformly
discrete translations of f € Lp(Rd). Then for all bounded
measurable sets B of positive measure,

ch:l ||gi|B||tII =0

Proof Suppose that B is a bounded measurable set of
positive measure and Y .-, ||gil]|T <oo. Let k € Lo(B),
such that |k, = Hence by frame condition
k=>"7,(k,g)Lyf|p, the series converging in L;(B).
Since m(B) <oo, we have:

we have:
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m(B)=lkll, <> |(k,g)lILsf |5l
i=1

+ > |(kgilp) Lo 15l

i=n+1

<Z| kgL f 11, + Z 1l

i=n+1

< |k,
i=1
O3 Tl IS ILaf 1)

i=n+1 i=n+1

g gl - 1Zef [l

Now, since Y7, ||gi] || < o0, we can choose n, such that

s

the second term does not exceed of &) and given this n,
choose k to make the first term also less than ( ). Thus

m(B) < $m(B); a contradiction. O

Lemma 2 Let feL,(RY) and Q=[-m,m]" where
m € N, then for any ¢ > 0 there exists my such that for any
m > n, HflefQ”p <8Hf||p

Proof From elementary real analysis, proof is clear (Fol-
land 1999). O

In the following proposition, we show that for a bounded
biorthogonal system (L, f,g,)>", in L,(R?), the sequence
{x,} is uniformly discrete.

Proposition 2 Let f € L,(RY),
(fus&n):, be a bounded biorthogonal system in L,(R?),

where f,(x) = L, f(x) = f(x — x,) for some {x,}>>, C R%.
Then, {x,},-, is uniformly discrete.

1<p<oo, and let

Proof Suppose that {x,} -, is not uniformly discrete. So,
there are subsequences {i,},—, and {j,},-, of natural

numbers such that for each n, x; #x, and
limy, o0 ||xi, — x;,]] = 0.

Then,
|g > |(gin7ﬁn 71}}1)‘ _ 1

inll Z -

o =5l W =5l

On the other hand,
Hﬁn _ﬁr1||p = ||L(X1,,*Xj,,)f _f”p
So, |Ifi, = fi.ll, — 0 as n — oo and this is a contradiction.

O

Proposition 3 Let {x,}>°, C R? be uniformly discrete,
where 1 <p<oo, fGLp([RRd). Then for every cube

d 0
0 = [l lai bi], 2275, ||fo|Q||5;<OO

Proof Choose & >0, such that ||x;
i#j,and A= (4y,---, 4
d

0, = H[ai +

i=1

— x|, > & for all
la) € Z%. Consider

(4 — D)o, a; + Ligo).

Note that, Q = J;.;« Q, for a finite numbers of A, and

Y va = N Lx- Pd
2 el Z/Q| F)Pay
Z y —x;)[’dy

fZ £ ()P dy

Q;+xi

FOIdy < IfI15-

o
iy Qi

[l
c—1I

Thus by using of triangular inequality for integrals,

> leaslol <13 ety

for some scalar /. O

<Ifll,-

In the following theorem, it is shown that the closed
subspace X of L,,([Rd) embeds almost isometrically into /,
whenever (f;,g;);-, is a frame for X with some special
properties. We say that a Banach space X embeds almost
isometrically into [, if for any all & > 0, there exists T :
X — I, with (1 4¢)"" <||Tf|| < (1 +¢) for all f € X and
Il = 1.

Theorem 1 Let (f;,8:);5, C L,(RY) x L,(R?) be a frame
for a closed subspace X of L,(R

zl—

) where 1< p<oo,
%—&—é = 1, with the property that for every ¢ > 0 and every

bounded cube Q C RY, there exists no € N such that,

[o.¢]
|3 syl el m=no 7 e x.
i=m+1
Then X embeds almost isometrically into I,.

Proof Let C be the frame constant for (f;, g;);-,. Thus for
alfeXandne N,

HZ;(f’gOﬁH,,SCHfH,,- (1)
Let ¢ > 0 be given, by Lemma 2, there exists n such that
for any m > my, for cube Q = [—-m, m]d, me N

flga—oll, < &llfll,- (2)

By our assumption, there exists increasing sequences my,
ny of natural numbers such that for f € X, n>ny

52, €\ Springer
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| 2 @hilo, ll, <2l (3)
i=n+
where Q) = [—mk,mk]d and Qp =0 | = 0. Let Vo= @,

=Qr — Qr—1 for ke N. By (Folland 1999, Theo-
rem 2-26) choose a partition P, of V; into cubes, kK > 1 so
that for all f € X

W = 3 2 [ s, <2741, @)

EcV,

Consider T : X — I,( ;2 P,) defined by

If = {/Ef(x)dx}EeUx P

It is easy t0 see that [|7f, > [If]l,
ITfll, > i where [If]|, = 1.

We are going to show that [|7f]|, <1 + & when [[f||, = 1.
To show this ,for f € X, by the frame condition and (2), we
have

. Hence for any ¢ > 0,

1= H Zl:(gi,f)finp
- HZ; > (&)l
r=1 i=n,_|+

£ @lll,

r=1 i=n,_1+1

<Y @l

A f; i_’iﬂ(gi,f)ﬁwg l,
< Hi:i ’Zml:ﬂ(gi,f)ﬁlg,ﬂp

n Z I iﬂ(gi,f)ﬁ!w_g,ilp
<”,2, Zl (81 il I +ZCIV|R1 I,
<”;, ,,Z+1 (80 Vil I +ZC£2 71,
<|| ;i:;l(gi,f)ﬁlg,llp +2Ce.

i @ Springer

Now, the fact, O, = Q, 2 U (Q, — Q,2), implies that,

DD IRCEINR

r=1 i=n,_|+1

=13 > @y o

r=1 i=n,_1+1

38 Gl

r=1 i=n,_1+1

<13 > @il

r=1 i=n,_;+1

130D @il L,

r=1 i=n,_;+1

<[ @hfily .1,

r=1 i=n,_1+1

+ Z IS Gl

r=1 i=n,_1+1

<HZ Z gtafﬁ’Q -0, zH +282 r+1

r=1 i=n,_1+1

Thus, 1= || 327 (8. /A,

SIS Y Guflily gl + 200+ 20

r=1 i=n,_1+1

Since O, — Q, > =V,UV,_; and {V,})2, are pairwise
disjoint; (4) implies that
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I ;<gi,f>ﬁ||,,
<> Z (giyf)fi|vr,vril||p+2C8+28
r=1 i=n,_1+1
=| Z( 3 (&, + ) (@il ),
r=1 i=n_1+ i=n,_1+
+2Ce + 2¢
= HZI ( Z l(giaf)ﬁyvr + .Zl(ghf) i‘v,.)H;;
r= =n,_1+ =n,+
+2Ce + 2¢
*Z(/(v i gnf)fi)HerZC8+28
i=n,_1+1
<HZI Zl(gmﬁlv,
r i=n,_1+
. ZE
P > [,
LE
1Y ZH;m(E) [ e,
1w ¥ S [,
i=n,_ 1+1EEP
+Hsz S (sl
i=n,_1+1
. LE
2 s [ annwas)],
LE
<HZMI ;ﬂ;mw)/(&,fﬁ xd]),
+ZHA Z (o Vil
-1+
-y [ S v,
EeP, it
SIS n S S [,
i=n,_1+1 EEP, m(E)
*Zﬁ”- > (&l
r= i=n,_1+

and by (1), we have

“Z(gi’f)ﬁ )
LE
<o ;H;m@/(g,,fﬁ ()a,
+2C8+28+Z
ZZ|/ nZH (g, f)fi dx|p) +4Ce + 2e.
r=1 E€P, i=n,_1+1

The fact that E is of finite measure, by (3) we have

(6)

(SIS Gwmmat) <l > @,

EcP, i=n,41+1
<& (r+1)‘

i=n,1+1

If » > 1 then by (2),

EcP,

< H Zl(gi’f)fimdf@q Hp

<2 D H Z(g,-,f)f,-u,,

< Ce2\ |[f||
=27t Ce.

Using (6), (7), (8) and triangular inequality we have,

(X1 [ X wnvioas?) = I Xl .|

(7)

(3)

i @ Springer
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1= 71,

<[> (HX;(gi,f)fi Y (&)
=1 = i=n,_ 1+
+ Z (81 /)i )

i +1

<3 Sweur], +| zz (e,
H2 3

r=1 ny.+1

SZZ”HCS
ORI SR

r=1 EcP,

e}

+ 4ce + 26 + Z g2~ ()

§208—|—( ‘/f dx‘) +4C£+28+§
eelJ”, P
Se
g( ‘ flx dx‘ +6c +5
eelJ7,
S¢
=1 —.
—I—6ce+2
This completes the proof. O

In the sequel, we review some definitions which are
necessary our next discussions.

Let X be a Banach space and X* be its topological dual
space. The pair (x,,x})7", C X x X* is called a biorthog-
onal system if x* (x;) = 0y, A sequence {x,}, -, C X is
called a minimal system if there exists a sequence,
{x:},2, € X* such that (x,,x}),”, is a biorthogonal sys-
tem. A minimal system {x,} -, C X is said to be funda-
mental if span{x, : n € N} is dense in X. It is well-known
that a sequence {x,},-, is minimal if and only if x, ¢
span{x,, : n #m, m € N} for all ne€ N. A sequence
{xs},=, is called semi-normalized if it is bounded and
bounded away from zero, that is inf{|[x,||: n € N} > C
for some C > 0. Note that any basis {x,},-, is a funda-
mental bounded minimal system for X and any x € X can
be represented uniquely of the form x =Y 7, x*(x)x,. In
this case, {x:}~, C X* is a basic sequence in X*, that is a
basis for the closed linear span{x*} <. It is a basis for X* if
X is reflexive (Johnson and Llndenstrauss 2001).

Let X be a subspace of L,(R?), 1 <p<oc and {f;} C X
be a semi-normalized fundamental minimal system. We
prove that in this case with an additional condition, the
subspace X embeds almost isometrically into /,.

22, Q) Springer

Theorem 2 Let X be a subspace opr(Rd), l<p<ooand
{fi}:2, € X be a semi-normalized fundamental minimal
system. Suppose that for each ¢ >0 and each bounded
cube , Q C RY there exists n e N such that for all
my>my >m > n, for all f =377 aif; with ||f||, = 1 and
scalars a;, with || 331, aifilo|l, < e Then, X embeds almost

isometrically into I,.

Proof Let {f;}:°, be a fundamental minimal system for
X C Lp(Rd). Let ni, k € N be an increasing sequence and

let m' >m>n > n, and cube, Oy = [—ng, nk]d, then by our

assumption, if ||f|l, =1, f = Z:":/l a;f; we have

1> adly, N, <2 9)
. N llp = ’

where we take Qp = (. Furthermore for every f of the form
f=>"*, afi, by using Lemma 2, we have,

1] g llp < 227

Let Vi = O — Qy— for k € N, choose a partition Py of V.
into cubes.
Now, for every f of the form f = | a;f; we get,

Irly, = > s [ a2t

EcPy

(10)

(11)
See (Folland 1999, Theorem 2-26). Let f € span{f;} and

f= Zﬁ:l aif; with [[f||, = 1. By (10) and the method in the
proof of Theorem 1, we have

=13,
*HZ Z af\Q+Z Z af"Rd

r=1 i=n,_1+1 r=1 i=n,_1+1
<13 3 adlyl, +ZH 3" atle ol
r=1 i=n,_1+1 r=1 i=n,_1+1

<HZ Z af’Q" JrZsZ’

r=1 i=n,_1+1
<1 3 alyl, +2
r=1 i=n,_1+1

Now, by considering Q, =
0, , =V, UV, | we have,

Qr2U (Qr - Qr72) and Q, —
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1 n,
1> > adfilyll,

r=1 i=n,_1+1
1 n,
= Z Z aifilo, o, ,
r=1 i=n,_+1
1 n,
+ Z Z a‘fi|Qr—2||P
r=1 i=n,_1+1
1 n,
<[> > afily, o ll, T2
r=1 i=n,_+1
] n,
= H Z Z aifi|v,.uv,,1 ||p + 4e
r=1 i=n,_1+1
1 n,
=> a, Y afi,+4e
r=1 i=n,_1+1

But, {V,}ioi] are pairwise disjoint, so by (11) we have

> IEGP ’/ ;ﬂalf dx‘ ) + 6t (12)

If r > 1 then by (9) we have

5| [ St
EeP o (13)
=| Zaif,-‘QﬁQHHp <2 g,

i=1

Now by (12), (13) and using triangular inequality we have,

L= |f]],
‘/f dx‘ +6a+22’“

E U,
‘ / flx dx‘ 8
EeU P,
=1+ 8e.
Thus T:X—1, ( Ulr:1 P,) given by S
( I f(x)dx)E 5 the desired embedding O
€ P

Proposition 4 Let f € L,(R") N L;(RY) where 1 <p<oo
and let {x;};°, C R? be a sequence of uniformly discrete
set, then {L.f}:°, is not a fundamental bounded minimal
system for L,(R?).

Proof Let (L.f,g)r~, is a fundamental bounded
biorthogonal system for L,(R?), and {g;};°, C L,(R?) is
bounded. Since sup; |[Lyf], - l|gill,<oo and ||Lyfll, =
Ifll, for i € N then k := sup;||gi[, <oo; choose ng € N

such that Y2 | Hfo’[OJ]J | < & Consider 7 : R? — R
so that |h| = X, and |(h7g,-)|<ﬁlle for i <ngy. Thus
|All, = [lA]l; =1. For &>0 we can choose, g=
Yoy @il f with ||k — g||, <e. Now by Holder inequality,

/R Lo (1)lg (1) = (t)|dt§ /|X[O’1]d(t)dt|q)l,
/Ig |”dt>

= llg = hll, <&

— h||, <e. So,

Z|a,|Hfo|01d

Thus ||g|[071],1

1—8§Hg’01 ||1

(14)
+ Z ||fo|[o,1]" }1’
i=np+1
that is. |1}, — 18] g,pelly < el — lly <.
Then
l—e< Hg|01] I, < Z|a,|Hfo|0],,

+ Z |ai‘||Lxﬂf|[o.1]dH1'

i=np+1

For i <ng, and by biorthogonal condition, we have
|ail = |gi(g)| < gi(g — h)| + |gi(8)] <k€+4no(\lﬂ|)
For i > ny, since,

lai| = |(gi- )| < llill, - gl <Kllgll, <k(1 +e),

thus |a;| <k(1 + ¢). Hence by (14) we have,
1—sgno(ka+ AL+ Z k(1 + &) l|Laf | el
Hf” i=np+1
<mokellfly + 5+ 5 (1+2)
& g
mokelf il + 3y
3
<-<l1l-—g
4
which is a contradiction, if ¢< i. O

We now construct an example of a frame of L,[0, 1]* for
1 <p < oo, which in fact is basis.
Example 1 Set ¢ = yj,) and let (1) = xpy — 11
which are the Haar scaling function and Haar wavelet,
respectively. For n =0,1,2,... and 0<k<2" — 1.

Put ¥, (1) = 27y(555). Con51der the Haar system H =
{¢yU{¥ur}t,, = 12 which forms a basis for
0<k<2'—1

52, €\ Springer
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L,[0,1]. Note that ¢ + Py = 2¥0,) and it is easy to see
that Aik k) is a finite sum of the members of the Haar

systeman. So parrey is in span(H) for n =0,1,2,... and

0<k<2"—1. It is easy to check that,

0<k<2"—1}.
(15)

It is known that the right-hand side of (15) is dense in
L,[0,1] , so the Haar system H is complete in L,[0, 1] for
1 <p<oo. It is worthwhile to mention that L.,[0, 1] is not
separable, which implies that it does not possesses a basis.
Therefore, we focus on 1 < p<oo.

span(H) = span{x[ﬁ%]) :n=0,1,2,...,

Note that, in the two-dimensional case L,[0, 1%, we will
need one scaling function, but three wavelet functions:
horizontal, vertical and diagonal wavelets. More precisely,
let @ =y, then for (x,y) € R* we define

P (x,y) = Y(y),

P2 (x,y) = Y () (),

¥ (x,y) = YOY ().

Put W', (x,y) = 279" (5 500,

wheren =0,1,2,..., 0<k<2"—1,m=1,2,3. Con-
sider the Haar system,

0<k<2"—1
m=1,23.

We claim that H forms a basis for L,[0,1]>. Indeed, we
have

O+ V= :

0 if(x,y) €1[0,1] x [5,1],
and

2 lf('xay) € [Oai] X [07 1}
D+ V5, =

0 lf('x7y) € [_a 1] X [07 1}1
and

2 if(x,y) € [0,4] x [0,4]

x?y 72 72
1 1
3 0 lf(xay) S [57 1] X [035]
¢+ Voo = L1
if — —. 1
0 () € 0.3 x 3,1
2 () € [, 1] x 3, 11

Then, one can show that Ak ks is a finite sum of the

k_ k1
2330

members of the Haar system H, so Ak o1y is in the

ke kel
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span(H) for n =0,1,2,..., 0<k<2" — 1. It is easy to
check that,

span(H) = span{X[z,km%l)z}n =0,1,2,...-
0<k<2"—1

(16)

Similarly as the one-dimensional case, the right-hand side
of (16) is dense in L, [0, 1}2, and therefore, the Haar system
H is complete in L,[0, 1]2 for 1 <p<oo.

Now, we show that H actually is a basis for L, [0, 1.
Enumerate the Haar system as ,
{hlah27"'} :{QD’ qjg1,07 lPT,anjrln,lw"}' (]7)
Indeed, for a natural number N >1 and scalers

c1,Ca,...,cN, We consider the functions,

gN-1= Zi,v;]l calty and gy = SN cuhy.

Note that gy—; and gy agree possibly on the square
S=100,17 Let Su=[01, Sp=[0]x[1]
S =L, 1] % [0,4], S =L, 1],

Then, gy_; takes a constant value ¢ on S, and there are
constants dj, and dy such that :

¢+ dllv onS”

Cc — dll\/ 011522
8N = >

c+ dN 0HS12

c— d,z\, onS;.

Let m be the integer such that the area of §j;, is 2-2m for
1<14,j<2. Then

N N—1
/ 1> euha (1) — / Y (0P
- S n=1

- / lg(1)dr — / v (1)

:/ |c+d,{,|pdt+/ |c—d,%,|”dt+/ lc — dj|Pdt
Sn Si2 S»

+ |c—dfv|f’dz—/|c|"dr
N

521

et dl o= dil Je—dif  Je+ &l |
T 22mA2 22m+2 22m+2 22m+2 22m
=27 (le+dyf + e —dyf
+le —dyl’ + e+ dy )" —4lcl”).
(18)

Note that quantity in equation (18) is nonnegative.
Therefore,

N-1 N
/ | Zc,,hn(t) PPdr < / | chhn(t)|Pdt.
M- S n=1

So
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N—1 N—1 L
|Zlcnhn|p — ( /S @cnhn(,) Par)
<([ I3 cmofa) = | o

Thus, H = {h,} is a monotone basis for L0, 1%
Remark 1 It is worthwhile to mention that for

Hl = {X[O,]]}U{‘//n,k}n:(Ll,z,...
0<k<2"—1

, the Haar system H=H  ® H, is a basis for
L, [0,1] ® Ly, [0, 1], where 1 <p;,p, <oo. See (Gelbaum
and Gil de lamarid 1960).
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