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Integrating Household Travel Survey and Social
Media Data to Improve the Quality of OD

Matrix: A Comparative Case Study
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Abstract— Collecting effective data is a fundamental step in
developing transport networks and related research. Social media
have become an emerging source of data for traffic analyses.
In this paper, we demonstrate that the function of a city influences
the utility of social media data in travel demand models by
generating models for eight US cities with different functions.
Data from Twitter and Foursquare, as well as other socio-
demographic information, are considered as independent vari-
ables in Origin-Destination trip regression models generated via
a Random Forest regression technique. Model performance with
and without use of social media data are compared via 10-fold
cross-validation. The results indicate that the accuracy of the
models for all eight cities improved when independent variables
based on social media data were included. The performance
was most improved in metropolitan areas, followed by rural
and tourist areas. Inspired by this finding, we conclude that the
city function influences the utility of social media data in travel
demand models. Meanwhile, we create models based on trip
purpose and transport mode to explore other factors that may
impact the efficiency of applying social media data in transport
research.

Index Terms— Twitter, Foursquare, random forest regression,
travel demand estimation, multi-city model.

I. INTRODUCTION

COLLECTING effective transport data is the first step in
developing traffic networks and related research. Due to

improvements in techniques, there is an increasing number of
available data sources [1]. However, it usually takes traditional
data sources, such as a household travel survey (HTS), and a
large budget, labour force and time period to collect transport
data. In order to address this problem, novel data sources such
as social media [2], smart card tracking systems [3] and taxi
trajectories [4], [5] have been considered by researchers. These
may provide additional information that helps researchers to
develop new ideas in transport research, including prediction
of people’s locations [6]–[8], their individual behaviours [9]
and mobility patterns [10], [11].
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Compared to traditional data acquisition methods, use of
novel data sources can save both time and money [12].
However, some of them, such as taxi trajectories, are not
easily accessible to most researchers. Among these new data
sources, social media are considered to have relatively easy
access via online applications and have large user coverage.
Especially in the past decade, user groups have expanded
dramatically. According to statistics, the number of active
Twitter user accounts was greater than 336 million at the end
of quarter 1, 2018 [13]. Meanwhile, the information posted is
increasingly rich and may include users’ real-time positions,
timelines and publicly-registered information. Accordingly,
social media data mining has been applied to various areas
of transport research. In the field of mobility pattern analysis,
for instance, Hasan et al. presented an appropriate method
for extracting large-scale data from social media to predict
users’ missing activity patterns in the timeline of social media
data. This method tries to solve a major problem of social
media-based data: the activity patterns provided are often
disaggregated [14]. In addition, Huang et al. declared that
Twitter is a useful data source for activity pattern analysis.
By combining Twitter data with American Community Survey
data, study [15] introduced an approach to predicting users’
home and work locations. Liu et al. studied the mobility
patterns of local and visiting Twitter users and reported
that short-distance movement comprised the majority of the
activity of both of them [16]. Other studies that have combined
social media and transport data include studies on users’
activity spaces [17], tourist destination and accommodation
choices [18]–[20] and other individual behaviours [21]–[23].

As well as facilitating mobility pattern analysis, social
media data can provide additional information for the creation
of travel demand models. Hence, social media are potential
data sources for transport network planning [24]. In 2014,
Gao et al. provided a method for extracting trips from collected
Tweets (messages posted on the Twitter online platform) based
on their posting times and locations. The study reported that
if a user posts Tweets at different locations within four hours,
an origin-destination (OD) trip can be inferred. The model
has been tested in the Greater Los Angeles Area [25]. This
research provided a valid method for using OD trips extracted
from social media data for transport research. A more recent
study proposed an approach to applying Twitter data to the
validation of a travel demand model. The author applied
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latent class analysis and a Tobit regression model, which
is a linear parametric-based model [26], to estimate travel
demand among different sub-regions in Los Angeles based
on Twitter data and other socio-demographic variables. The
study presented an appropriate model for converting an OD
matrix extracted from Twitter data into an official statistical
matrix [6]. Using a similar approach, Lee et al. compared OD
matrixes generated by social media data and the California
State-wide Travel Demand Model (CSRDM). The study found
four classes of relationship between CSTDM ODs and Twitter-
based ODs, which represent four different types of trips made
in California [27].

Based on a review of relevant studies, there are two main
research gaps remaining. 1) In travel demand models based
on social media data, most variables extracted from socio-
demographic or social media information are not linearly
related to OD travel demand. Therefore, to model demand
more accurately, a non-linear or non-parametric regression
technique may be required. In fact, several non-parametric
regression models based on machine learning techniques have
recently been applied to travel demand models. For example,
Djukic discussed the use of dimensionality reduction and
principal component analysis on real OD demand estimation.
They defined a new transformed variable called demand prin-
cipal components and demonstrated an improvement in OD
estimation accuracy [28]. In addition, Cheng proposed a new
model for OD matrix estimation based on a random forest (RF)
algorithm and validated it with HTS statistics [29]. Due to
the fact that OD trip data extracted from social media are
strongly correlated with HTS OD travel demand [25], it has
been suggested that social media data and machine learning
regression techniques be combined to improve model accuracy.
2) It is worth noting that most of the research mentioned above
has focused on a single city, such as Greater Los Angeles [25]
or New York City [30]. However, the utility of social media
data may also be influenced by the functions of the target
city. Comparing the performance of models in regions with
different city functions could help increase the efficiency of
social media data utilization in travel demand models.

In light of these research gaps, the objective of this
study was to determine whether the city’s function influences
the utility of social media data in travel demand models.
In this paper, eight US cities or regions with three different
functions— metropolis, rural or tourist—were selected as
target regions. Travel demand models were built in those
cities based on a random forest (RF) technique. The model
contains variables for OD trips extracted from Twitter, check-
ins to locations collected from Foursquare, and other socio-
demographic information. Comparison of the performance of
regression models that do or do not contain social media
data for different cities demonstrates that social media data
generally improve travel demand estimates. The models work
best for metropolitan cities, followed by rural and tourism
areas. This paper also tries to determine why the worst model
improvement was for tourism areas. The influences of trip
purpose and transport mode on the models are also discussed.

The paper contains six sections. Section II introduces the
data used in the regression model, while Section III discusses

the methodology. The results are presented in Section IV
and discussed in Section V. Finally, Section VI concludes by
presenting the key findings and highlighting further research
directions.

II. DATA DESCRIPTION

In this study, we use social media as a data source and
apply travel demand regression models to eight cities with
different functions. The subsections below provide a detailed
description of the data applied in the model, which contain 1)
descriptions of target regions; 2) data from HTS and rel-
evant travel demands; 3) information extracted from social
media data, including Twitter and Foursquare; and 4) socio-
demographic data and other land-use data.

A. Description of Target Regions

Eight US target cities or regions with different city
functions were used: Atlanta, Georgia; Baltimore City, Mary-
land; Chicago, Illinois; Seattle, Washington; the Champaign-
Urbana-Savoy (CUS) urban agglomeration in Illinois, Idaho;
Daytona Beach, Florida; and the Northeast (NE) Florida
urban agglomeration. These cities have different functions and
industry mixes of different proportions. Compared with other
regions in the world, there are two advantages to selecting
target cities from the USA. 1) High data quantity and quality:
The majority of US states have detailed and accurate statistics
available. The origins and destinations of trips collected from
HTSs, as well as socio-demographic data, could be detailed
collected in block or TAZs level. Meanwhile, there are high
numbers of active social media users and posted tweets.
2) Most relevant research has been done in the US, which
provides a useful benchmark. The eight target regions can
be divided into three groups according to their functions.
1) Metropolis group: Compared with rural and tourist regions,
metropolitan cities always have larger areas and populations.
Meanwhile, they may have different central functions and
better foundations for residents’ survival and development.
This group includes Atlanta (US Metro ranking 9 [31]),
an important industrial center and key transportation hub;
Baltimore (US Metro ranking 22 [31]), the largest independent
city and one of the US’s major harbors; Chicago (US Metro
ranking 3 [31]), a centre of economics, trade, light and
heavy industry and culture; and Seattle (US Metro ranking
15 [31]), a computer science development center. 2) Rural
group: including the CUS region, one of the major rural
agglomeration areas in Illinois; and Idaho, the largest rural
state in America. 3) Tourist group: including Daytona Beach
and Northeast Florida. In rural and tourist areas, a major part of
the economy is involved in the tourist industry [32], [33]. Rural
and tourist areas have relatively small populations and areas,
and rarely provide the functionality of a city. Accordingly, they
usually form urban agglomerations with other nearby cities
that have similar functions.

B. Dependent Regression Variable: HTS-Based
Travel Demand

The Household Travel Survey (HTS) is published by the
Metropolitan Travel Survey Archive [34]. It is a public website
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Fig. 1. Atlanta travel demand based on HTS data.

providing statistics on local residents’ trips together with other
information such as personal information, transport methods
and travel purposes. For each target region, the data were last
updated in around 2010. In order to generate an OD travel
demand matrix, each target city was divided into subareas
according to the ZIP Code Tabulation Areas (ZCTAs) sys-
tem. Then, the origins and destinations of HTS trips were
aggregated into different regions to create an OD matrix. Only
links with more than ten trips were considered in the model.
This helps reduce error under the premise of considering as
many trips as possible. Then, the OD matrix was reshaped
to an n-by-1 vector. This vector is dependent variable set of
the regression models, which is X(1) . . . X(n) in Equation (1),
Section III. Taking Atlanta as an example, firstly, based on
the ZCTAs, the city was divided into 142 regions. Then, the
origin and destination of trips extracted from HTS data were
aggregated to each region to create an OD travel demand
matrix with 20,164 (142×142) links. After selecting links with
more than ten trips and matrix reshaping, an 847-by-1 vector
was created and used as the dependent variable of the Atlanta
regression model. Figure 1 illustrates the ZCTA regional
division of Atlanta and the 847 links considered in the model.
In the figure, thicker lines link OD pairs with higher travel
demand based on HTS statistics.

Table I in Section II.C details the dependent variable infor-
mation used in each city’s regression model. It can be seen that
although only links with more than ten trips were considered,
at least 70% of trips from the HTS data were considered in
each city’s regression model.

C. Independent Regression Variables: Data
Extracted From Social Media

Twitter data were collected via the Twitter REST application
programming interface (REST API). APIs are public platforms
that allow developers to access features or data for Twitter and
its related applications [35]. REST APIs can collect all tweets

TABLE I

ESSENTIAL INFORMATION OF TARGET CITIES

posted within a specific area and period. The memory limit is
10 days and the download limit is 600 tweets per minute [36].

REST APIs were used to collect tweets posted in each
ZCTA suburb of the target cities. Then, tweets with geotagged
information were selected and OD trips were extracted based
on the algorithm mentioned above [25]. When two tweets
were posted by a single user from different suburbs within
a certain time period (4 hours), it was regarded as a single
trip. Overly-frequent posts by a user with the same location
or trajectory were considered to originate from social robots
and were excluded. Table I details the dependent variable and
travel demand information extracted from Twitter for each
target city.

Foursquare data were also used. Check-ins to seven types of
venue—Entertainment, School/College, Food, Nightlife, Out-
door/Sports, Professional and Shopping—in different ZCTA
regions were collected by a third-party API. The API provided
the top-50 registered landmarks with the most check-ins in
the search area of a selected venue type. The sum of check-in
numbers, to some extent, represents the function and land use
of the target region. For instance, if the number of check-ins
to Shopping venues is dramatically higher than that of other
venues in a specific suburb, that suburb was considered to be
a shopping centre. Landmarks registered on Foursquare have
geolocations attached. By providing the centroid and range of
a given suburb, the API provides the number of check-ins at
a selected venue within that range. There were seven venue
types mentioned above. Therefore, for each link, Foursquare
provided 14 variables with the total number of check-ins for
different venue types. For these 14 variables, seven described
the origin of the link while seven described the destination.

D. Other Independent Variables

Besides the independent variables extracted from social
media, ten more variables were applied in the regression:
area, population and its density, housing number and the
density of origin and destination suburbs respectively. These
variables were collected from a census and socio-demographic
database [37] and related calculations. On the one hand, these
variables are the most common choices for use in travel
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demand models. On the other hand, the eight target regions
belonged to different US states, which have different statis-
tical systems. These variables were provided by Proximity
One and the Census 2010 ZIP code Demographic Profile
Dataset. Another two variables used were the straight-line
distance (km) between the centroid of origin and destination
suburbs, and a binary variable named ‘same OD mark’. For
this binary mark, 1 indicates the link has the same origin and
destination, while 0 indicates they are different.

III. METHODOLOGY

A. Random Forest Regression

The random forest (RF) algorithm is a highly flexible
machine learning technique that can be applied to both
regression and classification tasks [38]. It is claimed to be
“unexcelled in accuracy among current algorithms” [39].
It can estimate the significance or correlation of each
independent variable automatically. Meanwhile, due to the
randomly-selected nature of the training samples and features,
the probability of over-fitting is relatively low. Cheng’s
research reported that, compared with linear regression,
regression tree algorithms and simple neural networks,
random forest has better performance when applied to travel
demand models [29]. The RF approach can give a model
greater explanatory power as there is a direct indicator
of which independent variables are more important in the
regression process. Therefore, RF regression was used as the
basic regression model in this paper.

The learning unit of RF is called a classification and
regression tree (CART). The basic idea of a CART algorithm
is to divide a given space into a set of rectangular areas and
then fit the points in each area to a constant or to a simpler
model. The most common CART algorithm is called a binary
tree, which divides each area into two subareas recursively and
decides the output for each one. Mathematically, for a given
training data set D, we have [40]:

D =
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(m), y(m)
)}

(1)

where x(1) . . . x(m) is a vector containing dependent variables
for sample 1 to sample m, and y(1) . . . y(m) is an independent
variable for sample 1 to sample m.

After training, the space is divided into J different subareas.
For a given testing sample n, the output of a regression tree
could be expressed as [40]:

m
(

x(n)
)

=
J∑

j=1

v j ∗ I (x ∈ R j ) (2)

where:
x(n) = a vector containing the dependent variables of a given

testing sample n;
J = the total amount of subareas;
j = an index of each subarea;
v j = regression output of subarea j ;
I (.) = an indicator function returning 1 if its argument is

true or 0 otherwise; and
R j = subarea j , where

⋃J
j=1 R j = 1,

⋂J
j=1 R j = ∅.

To create a binary regression tree, one algorithm involves
choosing an optimized split variable and its split value,
then dividing one space into two subareas recursively. After
repeating the steps for each subarea to meet a stopping
criterion, for instance, an error threshold, a regression tree
will be generated [41].

RF regression is kind of ensemble learning technique
which uses a bagging algorithm to integrate several regression
trees [42]. These regression trees are independent of each other
and the estimates of the forest are determined by their voting
and mode. The training algorithm can be described as:

1) For a provided training set with N samples and M fea-
tures, each regression tree selects N samples randomly.
The same sample could be selected repeatedly, which is
called a bootstrap sample method [43].

2) Train each regression tree with m randomly selected
features where m < M . Repeat the step of creating
CART until each regression tree meets the requirements.

3) For a given test input, estimate its output with each
regression tree and vote to determine the final results,
which is called a bagging process.

The importance of the variables in the regression can be
tested following the steps below. This method is called out-
of-bag estimation of feature importance [42].

1) Compute the regression root mean squared
error (RMSE) for the given regression forest.

2) Permute the values for the selected variables, train and
test the model again to calculate its new RMSE.

3) Repeat steps 1) and 2) several times to reduce bias. The
average difference between the old and new RMSEs can
reflect the importance of the variables. The higher the
value, the more important the variable is.

B. K-Fold Cross-Validation

K -fold cross-validation is a model testing technique for
examining the performance of the model using data collected
iteratively. Theoretically, during the process, the primary data-
base A is randomly divided into k packages of equal size.
Each package contains M/K samples (round down). One of the
packages will be selected for testing and the rest of the samples
are used as training data. The cross-validation process contains
k iterations until each package has been used as testing data
exactly once [44]. K -fold cross-validation is an appropriate
method for model testing, especially in cases of insufficient
data [45]. For our regression model, to make full use of the
collected Twitter data, 10-fold cross-validation was applied.
For one testing fold, the regression residuals as well as the
RMSE will be reported, which are important standards for
evaluating our regression model.

IV. RESULTS

A. Model

By applying the variables mentioned in Section III above,
two regression models based on an RF algorithm were gen-
erated for each target city. The first one contained distance,
‘same OD mark’, area, population and its density, housing
number and housing density. The second model considered
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TABLE II

REGRESSION RESULTS FOR EIGHT TARGET CITIES

social media data, which contains all the mentioned variables.
All the RF regression models contained 1000 binary regression
trees and each of them was trained by a maximum of six
features. Then, 10-fold cross-validation was applied to test the
performance of the models.

B. Regression Result

Table II indicates the regression results of the models with
and without data from social media. In this paper, the decrease
in the regression RMSE, which determines the differences
between predicted and ground truth values, was selected as
a standard to measure performance improvements.

As shown in the table, all of the regression mod-
els were improved by applying social media data but to
different degrees. The travel demand models were most
improved in metropolitan areas (>8%), followed by rural areas
(around 4%) and tourist area (around 1%).

Table III illustrates the importance of each variable in
the model using the out-of-bag estimates mentioned in
Section III.A. In the table, Model 1 is the logogram of the
model without social media data while Model 2 is the model
with social media data. The variables with higher out-of-
bag importance values are more significant in the regression.
The table shows that for most models, link variables, inner
marker and distance were more important than other variables.
Moreover, social media data played a more important role
in models of metropolitan areas, while distance was more
important for the other target regions.

C. Suburb-Based Analysis

This section presents the reason why the improvement was
better in metropolitan areas and worst target tourist areas.
Figure 2 is a series of graphs that illustrate the problem by
taking Atlanta, Daytona Beach and NE Florida as an example.

Basically, the main cause of the problem is that social
media and HTS data do not match well in the target tourist
areas. A similar conclusion can be drawn from Table III.
As shown in Figs. 2(a), 2(c), and 2(e), the distribution of
trips according to HTS data was distributed relatively evenly
around the city and more likely to aggregate towards the
city centre. However, unlike Atlanta, for which trips extracted
from Twitter had similar distribution as HTS data (as shown
in Fig. 2(b)), travel demand extracted from Twitter was mostly
aggregated to several specific links in the target tourist areas
in Figs. 2(d) and 2(f). Although the origins and destinations
of those links are popular zones in the tourist area, such as

TABLE III

VARIABLE OUT-OF-BAG IMPORTANCE ESTIMATION
(% INCREASE IN RMSE)

the beach, famous attractions, and airport or nearby transport
stations, social media data are unable to provide enough
help to other links in the transport network. Therefore, the
improvements in travel demand models in tourist areas were
the worst among the target areas Moreover, most HTS data
were collected from local residents. However, in tourist areas,
a large percentage of tweets were posted by tourists. Consid-
ering this condition of mismatch, predictably, the mentioned
problem may influence the utility of social media data in other
tourist areas and in related research. Therefore, suitable data
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Fig. 2. (a). Atlanta HTS travel demand. (b). Atlanta Twitter travel demand. (c). Daytona Beach HTS travel demand. (d). Daytona Beach Twitter travel
demand. (e). NE Florida HTS travel demand. (f). NE Florida Twitter travel demand.

cleaning should be performed when using social media data
from tourist areas.

V. FURTHER DISCUSSION

A. Purpose-Based Discussion

HTS always reports trips generated by local residents
together with their travel purposes. In this paper, the influence
of travel purpose on the utility of social media data is discussed
as well. To do this, relevant trips were considered in three
groups: Professional (School and Work trips), Shopping and
Entertainment. Although other categories, for example, health
(medical care) can generate a number of trips as well, it lacks

data from either socio-demographic or social media. So we do
not take them into consideration at this stage. The numbers of
trips for each purpose are shown in Fig. 3.

Applying similar methods, the results of the RF regres-
sion model and the regression results with and without
social media data were compared. For each purpose group,
the dependent variable was HTS-data trips of different pur-
poses. The independent variables included all Twitter-data
trips, distance, other socio-demographic data and different
venues from Foursquare data. The model for Professional pur-
poses contained School/College and Professional check-ins.
The Shopping group model contained check-ins for Shopping
venues, and the Entertainment model contained check-ins for
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Fig. 3. Trips taken for each type of purpose.

Fig. 4. Improvement in purpose models compared with origin model.

the other four venues. Using the improvement in RMSE as a
standard, the results are shown in Fig. 4 below:

The figure suggests that the trends of each group were not
significantly different to those of the origin model (black line).
However, the professional model (red line) usually performed
better. This may have two reasons. Firstly, it might be easier
to label schools or colleges by check-ins from Foursquare
because they usually have larger areas and fewer distractions.
That offers the models more information for determining trip
origins and destinations. In addition, compared with other
groups, School or Professional trips are repeated daily and,
therefore, are more predictable. Once one School or Profes-
sional trips is extracted from Twitter data, it represents a large
number of trips with similar origins and destinations, resulting
in a more efficient utilization of social media data.

B. Mode of Transport-Based Discussion

Applying a similar model, we now discuss the influence
of transit mode on the travel demand regression with social
media data. Modes of transport can be broadly divided into
three groups: walk & bike, private vehicle and public transport.
Figure 5 shows the trip numbers in each mode for different
target regions according to HTS data. It can be seen that in
most target regions, trips reported by HTS were made by
private car. Because there may be small numbers of trips
in some groups, the regression results for those groups are
meaningless. Therefore, only groups with enough samples

Fig. 5. Trip numbers in each transport mode for the eight cities.

TABLE IV

MODE-BASED ANALYSIS RESULTS

(HTS trips) will be considered and others are represented
by ‘-’ in Table IV.

Table IV presents the performance of the created models
grouped by transport mode compared with the improvements
in origin models. Although there are some missing results
due to a lack of samples (‘-’terms), Table IV illustrates that
applying social media data in the regression of private car trips
provided better performance than those for other modes. It was
also better than the origin models, which are aggregations of
all modes. That is to say, information extracted from social
media to some extent reflects users’ travelling mode choices.
Based on this result, it is believed that data from social
media may provide more information on trips made by private
vehicles than by other modes in travel demand estimation.

VI. CONCLUSION

The main contribution of the study is to demonstrate that the
city function influences the utility of social media data in travel
demand models. To prove this, OD trip models were generated
for eight US cities with different functions (metropolis, rural
and tourist). Independent variables obtained from Twitter and
Foursquare were introduced into the model. Then, the results
with and without use of social media-derived variables were
examined by 10-fold cross-validation. The results show that
travel demand models are mostly improved in metropolitan
areas (>8%), followed by rural areas (>4%) and tourist areas
(around 1%). Moreover, by analyzing the results based on
suburb division, it is suggested that data from social media
do not match HTS data well in the tourist areas, resulting
in lower improvement to travel demand models. Meanwhile,
the purpose-based analysis illustrates that although improve-
ments in each purpose group model were significantly different
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to those in origin models, estimates of School or Professional
trips usually had better results.

According to the findings of this paper, it is believed that
social media are appropriate data sources for use in traffic
demand estimation. However, they play different roles in
regions with different functions, suggesting that existing trip
models using social media data must select the target city
carefully. In metropolitan and rural areas, it could help to
improve the performance of daily trip models. This would
provide a time- and budget-saving data source for city planning
that has more acceptable accuracy than HTS-based models.
In tourist areas, although model performance rarely improved,
with relevant data cleaning, social media data could be valu-
able for tourist-purpose trips and behavioural research.

For further studies, similar models could be applied to other
areas of transport-related research to determine the utility of
social media data. In addition, it is believed that a combination
of social media data and machine learning techniques may
be a helpful supplement for travel demand modelling in
metropolitan areas. Therefore, other valuable variables could
be introduced to generate travel demand models with higher
performance and efficiency.
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