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a b s t r a c t 

We consider a single-machine scheduling problem with release dates and inventory constraints. Each 

job has a deterministic processing time and has an impact (either positive or negative) on the central 

inventory level. We aim to find a sequence of jobs such that the makespan is minimized while all release 

dates and inventory constraints are met. We show that the problem is strongly NP-hard even when the 

capacity of the inventory is infinite. To solve the problem, we introduce a time-indexed formulation and a 

sequence-based formulation, a branch-and-bound algorithm, and a dynamic-programming-based guess- 

and-check (GC) algorithm. From extensive computational experiments, we find that the GC algorithm 

outperforms all other alternatives. 
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. Introduction 

We consider a single-machine scheduling problem in which a

et of jobs must be performed. Each job is characterized by a pro-

essing time, a release date and an inventory modification. A job

ith negative inventory modification can be processed only if the

entral inventory level is sufficiently high, and a job with positive

nventory modification can be executed only if the inventory level

s low enough. The goal is to find a feasible sequence of jobs with

he minimum makespan, which is the completion time of the lat-

st job. 

Our problem has some interesting applications in schedul-

ng warehousing operations, where shipments arrive in a load-

ng/unloading dock either to deliver (unload) or to pick up (load)

 certain number of products. The warehouse includes a storage

pace that is used to store these products in inventory. Obviously,

obs with positive inventory modification imply unloading oper-

tions and jobs with negative inventory modification constitute

oading operations. 

There is a very limited number of papers considering machine

cheduling subject to inventory constraints. Briskorn, Choi, Lee, Le-

ng, and Pinedo (2010) prove the complexity of many variants of
∗ Corresponding author. 

E-mail address: roel.leus@kuleuven.be (R. Leus). 
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ur problem without release dates and with the assumption that

he inventory has an infinite capacity. Also, Briskorn, Jaehn, and

esch (2013) propose exact algorithms for the problem with in-

entory constraints and with the objective of minimizing the to-

al weighted completion times. We also cite Briskorn and Leung

2013) , who develop a number of branch-and-bound (BB) algo-

ithms that solve instances of a single-machine scheduling prob-

em with inventory constraints to minimize the maximum lateness,

nd Briskorn and Pesch (2013) , who propose a number of vari-

ble neighborhood algorithms for single-machine scheduling with

nventory constraints to optimize a number of well-known regu-

ar objective functions, including the minimization of the maxi-

um lateness, the minimization of the total completion time and

he minimization of the total weighted tardiness. In this paper, we

onsider a variant of the above-mentioned problems that incorpo-

ates release dates and minimizes makespan. 

Inventory constraints are generalizations of non-renewable re-

ource constraints. Non-renewable resources are consumed while

rocessing jobs; typical examples are raw materials, energy and fi-

ancial resources ( Slowi ́nski, 1984; Toker, Kondakci, & Erkip, 1991 ).

t specific moments in time, additional amounts of new resources

an become available ( Carlier & Rinnooy Kan, 1982 ). We also re-

er to Gafarov, Lazarev, and Werner (2011) , Györgyi and Kis (2014,

015) , Kis (2015) , and Györgyi (2017) , who propose exact and ap-

roximation algorithms for a number of single-machine schedul-

ng problems with non-renewable resource constraints, with and

https://doi.org/10.1016/j.ejor.2020.03.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.03.029&domain=pdf
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Table 1 

Data for the example instance. 

j 1 2 3 4 5 

p j 1 1 8 4 8 

r j 7 1 4 18 14 

δj −1 −4 −2 5 −2 

Fig. 1. An optimal solution for the example instance. 
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(c) C σk −1 
( σ) ≤ r σk 

. 
without release dates and with objective functions such as mini-

mization of the makespan and minimization of the total weighted

completion times. 

Our problem is also related to a number of problems within the

area of scheduling with so-called “inventory releasing” jobs, which

has been motivated by applications in Just-In-Time manufacturing

( Boysen, Bock, & Fliedner, 2013; Drótos & Kis, 2013 ), where pro-

cessing jobs leads to the release of a predefined number of prod-

uct units into inventory. The objective in these problems is to mini-

mize the resulting product inventory. Another related research area

is project scheduling with inventory constraints ( Bartels & Zim-

mermann, 2015; Neumann & Schwindt, 2003; Neumann, Schwindt,

& Trautmann, 2005; Schwindt & Trautmann, 20 0 0 ), where ac-

tivity execution implies consumption or replenishment of certain

amounts of non-renewable resources. 

The contents of this article are as follows. We first provide a

formal problem statement followed by some complexity results

in Section 2 . Subsequently, we propose two mixed-integer pro-

gramming (MIP) formulations (in Section 3 ), a BB algorithm (in

Section 4 ) and a guess-and-check (GC) algorithm (in Section 5 )

to solve the problem to optimality. Finally, we discuss our com-

putational results (in Section 6 ) and state some conclusions (in

Section 7 ). 

2. Problem statement 

In this section, we formally describe the problem under study

(in Section 2.1 ), present some complexity results (in Section 2.2 ),

and discuss a situation where a given solution can be guaranteed

to be optimal (in Section 2.3 ). 

2.1. Description of the problem 

We are given a set J = { 1 , . . . , n } of jobs, partitioned into set J −

of loading jobs and set J + of unloading jobs. Each job j ∈ J has a

processing time p j ∈ R 

+ , a release date r j ∈ R 

+ and an inventory

modification δ j ∈ R , where δj ≥ 0 for j ∈ J + and δj < 0 for j ∈ J −. All

jobs are to be executed by a single machine, which can only serve

one job at a time. The initial inventory is denoted by I 0 and the

capacity of the inventory storage is I C . The objective is to sequence

the jobs in J such that the makespan (the completion time of the

last job in the sequence) is minimized while the inventory is never

below 0 nor above I C . 

A solution to our problem is a sequence of jobs; we use the

terms sequence and solution interchangeably throughout this paper.

Given a sequence, one can build a schedule with specific job start-

ing times. Let σ = (σ1 , . . . , σn ) be a sequence. This sequence is fea-

sible iff 0 ≤ I 0 + 

∑ s 
κ=1 δσκ ≤ I C for each s = 1 , . . . , n . Let � be the

set of all feasible sequences and let C j ( σ) be the completion time

of job j if we schedule all jobs as soon as possible based on σ . The

makespan of a sequence σ is denoted by either C max ( σ) or C σn ( σ)

throughout this text. Our problem can be stated as follows: 

min 

σ∈ �
C σn 

( σ) . 

The problem can be referred to as 1 | in v , r j | C max in the standard

three-field notation. 

Example. Consider an example with n = 5 , I 0 = 6 and I C = 8 .

Table 1 contains the remaining data for this problem instance. An

optimal solution with a makespan of 27 is (3,1,5,4,2), which is il-

lustrated in Fig. 1 . 

2.2. Complexity results 

We have the following results. 

Theorem 1. 1 | in v , r j | C max is strongly NP-hard even when I C = + ∞ . 
heorem 2. The verification of the existence of a feasible solution to

 | in v | C max is strongly NP-complete. 

Proofs of all theorems are provided in the Appendix. It is worth

entioning that 1 | in v , r j | C max is closely related to 1 | in v | L max ,

hich is also known to be strongly NP-hard ( Briskorn et al., 2010;

riskorn & Pesch, 2013 ). More specifically, one can show that any

nstance of 1 | in v , r j | C max can be solved to optimality by solving

 polynomial number of associated instances of 1 | in v | L max , and

ikewise any instance of 1 | in v | L max can be solved to optimality

y a polynomial number of calls of an optimal procedure for

 | in v , r j | C max . 

Studying the complexity of 1 | in v , r j | C max is important because,

n the one hand, 1| r j | C max is polynomially solvable ( Lawler, 1973 ),

nd on the other hand 1 | in v | C max is also polynomially solvable

f I C /2 ≥ | δj | for every j ∈ J . Although finding a feasible solution

o 1 | in v | C max is strongly NP-complete in the general case (see

heorem 2 ), one can trivially show that any feasible solution to

 | in v | C max (if there exists one) is also optimal. Despite the com-

lexity status, it also is not difficult to come up with some nec-

ssary conditions for the existence of a feasible solution. A triv-

al example is that any instance with at least one feasible solution

ust satisfy 0 ≤ I 0 + 

∑ 

k ∈ J δk ≤ I C . There is an O( n )-time algorithm

hat finds a feasible solution to 1 | in v | C max if I C /2 ≥ | δj | for every j ∈ J

 Briskorn and Pesch, 2013 , Theorem 2). Let δ+ 
max = max j∈ J + { δ j } and

−
max = max j∈ J −{−δ j } . A stronger result can be derived as follows: 

heorem 3. There is an O( n ) -time algorithm for problem 1 | in v | C max 

a) when I C ≥ δ+ 
max + δ−

max , 

b) or even when I C ≥ δ+ 
max + δ−

max − 1 if all δj are integers. 

.3. Early optimality 

Since our problem is strongly NP-hard, finding an optimal solu-

ion is expected to be difficult. Given a feasible solution, however,

e may be able to immediately conclude optimality provided that

he solution fulfills a specific condition: 

heorem 4. A feasible solution σ is optimal if ∃ k ∈ { 1 , . . . , n } for

hich the following conditions hold: 

a) r σk 
≤ r σl 

for every l = k + 1 , . . . , n . 

b) r σk 
+ 

∑ l−1 
s = k p σs ≥ r σl 

for every l = k + 1 , . . . , n . 
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We refer to a solution that satisfies the conditions of

heorem 4 as an early-opt solution. Any algorithm that scans the

olution space can be halted as soon as an early-opt solution is

ncountered. Determining whether or not an instance has an early-

pt solution is not straightforward, however. 

. Mixed integer programming formulations 

In this section, we develop two MIP formulations (in

ections 3.1 and 3.2 ). 

.1. Time-indexed formulation 

We define decision variables x jt , which take value one if the

rocessing of job j starts at time t , and value zero otherwise. We

lso introduce variable y t , which represents the inventory level at

ime t . The time horizon T = { t min , t min + 1 , . . . , t max } is the set of

otential starting times, where 

t min = min 

j∈ J 
{ r j } 

nd t max = max 
j∈ J 

{ r j } + 

∑ 

j∈ J 
p j − min 

j∈ J 
{ p j } . 

e determine a smaller set T j = { r j , r j + 1 , . . . , t 
j 
max } for each job j ,

here 

 

j 
max = max 

{ 

r j ; max 
i ∈ J\{ j} 

{ r i } + 

∑ 

i ∈ J\{ j} 
p i 

} 

. 

 time-indexed formulation (TIF, for short) for our problem can be

iven as follows: 

IF : min z 

ubject to 

 

t∈ T j 
x jt = 1 j ∈ J (1) 

 

j∈ J 

t−1 ∑ 

τ= t−p j 

x jτ ≤ 1 t ∈ T (2) 

 ≥
∑ 

t∈ T j 
tx jt + p j j ∈ J (3) 

 t min 
= I 0 + 

n ∑ 

j=1 

δ j x jt min 
(4) 

 t = y t−1 + 

n ∑ 

j=1 

δ j x jt t ∈ T \ { t min } (5) 

 ≤ y t ≤ I C t ∈ T (6) 

n this formulation, the objective is to minimize the makespan z .

onstraints (1) state that each job should start exactly once. Con-

traints (2) ensure that there are no overlaps in the execution of

he jobs. Constraints (3) compute the makespan for each choice

or x . Finally, constraints (4) –(6) impose the inventory constraints.

e note that this formulation correctly represents our problem

nly when the time horizon can be discretized (i.e., when all pro-

essing times and ready times are integers). 

.2. Sequence-based formulation 

We define decision variables x js , which take value one if job j is

he s th job processed and zero otherwise. We also introduce vari-

bles y s , which represent the inventory level after finishing the job

t position s , and variables z s , which are the completion times of
he job in position s , for s = 1 , . . . , n . A sequence-based formulation

SBF) can then be stated as follows: 

BF : min z n 

ubject to 

n 
 

s =1 

x js = 1 j ∈ J (7) 

 

j∈ J 
x js = 1 s = 1 , . . . , n (8) 

 s ≥
∑ 

j∈ J 
x js (r j + p j ) s = 1 , . . . , n (9) 

 s ≥ z s −1 + 

∑ 

j∈ J 
x js p j s = 2 , . . . , n (10) 

 1 = I 0 + 

n ∑ 

j=1 

δ j x j1 (11) 

 s = y s −1 + 

n ∑ 

j=1 

δ j x js s = 2 , . . . , n (12) 

 ≤ y s ≤ I C s = 1 , . . . , n (13) 

n this formulation, the objective is to minimize the completion

ime z n of the last job in the sequence. Constraints (7) and (8) en-

orce assignment of jobs to positions. Constraints (9) and (10) com-

ute the completion time of the job in each position. Finally, con-

traints (11) and (12) impose the inventory constraints. Unlike the

ime-indexed formulation, this SBF works even when the time

orizon is not discrete. 

. Branch and bound 

Before discussing the main algorithmic ingredients of the BB al-

orithm in Sections 4.3 –4.5 , we first develop a number of useful

oncepts in Sections 4.1 and 4.2 . 

.1. Preliminary concepts 

We consider an alternative block-based representation of a solu-

ion, which consists of a series of blocks and a set of sequences

f jobs within the blocks. A block is a set of jobs that are ex-

cuted consecutively without intermediate idle time. For ease of

eference, we refer to a solution with a block-based representation

s a block solution . Clearly, a feasible sequence can be translated

nto a feasible block solution in linear time, and vice versa. The

dea of decomposition based on blocks of jobs is not new; see, for

xample, Pan and Shi (2005) , who use block decomposition to ob-

ain tighter bounds in the presence of release dates and deadlines,

nd Baptiste and Sadykov (2009) , who use interval decomposition

o establish a new MIP formulation for single-machine scheduling

ith a piecewise-linear objective function. 

A block solution is denoted as � = ( σ1 , . . . , σϑ ) , where σk is

he sequence of jobs in the k th block. A block solution � also im-

lies an assignment of jobs to blocks, which is written as A (�) =
(B 1 (�) , . . . , B ϑ (�)) . Throughout this paper, we use both A ( �) and

 to refer to an assignment, and both B k ( �) and B k as the set of

obs in the k th block. Obviously, the sets B 1 , B 2 , ..., B ϑ need to con-

titute a partition of J . 

xample. An optimal solution to the example instance of

ection 1 is given in Fig. 1 , which corresponds with the block

olution �∗ = ((3 , 1) , (5 , 4 , 2)) ; the associated assignment is A 

∗ =
 (�∗) = ({ 1 , 3 } , { 2 , 4 , 5 } ) . 

Let I in (B k ) = I 0 + 

∑ k −1 
v =1 δ(B v ) be the initial inventory at the start

f block B k , with δ(B k ) = 

∑ 

j∈ B k δ j the net inventory modification
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of block B k , and let C ( B k ) be the earliest possible completion time

of the last job in block B k . We say that a block solution � =
( σ1 , . . . , σϑ ) is feasible if the following conditions hold for each

sequence σk = (σk 1 , σk 2 , . . . , σk | B k | ) , k = 1 , . . . , ϑ : 

Condition 1. r σk 1 
> C(B k −1 ) if k ∈ { 2 , . . . , ϑ} . 

Condition 2. r σks 
≤ r σk 1 

+ 

∑ s −1 
v =2 p σk v for each s = 2 , . . . , | B k | . 

Condition 3. 0 ≤ I in (B k ) + 

∑ s 
j=1 δ j ≤ I C for each s = 1 , . . . , | B k | . 

Condition 1 implies that the release date of the first job is

strictly greater than the earliest completion time of the previous

block. Condition 2 ensures that the jobs within the block can be

scheduled without idle time, and Condition 3 guarantees that the

inventory constraints are not violated. An assignment A is said to

be feasible if at least one feasible block solution exists for the

assignment. 

Example. The earlier-described block solution �∗ =
((3 , 1) , (5 , 4 , 2)) to the example instance is feasible because 7 =
r 1 ≤ r 3 + p 3 = 12 ( Condition 2 ) and 0 ≤ 6 − 2 = 4 ≤ 8 and 0 ≤ 6 −
2 − 1 = 3 ≤ 8 ( Condition 3 ). Similarly, for the second block we have

14 = r 5 > C(B ∗
1 
) = 13 ( Condition 1 ), 18 = r 4 ≤ r 5 + p 5 = 22 and 1 =

r 2 ≤ r 5 + p 5 + p 4 = 26 ( Condition 2 ) and 0 ≤ 3 − 2 = 1 ≤ 8 ,

0 ≤ 3 − 2 + 5 = 6 ≤ 8 and 0 ≤ 3 − 2 + 5 − 4 = 2 ≤ 8 ( Condition 3 ).

The corresponding assignment A 

∗ = A (�∗) = ({ 1 , 3 } , { 2 , 4 , 5 } ) is

then also feasible. 

Let A be the set of all feasible assignments. The minimum com-

pletion time C ( A ) of a feasible assignment A is the minimum com-

pletion time of its last block. We can then reformulate the schedul-

ing problem as follows: 

min 

A ∈A 
C(A ) . 

This requires the evaluation of C(A ) = C(B ϑ ) , which can be

achieved via the following subproblem: 

SUBP : C(B k ) = min 

σk ∈ �( B k ) 
{ r σk 1 

+ p( B k ) } . 
The set �( B k ) contains all the sequences that respect Conditions 1,

2 and 3 , for given values C(B k −1 ) and I in ( B k ) (which are input

parameters to SUBP). While I in ( B k ) is computed in linear time,

the quantities C(B k −1 ) , C(B k −2 ) , . . . , C(B 1 ) must be computed re-

cursively by calling SUBP. Consequently, in order to compute C ( A )

we should solve ϑ instances of SUBP. Upon computing C ( A ), a

unique � is automatically constructed. 

4.2. The complexity of SUBP 

SUBP can be shown to be strongly NP-hard by a reduction from

3-PARTITION that is similar to the proof of Theorem 1 . Never-

theless, it can be solved in polynomial time in certain situations.

Based on Theorem 3 , there is an O(| B k |)-time algorithm for SUBP if

the following two conditions hold. 

a) I C ≥ max j∈ B k ∩ J + { δ j } + max j∈ B k ∩ J −{−δ j } . 
b) max j∈ B k { r j } ≤ r j ′ + p j ′ for all j ′ ∈ B k . 

Moreover, any instance of SUBP for which at least one of the

following conditions holds, does not have any feasible solution: 

a) max j∈ B k { r j } ≤ C(B k −1 ) . 

b) I in (B k ) + δ( B k ) < 0 or I in (B k ) + δ( B k ) > I C . 

To solve SUBP, we first verify whether the instance is infeasi-

ble according to the foregoing conditions. If not, then we check

whether SUBP is solvable in O(| B k |)-time. If this is not the case,

then we proceed as follows. 

We define the following decision problem: 
Problem DECP 

Instance : An instance of SUBP and a target job ˆ j ∈ B k . 
Question : Does there exist a sequence σ ∈ �( B k ) such that σ1 = 

ˆ j ? 

SUBP and DECP are closely related. In fact, SUBP can be

olved by solving a series of instances of DECP as described in

lgorithm 1 . DECP is strongly NP-complete, since even the deci-

ion counterpart of 1 | in v | C max is already strongly NP-complete (see

he proof of Theorem 2 ). 

In spite of its complexity status, DECP can often be solved in a

elatively efficient manner. We solve DECP using an implicit enu-

eration method referred to as eB-DECP (for “embedded branch-

ng” procedure), which is briefly described below. 

In the search tree of eB-DECP, each node represents a partial

equence of jobs in B k . The partial sequence ˜ σ0 
k = ( ̂  j ) is associated

lgorithm 1 Successive check. 

nput: A SUBP instance. 

1: Create a list of the jobs in B k in non-decreasing order of the

release dates. 

2: Choose the first job in the list and consider it as the target job.

3: Solve the associated DECP instance. If the answer is YES then

the resulting sequence is an optimal solution to SUBP and the

procedure ends. If the answer is NO then the next job in the

list becomes the target job and we repeat step 3, either until

the procedure ends with an optimal solution or until all jobs

in the list have been selected. In the latter case, SUBP has no

feasible solution. 

utput: YES (in which case a sequence is also output) or NO. 

ith the root node, with 

ˆ j the target job in DECP. The children

f the root node correspond with partial sequences ( ̂  j , i 1 ) , where

 1 ∈ B k \ { ̂  j } . The children of these nodes then generate ( ̂  j , i 1 , i 2 )

ith i 2 ∈ B k \ { ̂  j , i 1 } , etc. A node is fathomed if its associated par-

ial sequence violates any of the Conditions 1 –3 . We also eliminate

artial sequences based on the dominance theorem of dynamic

rogramming (DP) ( Davari, Demeulemeester, Leus, & Talla Nobi-

on, 2016; Jouglet, Baptiste, & Carlier, 2004 ): among the two nodes

ith the same set of scheduled jobs but with different partial se-

uences, the one which has lexicographically larger release dates is

ominated. In case of ties, the one with lexicographically larger job

ndices is dominated. For practical reasons, each partial sequence is

nly compared with the alternative sequence in which the order of

he last two jobs is different. 

The search tree is traversed in a depth-first manner. The child

ode whose last job (in the sequence) has the smallest release

ate is visited first. In case of ties, the node whose last job has

he smallest job index is visited first. The procedure eB-DECP is

alted as soon as a feasible sequence for B k is found, in which case

he answer to DECP is YES. If no feasible sequence is found after

raversing the entire tree, the answer to DECP is NO. 

.3. Branching scheme 

A node N 

u in the BB tree corresponds to a (possibly partial) as-

ignment A 

u , i.e., a partition of a subset of J ( u is the index of the

ode). When A 

u is a complete assignment (containing all jobs in J ,

hich only happens in a leaf node) then C ( A 

u ) can be computed

sing SUBP. Otherwise, A 

u represents multiple (either or not fea-

ible) complete assignments, which are located in the leaf nodes

eachable from N 

u . 

The root node N 

0 (at level 0) corresponds to the empty partial

lock solution A 

0 = ∅ . Partial solutions are augmented using an add

perator ← , defined as follows: A ← ( j , b ) is the solution A with

he target job j ∈ J appended to the b th block (referred to as target

lock ). The root node is branched into a number of child nodes N 

u 
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Fig. 2. The BB tree for the example instance. Nodes eliminated by dominance rules (see Section 4.5 ) are not included in the tree. 
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ith A 

u = A 

0 ← ( j, 1) , which constitutes the first level of the BB

ree. We identify the parent of a node N 

u by pa ( N 

u ), the target job

f N 

u by tj ( N 

u ) and the target block of N 

u by tb ( N 

u ). Nodes at level l

re branched into nodes in level l + 1 . The following two properties

old for nodes at levels l ≥ 2: 

(a) Blocks are filled sequentially: t b(N 

u ) ∈ { t b(pa (N 

u )) ,

tb(pa (N 

u )) + 1 } . 
(b) We avoid duplicate assignments: if the target blocks of N 

u 

and its parent are the same ( tb(N 

u ) = tb(pa (N 

u )) ) then the

position of tj ( N 

u ) in a given job list ρ is greater than the

position of tj ( pa ( N 

u )). 

The list ρ is constructed as follows: the jobs are sorted in non-

ecreasing order of their release dates; in case of ties, the job with

he lower job index appears first. The tree is explored in a depth-

rst manner. Among the unvisited children of a node, the child

ith the lowest-indexed target block is visited first; in case of ties,

he target job with lowest position in ρ is considered first. 

xample. For the example instance used in the previous sections,

e have ρ = (2 , 3 , 1 , 5 , 4) . Fig. 2 shows the resulting search tree.

rom the root note we generate only two children; the other three

otential children are fathomed by dominance rules discussed in

ection 4.5 . 

.4. Lower and upper bounds 

To compute an initial upper bound, we use the heuristic algo-

ithm introduced by Ghorbanzadeh, Ranjbar, and Jamili (2019) . We

enote this upper bound by UB ini . This upper bound is also used in

ur GC algorithm (see Section 5 ). In each node N 

u of the tree we

aintain a lower bound L (N 

u ) on the completion time of the last

lock in A 

u , as follows: 

 (N 

u ) = 

{L (pa (N 

u )) + p t j(N u ) if tb(N 

u ) = tb(pa (N 

u )) , 

max 
{
L (pa (N 

u )) + 1 ; r t j(N u ) 

}
+ p t j(N u ) if tb(N 

u ) = tb(pa (N 

u )) + 1 . 
f A 

u is feasible then L (N 

u ) = C(A 

u ) . Let U ( N 

u ) be the set of un-

cheduled jobs in node N 

u . Starting from L (N 

u ) , we compute a

ower bound LB( N 

u ) by appending all jobs from U ( N 

u ) as soon as

ossible after L (N 

u ) , while respecting the release dates but ignor-

ng the inventory constraints. When two or more jobs are eligi-

le to be scheduled, we schedule the job with the smallest release

ate. If there is still a tie, we arbitrarily choose one of the jobs.

he value LB( N 

u ) is the completion time of the last job scheduled

n this manner. 

In our BB procedure, we compute three upper bounds. The first

pper bound UB 1 (N 

u ) = C(A 

u ) is computed only in leaf nodes. For

ach non-leaf node N 

u , if max j∈ U(N u ) { r j } ≤ L (N 

u ) then we con-

truct a complete assignment ˜ A 

u by adding all jobs in U ( N 

u ) to

he last block of A 

u . If ˜ A 

u is feasible then we compute UB 2 (N 

u ) =
( ̃  A 

u ) . For each non-leaf node N 

u , we also construct an assign-

ent Ā 

u corresponding with the schedule obtained in the com-

utation of LB( N 

u ). If Ā 

u is feasible then we let UB 3 (N 

u ) = C( ̄A 

u ) .

ote that the schedule will always satisfy Conditions 1 and 2 , so

nly the verification of Condition 3 suffices to check the feasibility

f Ā 

u . Throughout the search, we maintain a global upper bound

B, which equals the best upper bound found so far. 

.5. Dominance rules 

The following dominance rule is obvious. 

ominance rule 1. Any node N 

u with LB( N 

u ) ≥ UB is fathomed. 

The second dominance rule is associated with UB 3 ( N 

u ). As ex-

lained in Section 4.4 , if max j∈ U(N u ) { r j } ≤ L (N 

u ) , then we compute

 tentative upper bound by constructing ˜ A 

u . If ˜ A 

u is feasible then it

s the only feasible assignment in any of the nodes below N 

u , oth-

rwise no nodes below N 

u have a feasible assignment. Therefore,

he following dominance rule is valid. 

ominance rule 2. All children of any node N 

u with

ax j∈ U(N u ) { r j } ≤ L (N 

u ) are fathomed. 



120 M. Davari, M. Ranjbar and P. De Causmaecker et al. / European Journal of Operational Research 286 (2020) 115–128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Guess-and-check. 

Input: Instance I of our problem. 

1: 	 = UB ini 

2: while verify (	) outputs a feasible sequence σ do 

3: 	 = C max ( σ) − 1 

4: if σ is early-opt then 

5: exit while 

6: end if 

7: end while 

Output: 	 + 1 
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The following rule attempts to fathom nodes with a target block

different from their parent. 

Dominance rule 3. Consider a node N 

u . All children N 

y of this

node for which tb(N 

y ) = tb(N 

u ) + 1 are fathomed if at least one

of the following three conditions holds: 

(a) A 

u is not feasible. 

(b) r j ∗ + 

∑ 

j∈ U(N u ) p j ≥ UB where j ∗ = min j∈ U(N u ) { r j | r j > C(N 

u ) } . 
If Condition (a) is true, then any assignment associated with the

children N 

y of N 

u for which tb(N 

y ) = tb(N 

u ) + 1 is also infeasible,

as it essentially includes all blocks in A 

u . If Condition (b) holds,

then the block tb(N 

u ) + 1 need not be constructed in any child of

N 

u because the naive lower bound r j ∗ + 

∑ 

j∈ U(N u ) p j is dominated

by UB. Note that neither condition can conclude the elimination of

those children N 

y of node N 

u for which tb(N 

y ) = tb(N 

u ) because

by adding jobs to the last block of A 

u , the two conditions may no

longer be true. 

The final dominance rule, similarly to Dominance rule 3 , fath-

oms children of a node with a different target block. The idea

here is to move jobs from the last block of the associated par-

tial assignment B u 
tb(N u ) 

to the previous block B u 
tb(N u ) −1 

. If the re-

sulting assignment is feasible and has a smaller makespan then

the new assignment dominates the original one. Consider the set

E u = 

{ 

j ∈ B u 
tb(N u ) 

| r j ≤ C 

(
B u 

tb(N u ) −1 

)} 

. For each E ⊆ E u , let A 

u ( E ) be

the new assignment obtained by moving all jobs in E from the last

to the previous block. 

Dominance rule 4. Consider a node N 

u . All children N 

y of this

node for which tb(N 

y ) = tb(N 

u ) + 1 are fathomed if there is a sub-

set E ⊆E u for which A 

u ( E ) is feasible and C ( A 

u ( E )) ≤ C ( A 

u ). 

Example. Consider the search tree in Fig. 2 . Among the five pos-

sible children of the root node, three (those that assign jobs 1, 4

and 5) are fathomed by Dominance rule 1 . All children of N 

11 are

eliminated by Dominance rule 2 because max { 4 ; 18 } = 18 ≤ 23 =
L (N 

11 ) . All children N 

y of N 

5 for which tb(N 

y ) = tb(N 

5 ) + 1 = 2 are

dominated by Dominance rule 3 because for this node j ∗ = 5 and

thus r j ∗ + 

∑ 

j∈ U(N 5 ) p j = 14 + 20 = 34 ≥ 31 = UB . Also, children of

N 

6 with target block tb(N 

6 ) + 1 = 2 are fathomed by Dominance

rule 3 because A 

6 is not feasible. The remaining children of N 

6 

are eliminated by Dominance rule 1 . For this specific instance,

Dominance rule 4 does not eliminate any node because all nodes

that can be dominated by Dominance rule 4 are removed by other

dominance rules. 

5. A guess-and-check method 

In this section, we introduce a guess-and-check algorithm (GC)

that solves our problem to optimality. The idea is to iteratively

guess a minimum makespan value 	 for our problem and then,

using an iterative DP approach, test the correctness of our guesses.

The guess 	 is correct if there is at least one feasible sequence of

jobs with a makespan less than or equal to 	 and no sequence

with a makespan not exceeding 	 − 1 . This method only works if

the time horizon and all possible inventory levels are discrete. 

Algorithm 2 summarizes our GC algorithm. The verification of

each guess is done by function verify (	) , which returns either a

sequence σ with C max ( σ) ≤	 or null ; the latter means that no se-

quence with a makespan smaller than or equal to 	 exists. This

function is explained in Section 5.1 . Initially, we set 	 = UB ini (see

the first paragraph of Section 4.4 ). In each iteration, if there is a

feasible sequence σ with C max ( σ) ≤	, we update our guess and set

it to C max ( σ) − 1 . If, at any point, σ is proved to be an early-opt so-

lution, the algorithm halts. 
In Algorithm 2 , we deliberately opt for an incremental search

ather than a binary search because, for a given 	, the procedure

ssociated with the function verify (	) is computationally much

ess expensive when there is a feasible solution ( verify (	) re-

urns σ) than when there is no feasible solution ( verify (	) re-

urns null ). The current incremental search approach guarantees

hat Algorithm 2 stops immediately after the first incident where

erify (	) returns null . 

.1. An equivalent graph problem 

We introduce a graph problem to verify 	. Given 	, we con-

truct the following directed acyclic graph (DAG) G 	 = (V 	, A 	) . Let

 0 = 	 − ∑ 

j∈ J p j and t n = 	. There is a vertex v t,I ∈ V 	 for each

 ∈ { t 0 , . . . , t n } and I ∈ { 0 , . . . , I C } . Also, there is an arc a t,I, j ∈ A 	

onnecting v t,I and v t+ p j ,I+ δ j 
if and only if r j ≤ t ≤ 	 − p j and

 ≤ I + δ j ≤ I C . Vertices in this DAG refer to time and inventory lev-

ls, whereas arcs correspond to execution of jobs. Fig. 3 depicts the

raph G 26 for the instance of Section 2 . 

Let I n = I 0 + 

∑ 

j∈ J δ j . We refer to an arc that corresponds to ex-

cuting job j as a j-arc and to a path from v t 0 ,I 0 to v t n ,I n that in-

ludes exactly one j -arc for each j ∈ J as a sequence-feasible path.

inding a feasible sequence with a makespan equal to 	 is equiva-

ent to finding a sequence-feasible path in G 	 . Thus, we formulate

he following decision problem: 

Problem SEQFEAS 

Instance : G 	
Question : Is there a sequence-feasible path in G 	? 

If there is a sequence-feasible path in G 	 ( G 	 is a YES-instance)

hen verify (	) outputs the associated sequence, and if G 	 has no

equence-feasible path ( G 	 is a NO-instance) then verify (	) out-

uts null . Unfortunately, SEQFEAS is NP-complete (since it is equiv-

lent to DECP). In what follows, we propose an iterative algorithm

o solve SEQFEAS. 

.2. An iterative algorithm to solve SEQEFAS 

The algorithm iteratively applies DP-based tools, either to prove

hat G 	 is a NO-instance, or to find a sequence-feasible path in

 	 . This algorithm includes four main elements: a NO-instance

etection procedure, a YES-instance detection procedure, a prun-

ng procedure, and a brute-force search procedure. The YES- and

O-instance detection procedures are subroutines that may detect

ES- and NO-instances, respectively, the pruning procedure prunes

rcs in G 	 that are certainly not in any sequence-feasible path, and

he brute-force search procedure thoroughly searches G 	 to find

 sequence-feasible path. The first three procedures and a trun-

ated version of the last procedure are called in each iteration un-

il either a conclusive answer to SEQEFAS is achieved or we lose

ope in achieving an answer by continuing to iterate. If no conclu-

ive answer is obtained, a non-truncated version of the brute-force

earch procedure is called. 
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Fig. 3. Graph G 26 for the instance of Section 2 , where t 0 = 4 . The horizontal dimension of the grid corresponds with time, the vertical dimension with inventory. 
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.2.1. NO-instance detection 

We will say that a path is inventory-feasible if it starts from

 t 0 ,I 0 
and ends at v t n ,I n . Inventory-feasible paths may have more

han one j -arc for some jobs j and no j ′ -arc for some other jobs j ′ .
ote that all sequence-feasible paths are also inventory-feasible. In

ig. 3 , two inventory-feasible paths are highlighted in bold. These

wo paths include two 3-arcs and no 5-arc and are therefore not

equence-feasible. 

We are only interested in inventory-feasible paths that are also

equence-feasible. We devise a Lagrangian-based approach to pe-

alize paths that are inventory-feasible but not sequence-feasible.

e introduce Lagrangian multipliers μj for each job j and associate

 cost to each arc a t , I , j (if it exists) as follows: 

(a t,I, j ) = 

{−μ j + 

∑ 

i ∈ J μi if t = t 0 and I = I 0 

−μ j otherwise 
. 

e refer to this weighted version of G 	 as G 

μ
	

. We also de-

ote the shortest path from v t 0 ,I 0 to v t n ,I n in G 

μ
	

and its length

y P 
μ
	

and L 
μ
	

, respectively. We observe that the length of ev-

ry sequence-feasible path in G 

μ
	

is zero, regardless of the choice

or μ. Thus, no sequence-feasible path exists in G 	 if L 
μ
	

> 0 for

ome μ. As an illustration, for the graph of Fig. 3 , let us choose

1 = (0 , 0 , −1 , 0 , 1) . We have L 
μ1 
26 

= 2 > 0 , which guarantees the

on-existence of a sequence-feasible path. Remark that this is a

ufficient condition for non-existence, but not a necessary one. 

In order to compute P 
μ
	

and L 
μ
	

, we use the following DP recur-

ion. 

 0 (t, I) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if t = t n and I = I n 

+ ∞ if A + 
t,I 

= ∅ 
min a t,I, j ∈ A + t,I 

{
c(a t,I, j ) + g 0 (t + p j , I + δ j ) 

}
otherwise 

(14) 

here A 

+ 
t,I 

is the set of all arcs leaving v t,I . Clearly, L 
μ
	

equals g 0 ( t 0 ,

 0 ); P 
μ
	

can be retrieved in linear time. The recursion runs in time

( nI C 
j ∈ J p j ). When there is no inventory-feasible path in G 

μ
	

then

 

μ
	

= ∞ . 

Ideally, we would like to find μ∗ := arg max μ{ L μ
	
} , but this is

ot a trivial task because it requires solving a rather complicated

wo-stage problem. We therefore iteratively improve our choice of

using an adapted version of the conjugate sub-gradient algorithm

escribed in Tanaka and Fujikuma (2012) . Let μk denote the vector

f multipliers in the k th iteration. In iteration k , we compute the

hortest path in G 

μk 

	
using recursion (14) . Let o 

μk 

j 
be the number
f j -arcs in P 
μk 

	
. We compute μk +1 as follows: 

k +1 
j 

= μk 
j + 

V 

k d k +1 
j ∑ 

j∈ J d 
k +1 
j 

2 
, 

here 

 

k +1 
j 

= 

{ 

ξd k 
j 
+ (1 − o 

μk 

j 
) if k 
 = 0 

(1 − o 
μk 

j 
) if k = 0 

and ξ = 

√ ∑ 

j∈ J 

(
1 − o 

μk 

j 

)
2 

√ ∑ 

j∈ J d 
k 
j 

2 
. 

lso, μ0 = (0 , . . . , 0) , d 

0 = (0 , . . . , 0) , and V 

k stands for the lowest

ncountered violation cost so far (see Section 5.2.2 ). 

.2.2. YES-instance detection 

The value L 
μk 

	
can be less than or equal to zero in iteration k of

he sub-gradient algorithm, which suggests (but does not guaran-

ee) the existence of a sequence-feasible path. We then attempt to

onstruct such a path. We construct an initial sequence σ of jobs

y following the order of their associated j -arcs in P 
μ
	

. If there are

wo or more arcs for the same job j , we only consider the first oc-

urrence. If there are no arcs for some jobs, we add those jobs to

he end of the sequence in the order of their release dates. We ex-

cute jobs based on this sequence between t 0 and t n without inter-

ediate idle time. If the sequence is feasible, G 	 is a YES-instance.

f not then we penalize the infeasiblities and try to find a feasible

olution using local search techniques. 

We introduce violation costs θ jtI = max { 0 , r j − (t − p j ) } +
ax { 0 , I − I C , −I} that are incurred if job j is completed at time t

hen the inventory level reaches I . For a given sequence

= (σ1 , σ2 , . . . , σn ) , we compute its total violation cost as

ollows: 

σ = θσ1 ,t 0 + p σ1 
,I 0 + δσ1 

+ θσ2 ,t 0 + p σ1 
+ p σ2 

,I 0 + p σ1 
+ p σ2 

+ · · · + θσn ,t 0 + 
∑ 

i ∈ J p i ,I 0 + 
∑ 

i ∈ J δi 
. 

e apply both a steepest descent local search and a time-window

euristic ( Davari et al., 2016 , Section 7) to minimize this violation

ost. 

In the time-window heuristic, jobs are first partitioned into

 n /10 � sets J W 1 
, . . . , J W � n/ 10 � as follows: 

J W 1 
= { σ1 , . . . , σ10 };
· · ·

 W � n/ 10 � = { σ10(� n/ 10 �−1)+1 , . . . , σn } . 
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For each s ∈ { 1 , . . . , � n/ 10 �} , we build a subproblem W s with

job set J W s 
. The starting time for subproblem W s is t W s 

=
 0 + 

∑ (s −1) ·10 
j=1 

p σ j 
and the starting inventory level is I W s 

= I 0 +∑ (s −1) ·10 
j=1 

δσ j 
. Each subproblem W is then solved by the following

DP recursion: 

g 1 (S) = 

{ 

0 if S = ∅ 
min j∈ S 

{
θ j,t W (S) ,I W (S) + g 1 (S \ { j} ) } otherwise 

(15)

where t W 

(S) = t W 

+ 

∑ 

j∈ S p j and I W 

(S) = I W 

+ 

∑ 

j∈ S δ j . Recur-

sion (15) outputs an optimal sequence for each subproblem W

with lowest violation cost, assuming that the ordering of all the

other jobs in J �J W 

is maintained. 

Algorithm 3 is a combination of a steepest descent procedure

Algorithm 3 A YES-instance detection procedure. 

Input: P 
μ
	

. 

1: Construct a feasible sequence σ from P 
μ
	

. 

2: σ ← steepestdescent ( σ) 

3: while θσ > 0 do 

4: for k = 1 to � n/ 10 � do 

5: σW 

← g 1 (W k ) 

6: end for 

7: σ ′ = ( σW 1 
, . . . , σW � n/ 10 � ) 

8: if θσ′ = θσ then 

9: return σ
10: else 

11: σ ← σ′ 
12: end if 

13: end while 

Output: σ

and the time-window heuristic for minimizing the violation cost.

If the resulting sequence σ has zero violation, we conclude that

G 	 is a YES-instance; otherwise we compute V k = min { V k −1 , θσ}
(with V 0 = ∞ ), which is used in k th iteration of the conjugate sub-

gradient algorithm described in Section 5.2.1 . 

5.2.3. Pruning G 	

There will typically be a number of arcs in G 	 that are not part

of any sequence-feasible path, and thus can be pruned. Let L 
μ
	
(v →

v ′ ) be the length of a shortest path from vertex v to v ′ in G 

μ
	

. An

arc a t , I , j satisfying the following inequality can be pruned: 

c(a t,I, j ) + L 
μ
	
(v t 0 ,I 0 → v t,I ) + L 

μ
	
(v t+ p j ,I+ δ j 

→ v t n ,I n ) > 0 . 

Pruning G 	 can be achieved in O( nI C 
j ∈ J p j ) time. 

5.2.4. A brute-force search procedure 

It is possible that the combination of the NO-instance and YES-

instance recognition procedures and the pruning fails to provide

a conclusive answer to SEQFEAS. In such a case, and as a last re-

sort, we apply a brute-force search procedure to solve SEQFEAS.

We search G 	 for a sequence-feasible path by traversing the graph

from v t 0 ,I 0 to v t n ,I n . In this process, for each visited vertex v t,I ,
we keep track of the partial sequence ˆ σv t,I and the correspond-

ing set S v t,I of executed jobs. From vertex v t,I , we backtrack to the

previous vertex and choose a different arc if 

1. ˆ σv t,I includes more than one occurrence of some job j , or 

2. L 
μ
	
(v t+ p j ,I+ δ j 

→ v t n ,I n ) + 

∑ 

j∈ J\ S v t,I μ j > 0 , where μ is the last

vector of Lagrangian multipliers, or 

3. ˆ σv t,I is dominated by another partial sequence for the same job

set S v t,I based on the dominance theorem of DP ( Davari et al.,

2016; Jouglet et al., 2004 ): among two partial sequences that

P  
are both feasible, the one which has lexicographically larger

job indices is dominated. For practical reasons, each partial

sequence is only compared with the alternative sequences in

which the order of the last five jobs is different. 

The procedure halts either when it reaches v t n ,I n , which means

 sequence-feasible path is found, or when there is no more path

o traverse. In the former case the procedure outputs found ; in the

atter case it returns none . This procedure is computationally de-

anding and is therefore only invoked after we lose hope in the

uccess of the combined iterative YES- and NO-detection proce-

ure. We do, however, exploit a truncated version of this proce-

ure in each iteration: this truncated version is interrupted if the

umber of vertices visited reaches one hundred thousand, in which

ase it outputs null . Note that a vertex can be visited more than

nce while visiting different paths and that each visit counts. 

.2.5. Overall scheme of the algorithm 

Algorithm 4 describes the overall scheme of the iterative algo-

ithm that solves SEQFEAS. In this algorithm, dp (G 

μ
	
) is the DP re-

lgorithm 4 The iterative algorithm to solve SEQFEAS. 

nput: G 	 as an instance of SEQFEAS. 

1: μ0 = (0 , . . . , 0) 

2: k = 0 

3: itrwtimp = 0 

4: L best = −∞ 

5: while k ≤ 10 0 0 and itrwtimp ≤ 200 do 

6: G 

μk 

	
← G 	, μk 

7: P 
μk 

	
, L 

μk 

	
← dp (G 

μk 

	
) 

8: if L 
μk 

	
> 0 then 

9: return NO-instance 

10: end if 

11: if k ≥ 10 then 

12: if L best < L 
μk 

	
then 

13: L best = L 
μk 

	
and itrwtimp = 0 

14: else 

15: itrwtimp = itrwtimp + 1 

16: end if 

17: end if 

18: σ ← heuristics (P 
μk 

	
) 

19: if θσ = 0 then 

0: return YES-instance 

21: end if 

2: result ← bruteTruncated ( μk , G 	) 

3: if result = found then 

24: return YES-instance 

5: else if result = none then 

6: return NO-instance 

27: end if 

8: G 	 ← prune ( μk , G 	) 

9: μk +1 ← update ( μk , P 
μk 

	
) 

0: k = k + 1 

31: end while 

2: result ← brute ( μk , G 	) 

33: if result = found then 

4: return YES-instance 

35: else 

6: return NO-instance 

37: end if 

utput: NO-instance or YES-instance 

ursion (14) applied to G 

μ
	

, heuristics (P 
μ
	

) is Algorithm 3 applied to

 

μ
	

, prune ( μ, G 	) is the process of pruning G 	 using its weighted
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ounterpart G 

μ
	

, update ( μ, P 
μ
	

) is our conjugate sub-gradient proce-

ure as described in Section 5.2.1 , and finally brute ( μk , G 	) and

ruteTruncated ( μk , G 	) are the brute-force search procedure and

ts truncated version, respectively. 

In more detail, lines 6–10 of Algorithm 4 are devoted to the NO-

nstance detection, lines 11–17 compute the number of iterations

ithout improvement, lines 18–21 relate to the YES-instance de-

ection procedure, lines 22–27 comprise the truncated brute-force

earch, lines 28–29 are the pruning and the conjugate sub-gradient

rocedures, and finally lines 32–37 relate to the complete brute-

orce search. 

. Computational results 

All algorithms have been implemented in VC++ 2015, and Cplex

2.7.1 is used to solve the MIP formulations. All computational

esults were obtained on a laptop Dell Latitude with 2.6 GHz

ore(TM) i7-3720QM processor, 8GB of RAM, running under Win-

ows 10. 

.1. Instance generation 

To the best of our knowledge, there are no publicly avail-

ble instance sets of our problem. We therefore generate our own

nstances, with n = 10 , 20, 30, 40 and 50 jobs. The values p i 
1 ≤ i ≤ n ) are sampled from a uniform integer distribution on in-

erval [1, α], where α ∈ {10, 100}. Release dates r i are drawn from

 uniform integer distribution on [0, τ
i ∈ J p i ] with τ ∈ {0.5, 1, 1.5,

}, and the absolute values | δi | of the inventory modifications stem

rom a uniform integer distribution on [1,10]. The inventory capac-

ty I C is selected randomly from [10 η, 20 η], where η = { 1 , 3 , 5 } .
he assignment of jobs to the two subsets J − and J + and the value

 0 of the initial inventory might give rise to many infeasible in-

tances. For this reason, we assign jobs and choose the value I 0 
andomly but with extra attention. We first assign each job ei-

her to J − or to J + , each with a 50% probability. Subsequently, if

j ∈ J δj > I C or 
∑ 

j∈ J δ j < −I C then we repeat the assignment proce-

ure, until both 
j ∈ J δj ≤ I C and 

∑ 

j∈ J δ j ≥ −I C . Finally, we choose

n integer value for the initial inventory I 0 from the following

nterval: 
 

min 

{ 

I C ; max 

{ 

0 ; 0 −
∑ 

j∈ J 
δ j 

} } 

, max 

{ 

0 ; min 

{ 

I C ; I C −
∑ 

j∈ J 
δ j 

} } ] 

. 

In conclusion, for each combination of ( n , α, τ , η), four

nstances are generated; the total number of instances is

hus 5 × 2 × 4 × 3 × 4 = 480 . None of the generated instances

urns out to be infeasible, which is not very surprising be-

ause our instance generation scheme ensures that 0 ≤ I 0 +
 

j∈ J δ j ≤ I C . Instances with this property might still be infeasi-

le, but such instances will be quite rare, especially for larger n

alues. 

In all our experiments, the time limit is set to 10 0 0 seconds.

f an instance is not solved to guaranteed optimality, it is said to

e ‘unsolved’ for the procedure. Throughout this section, we report

verages computed over all instances, both solved and unsolved

for an unsolved instance, we report a CPU time of 10 0 0 seconds). 

.2. Overall results 

We compare four different solution methods, namely the

ime-indexed formulation (TIF), the sequence-based formulation

SBF), the block-based branch-and-bound algorithm (BB), and the

uess-and-check algorithm (GC). The overall results are given in

able 2 . 
We first compare the two MIP formulations TIF and SBF. In gen-

ral, SBF performs better than TIF. The main reason is that the

umber of variables in TIF strongly increases with 
j ∈ J p j , leading

o a significant growth of the associated branch-and-cut tree gen-

rated by the solver. We will see in Section 6.3 , nevertheless, that

IF is slightly better than SBF when job processing times are small

nd n ≥ 30. 

BB is very fast for instances of size n = 10 , can solve all in-

tances with size n = 20 , and struggles to solve instances of size

 ≥ 30. GC, finally, clearly outperforms all the other solution meth-

ds. Unlike the other three methods, GC solves all instances of size

 = 30 in only a few seconds. It fails to solve only three instances

f size n = 40 and only seven instances with n = 50 within the

ime limit. 

Figs. 4–7 depict the number of instances solved to optimal-

ty within different time limits for the different solution methods.

ig. 4 , for instance, shows that TIF does not solve any instance of

ize n = 50 within the first 10 seconds, whereas the other three

ethods all solve at least some instances even within one sec-

nd. BB, in particular, performs remarkably well from the start (see

ig. 6 ): it solves more than 60% of the instances within the first

econd. This performance could be explained by the early detec-

ion of early-opt solutions and the tightness of the bounds in some

nstances. This good performance in the first second, however, is

ot continued with larger runtimes: BB does not solve many ex-

ra instances after the first seconds, especially when n > 30. GC, by

ontrast, exhibits a good performance during the first seconds, but

lso successfully solves more and more instances as the time limit

ncreases (see Fig. 7 ). When comparing the performance of BB and

C for the first second, we observe that GC performs slightly bet-

er for instances with n ≤ 40, while it performs worse for instances

ith n ≥ 50. To support this observation, we refer to Figs. 6 and 7 ,

nd also to Table 6 in Section 6.4 , where results are reported also

or n > 50. 

.3. Sensitivity analysis 

We now examine the performance of the different solution

ethods under specific parameter settings. We first study the ef-

ect of the range from which processing times are generated (via

arameter α). Table 3 compares all four solution methods when

= 10 and 100. We find that the performance of TIF and GC sig-

ificantly deteriorate with increasing α, whereas SBF and BB are

nly slightly sensitive to α. This is not surprising, as both TIF and

he first DP recursion in GC are time-indexed. We also observe that

IF performs better than SBF when α = 10 and n ≥ 30. 

Table 4 shows the effect of varying the parameter τ . SBF has

he best performance when release dates are tight ( τ = 0 . 5 ) and

he worst when release dates are neither tight nor loose ( τ = 1 . 0

r 1.5). This is not illogical: the linear relaxation of SBF for in-

tances with tight release dates is generally tight. Interestingly, SBF

erforms better than the other three methods when n = 50 and

= 0 . 5 , and worse than the other three when n = 50 and τ ≥ 1.0.

IF improves as τ goes up, whereas BB and GC are less performant

ith increasing τ . For small instances ( n ≤ 20), BB is the most effi-

ient method when τ ≤ 1.0, while for τ ≥ 1.5, GC is the best. 

The parameter η controls the capacity of the inventory stor-

ge. Table 5 shows the results when η = 1 (low storage space), 3

medium), and 5 (large). All methods become faster with increas-

ng η. 

.4. The performance of BB and GC on larger instances 

In order to investigate the behavior of BB and GC on larger in-

tances, we generate another dataset, following the same proce-
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Fig. 4. Number of instances solved to optimality by TIF within different time limits. 

Fig. 5. Number of instances solved to optimality by SBF within different time limits. 

Fig. 6. Number of instances solved to optimality by BB within different time limits. 

Fig. 7. Number of instances solved to optimality by GC within different time limits. 
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Table 2 

Average CPU times (in seconds) and number of unsolved instances within the time limit (out of 96, 

between parentheses) for n = 10 , 20, 30, 40 and 50. 

Method n 

10 20 30 40 50 

TIF 10.22 (0) 299.93 (22) 525.11 (44) 600.27 (67) 690.07 (86) 

SBF 0.10 (0) 1.35 (0) 109.42 (4) 292.47 (21) 512.31 (42) 

BB < 0.01 (0) 1.94 (0) 193.86 (17) 271.60 (26) 354.25 (34) 

GC < 0.01 (0) 0.09 (0) 5.02 (0) 48.04 (3) 99.15 (7) 

Table 3 

Average CPU times (in seconds) and number of unsolved instances within the time limit (out of 48, between 

parentheses) for n = 10 , 20, 30, 40 and 50, and α = 10 and 100. 

Method α n 

10 20 30 40 50 

TIF 10 0.26 (0) 4.42 (0) 90.54 (2) 199.56 (6) 379.13 (12) 

100 20.19 (0) 595.45 (22) 959.69 (42) - (48) - (48) 

SBF 10 0.11 (0) 1.55 (0) 131.57 (2) 347.90 (12) 565.74 (23) 

100 0.10 (0) 1.15 (0) 87.27 (2) 237.04 (9) 458.88 (19) 

BB 10 < 0.01 (0) 3.75 (0) 130.41 (6) 187.95 (9) 312.67 (15) 

100 < 0.01 (0) 0.13 (0) 257.30 (11) 354.17 (17) 395.83 (19) 

GC 10 < 0.01 (0) 0.05 (0) 0.57 (0) 6.94 (0) 72.17 (3) 

100 < 0.01 (0) 0.12 (0) 9.47 (0) 89.14 (3) 126.13 (4) 

Table 4 

Average CPU times (in seconds) and number of unsolved instances within the time limit (out of 24, between 

parentheses) for n = 10 , 20, 30, 40 and 50, and τ = 0 . 5 , 1.0, 1.5 and 2.0. 

Method τ n 

10 20 30 40 50 

TIF 0.5 22.03 (0) 505.30 (12) 593.99 (13) 730.00 (16) 895.77 (20) 

1.0 7.41 (0) 404.26 (7) 579.40 (13) 596.19 (13) 739.43 (16) 

1.5 4.50 (0) 186.82 (2) 492.06 (11) 564.35 (13) 562.09 (12) 

2.0 6.96 (0) 103.35 (1) 435.00 (7) 510.55 (12) 562.98 (12) 

SBF 0.5 0.11 (0) 0.17 (0) 0.80 (0) 1.16 (0) 4.15 (0) 

1.0 0.10 (0) 2.22 (0) 124.97 (2) 330.33 (6) 785.58 (16) 

1.5 0.10 (0) 1.44 (0) 118.83 (0) 656.62 (14) 678.59 (14) 

2.0 0.11 (0) 1.58 (0) 193.08 (2) 181.79 (1) 580.91 (12) 

BB 0.5 < 0.01 (0) < 0.01 (0) 3.31 (0) 88.33 (2) 250.00 (6) 

1.0 < 0.01 (0) 0.02 (0) 52.24 (0) 459.23 (11) 666.67 (16) 

1.5 < 0.01 (0) 2.96 (0) 344.88 (8) 250.00 (6) 208.33 (5) 

2.0 < 0.01 (0) 4.79 (0) 375.00 (9) 291.67 (7) 292.00 (7) 

GC 0.5 < 0.01 (0) 0.14 (0) 0.40 (0) 6.13 (0) 11.06 (0) 

1.0 < 0.01 (0) 0.04 (0) 0.23 (0) 11.91 (0) 128.97 (2) 

1.5 < 0.01 (0) 0.06 (0) 7.24 (0) 75.78 (1) 72.11 (1) 

2.0 < 0.01 (0) 0.11 (0) 12.21 (0) 98.36 (2) 184.46 (4) 

Table 5 

Average CPU times (in seconds) and number of unsolved instances within the time limit (out of 32, between 

parentheses) for n = 10 , 20, 30, 40 and 50, and η = 1 , 3 and 5. 

Method η n 

10 20 30 40 50 

TIF 1 15.76 (0) 384.49 (11) 608.47 (18) 735.86 (22) 817.29 (23) 

3 8.26 (0) 242.54 (5) 490.31 (13) 550.54 (16) 659.09 (20) 

5 6.65 (0) 272.77 (6) 476.55 (13) 514.42 (16) 593.82 (17) 

SBF 1 0.11 (0) 1.67 (0) 153.92 (3) 412.22 (10) 502.58 (13) 

3 0.12 (0) 1.40 (0) 96.97 (0) 248.33 (6) 559.85 (15) 

5 0.08 (0) 0.98 (0) 77.37 (1) 77.37 (5) 474.50 (14) 

BB 1 < 0.01 (0) 4.94 (0) 289.94 (8) 563.17 (18) 656.50 (21) 

3 < 0.01 (0) 0.16 (0) 128.88 (4) 187.50 (6) 281.25 (9) 

5 < 0.01 (0) 0.72 (0) 162.76 (5) 62.50 (2) 125.00 (4) 

GC 1 < 0.01 (0) 0.07 (0) 2.51 (0) 76.55 (2) 137.78 (3) 

3 < 0.01 (0) 0.07 (0) 3.92 (0) 64.45 (1) 115.38 (3) 

5 < 0.01 (0) 0.12 (0) 8.64 (0) 3.13 (0) 44.30 (1) 
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Fig. 8. Number of large instances solved to optimality by GC within different time limits. 

Table 6 

Number of instances solved within the first second (out of 96) 

for large instances. 

Method n 

60 70 80 90 100 

BB 56 63 60 59 56 

GC 43 31 28 22 21 
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dure as in Section 6.1 but now with n = 60 , 70, 80, 90 and 100

jobs. 

We have observed (the details are not reported here) that

BB rarely solves additional instances after the first second when

n ≥ 50. We therefore first run both BB and GC on the new instances

with a time limit of one second. Table 6 shows that, within this

time limit, BB solves more instances than GC. More interestingly,

the proportion of the instances that BB solve in this timespan is

always around 60%, regardless of n . 

In another experiment, we apply GC to this dataset with a time

limit of up to 10 0 0 seconds; Table 7 contains the detailed com-

putational results. The table shows that GC solves the majority of

the instances, although obviously this becomes more difficult as n

gets closer to 100. The number of instances solved within different

time limits is plotted in Fig. 8 to provide a more elaborate picture

of the performance of GC for large n . 

7. Summary and conclusion 

In this paper, we have studied single-machine scheduling with

release dates and inventory constraints to minimize the makespan.

We have shown that the problem is strongly NP-hard, and we

have proposed two MIP formulations, a branch-and-bound algo-

rithm and a guess-and-check algorithm. The novelty of our branch-

and-bound method is its block-based representation of a solution,
Table 7 

Average CPU times and number of unsolved large instan

n 

60 70 80 

Overall 203.55 (16) 286.36 (24) 252.0

α = 10 136.79 (6) 262.85 (12) 215.9

α = 100 270.32 (10) 309.87 (12) 288.0

τ = 0 . 5 75.26 (1) 160.94 (2) 235.8

τ = 1 . 0 224.56 (3) 357.10 (8) 500.5

τ = 1 . 5 341.17 (8) 232.25 (5) 222.0

τ = 2 . 0 173.23 (4) 395.15 (9) 49.66

η = 1 201.83 (6) 406.14 (12) 254.6

η = 3 190.76 (5) 347.71 (10) 230.2

η = 5 218.07 (5) 105.23 (2) 271.1
hile the specific character of the guess-and-check algorithm re-

ides in its dynamic-programming-based verification procedures.

e have compared the computational performance of the branch-

nd-bound procedure, the guess-and-check algorithm, and the two

IP formulations on a set of test instances. We observe that

he guess-and-check algorithm outperforms the other methods for

ost of the problem settings. 
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ppendix 

roof of Theorem 1. We show the NP-hardness of 1 | in v , r j | C max

y a reduction from 3-PARTITION. This reduction shows that de-

ermining the feasibility of an instance of 1 | in v , r j | C max is already

trongly NP-complete. 

Problem 3-PARTITION 

Instance : 3 m + 1 integers α1 , α2 , . . . , α3 m and β such that 

β/ 4 < α j < β/ 2 and 
∑ 3 m 

i =1 αi = mβ . 

Question : Does there exist a partition {A 1 , . . . , A m } such that ∑ 

i ∈A s αi = β for all s ∈ { 1 , . . . , m } ? 
Given an instance of 3-PARTITION, we can construct an instance

f 1 | in v , r j | C max as follows: 

• J − = { 1 , 2 , . . . , 3 m } , J + = { 3 m + 1 , 3 m + 2 , . . . , 4 m } , I = I = β . 
0 C 

ces within the time limit for GC. 

90 100 

1 (22) 354.34 (31) 406.00 (36) 

5 (10) 314.93 (13) 413.13 (19) 

8 (12) 393.75 (18) 398.88 (17) 

4 (5) 249.43 (5) 403.10 (9) 

4 (11) 572.52 (12) 452.04 (9) 

2 (5) 463.09 (11) 304.83 (7) 

 (1) 132.27 (1) 464.03 (11) 

1 (7) 363.00 (11) 391.98 (12) 

6 (7) 301.25 (9) 552.46 (16) 

7 (8) 398.77 (11) 273.57 (8) 
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Fig. A1. The schedule associated with the proof of Theorem 1 . 
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Fig. A2. Illustrations for the proof of Theorem 3 . (a) Illustration of case (a) and (b) 
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• For each job j ∈ J −, we set p j = α j , δ j = −α j and r j = 0 . 
• For each job j ∈ J + , we set p j = 1 , δ j = β and r j = ( j −

3 m )(β + 1) − 1 . 

Any feasible solution to this instance of 1 | in v , r j | C max will have

he structure of the solution in Fig. A.1 , where A s ⊂ J − for every

 ∈ { 1 , . . . , m } and A s 1 ∩ A s 2 = ∅ for every pair (s 1 , s 2 ) ∈ { 1 , . . . , m } 2
ith s 1 
 = s 2 . Thus, if there exists a feasible solution to the instance

f 1 | in v , r j | C max then the answer to the associated instance of 3-

ARTITION is YES, because {A 1 , . . . , A m 

} will be a valid partition,

ith 

∑ 

i ∈A s αi = β for all s ∈ { 1 , . . . , m } (as is shown in Fig. A.1 ).

onversely, if there is no feasible solution to the 1 | in v , r j | C max in-

tance then the answer to the 3-PARTITION instance is NO. To see

his, it suffices to argue that if such a valid partition {A 1 , . . . , A m 

}
ith 

∑ 

i ∈A s αi = β for all s ∈ { 1 , . . . , m } existed, then we could

ave constructed a feasible solution to the associated instance of

 | in v , r j | C max using that partition. We conclude that 1 | in v , r j | C max 

s NP-hard in the strong sense. 

The problem will remain strongly NP-hard even if the inventory

apacity is unlimited. The proof is very similar, but with I C = + ∞ .

et m (β + 1) be a threshold on the objective function. If the op-

imal objective value for the foregoing instance is m (β + 1) then

he associated {A 1 , . . . , A m 

} is a valid partition. In this case, since

he inventory level cannot go below zero, it also never passes β
n any optimal solution. If the optimal objective value for this in-

tance is larger than m (β + 1) , on the other hand, then there is no

alid partition to the 3-PARTITION instance. �

roof of Theorem 2. The NP-hardness of 1 | in v | C max is proved sim-

larly to Theorem 1 . Given an instance of 3-PARTITION, we can con-

truct an instance of 1 | in v | C max in the same way as before, but

ithout release dates. Due to the choice of I C , any feasible solution

ill still resemble the schedule in Fig. A.1 , and thus determining

he feasibility of an instance of 1 | in v | C max is NP-complete in the

trong sense. �

roof of Theorem 3. Clearly, every feasible sequence (if any ex-

sts) leads to a semi-active schedule with the same makespan

j ∈ J { p j } and is optimal. Therefore, to prove the theorem, it suf-

ces to describe an O( n )-time algorithm that finds a feasible solu-

ion. If I 0 + 

∑ 

j∈ J δ j < 0 or I 0 + 

∑ 

j∈ J δ j > I C then there is no feasible

olution. Otherwise, we construct a sequence with the following

rocedure. 

Case (a): we construct two sets L + and L −. Set L + initially con-

ains all the jobs in J + and L − := J −. We start with an empty se-

uence of jobs, and we stepwise append jobs from the start of

he sequence, as follows. For the first position in the sequence, if

 0 ≥ δ−
max then we (randomly) select a job j 1 ∈ L −, place it in the

rst position and remove it from L −. Otherwise, I 0 + δ+ 
max ≤ I C and

 1 is selected (and removed) from L + . In both cases, the bounds

n the inventory position are respected. In the following steps,

e assign a job to the k th position in the sequence ( k = 2 , . . . , n ).

f I 0 + 

∑ k −1 
κ=1 δ j κ ≥ δ−

max then we choose j k ∈ L −, otherwise j k ∈ L + .
ig. A.2a provides a schematic illustration of a sequence produced

y this procedure, which always outputs a feasible solution. If in

ny of the above steps | L + | = 0 or | L −| = 0 then we are obliged
o choose a job from the other set, but this will not influence the

easibility of the resulting sequence. 

The construction of the two sets requires O( n )-time and the

onstruction of the sequence also takes O( n )-time. Therefore, the

rocedure can be done in O( n )-time. 

Case (b): If I C ≥ δ+ 
max + δ−

max − 1 and all inventory modifications

s well as I 0 and I C are integers, then the same procedure as in

ase (a) can be used to generate a feasible sequence, because at

ny step k , I 0 + 

∑ k −1 
κ=1 δ j κ < δ−

max implies I 0 + 

∑ k −1 
κ=1 δ j κ ≤ I C − δ+ 

max 

nd then we can start any job j k from L + . Even if I C and I 0 are

ot integer but all δj are integer, then one can modify I C and I 0 (in

olynomial time) to an integer value in an equivalent instance. �

roof of Theorem 4. Consider a feasible sequence σ that satisfies

onditions (a), (b) and (c). Following Conditions (b) and (c), we

ave: 

 max ( σ) = C σn 
( σ) = r σk 

+ 

n ∑ 

s = k 
p σs 

. 

onversely, Condition (a) ensures that none of the jobs σk , . . . , σn 

an be started earlier than r σk 
, which implies that 

 max ( σ
′ ) ≥ r σk 

+ 

n ∑ 

s = k 
p σs 

= C max ( σ) 

or any feasible sequence σ′ . We therefore conclude that σ is

ptimal. �
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