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Highlights 

 Our method analyzes retinal image to extract diagnostically helpful components of the retinal 

image. 

 These components are considered very important in clinical decision making such as checking 

patient status, type and duration of treatment. 

 This method is based on extension of MCA algorithm which benefits from the adaptive 

representation obtained via dictionary learning. 

 Reported results confirmed the effectiveness of the proposed method in the separation of vessel 

and exudate components especially in retinal images with proliferating DR. 

 

Abstract  

The automated analysis of retinal images is a widely researched area which can help to diagnose 

several diseases like diabetic retinopathy in early stages of the disease. More specifically, separation of 

vessels and lesions is very critical as features of these structures are directly related to the diagnosis and 

treatment process of diabetic retinopathy. The complexity of the retinal image contents especially in 

images with severe diabetic retinopathy makes detection of vascular structure and lesions difficult. In this 

paper, a novel framework based on morphological component analysis (MCA) is presented which 

benefits from the adaptive representations obtained via dictionary learning. In the proposed Bi-level 

Adaptive MCA (BAMCA), MCA is extended to locally deal with sparse representation of the retinal 

images at patch level whereas the decomposition process occurs globally at the image level. BAMCA 

method with appropriately offline learnt dictionaries is adopted to work on retinal images with severe 

diabetic retinopathy in order to simultaneously separate vessels and exudate lesions as diagnostically 

useful morphological components. To obtain the appropriate dictionaries, K-SVD dictionary learning 

algorithm is modified to use a gated error which guides the process toward learning the main structures of 

the retinal images using vessel or lesion maps. Computational efficiency of the proposed framework is 

also increased significantly through some improvement leading to noticeable reduction in run time.  

We experimentally show how effective dictionaries can be learnt which help BAMCA to successfully 

separate exudate and vessel components from retinal images even in severe cases of diabetic retinopathy. 

In this paper, in addition to visual qualitative assessment, the performance of the proposed method is 

quantitatively measured in the framework of vessel and exudate segmentation. The reported experimental 

results on public datasets demonstrate that the obtained components can be used to achieve competitive 

results with regard to the state-of-the-art vessel and exudate segmentation methods. 

 

Keywords – Bi-level adaptive morphological component analysis, Dictionary learning, Diabetic 

retinopathy image assessment. 
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1 Introduction 

Diabetic retinopathy (DR) is a diabetic complication which can lead to the visual impairment or even 

blindness if not treated in a timely manner. DR is a salient and progressive disease so early diagnosis and 

treatment is of crucial importance for effective cure. The ophthalmologists grade DR and determine the 

special treatment based on the type and location of the vessel and lesions. Recently, deep learning has 

been introduced as a powerful tool for automatic DR grading. Deep networks, trained on large enough 

datasets, are able to directly grade DR stages, but they do not provide any human usable clue why an 

image is graded to the selected class, and also do not output type and position of the present lesions.  

In clinical research, blood vessel segmentation is considered as a prerequisite step for the analysis of 

vessel parameters such as length, width and tortuosity. On the other hand, the main problem of traditional 

vessel segmentation algorithms is producing false positive vessels in the images with lesions. Therefore, 

automatic segmentation of vessels and lesions is very critical in DR diagnosis. As an example, detection 

of lesions such as exudates and their relation to the fovea is an important factor in determining the need 

for either systemic or ocular treatments [1], [2].  

Therefore, in this paper, we consider problem of separating diagnostically important components of 

the retinal images which can be very useful in different medical aspects such as diagnosis, treatment 

process and even educating resident ophthalmologists. Such components can be used in more specific DR 

treatments such as detection of pigmentary retinopathy and determination its progression status [3] or 

simply as preprocessing step toward vessel/lesion segmentation.  

Recently sparse representation has produced promising outcomes in vessel and exudate segmentation 

algorithms [4]–[7]. Sparse representation classifier along with pre-determined dictionaries is utilized by 

Zhang et al. [4] to classify vessel and non-vessel image patches. In our previous work [5], we extended 

this approach using discriminative dictionary learning (DDL) within a sparse representation framework. 

Despite the success of this approach, mainly resulted from the flexibility of the learned dictionaries, DDL 

methods do not have the capability to create generative models in order to obtain components of the input 

signals. In fact, the representation obtained by DDL can be used in tasks such as classification but cannot 

be used to generate output images for further analysis by ophthalmologist experts or automatic screening 

systems. To obtain generative models useful for such purposes, we propose a framework based on 

morphological component analysis (MCA) algorithm and sparse representation. 

MCA is an iterative thresholding procedure which decomposes the input image into its morphological 

components but traditionally is used along with transform representations such as DCT (discrete cosine 

transform) or wavelet transform. Previously, we adopted MCA using shearlet and contourlet transforms 

which can cope well with representing vessel and lesion contents of the retinal images [6], [7]. MCA may 

effectively decompose normal and healthy retinal images when used with pre-determined dictionaries. 

However, as DR affects the retina more and more, the performance of this method degrades. In fact, the 

fixed dictionaries no longer can represent signal components well enough for separation. Therefore, 

component separation in retinal images with severe DR needs more efforts. 

This motivates us to use generative modeling of MCA alongside the adaptive representation obtained 

via dictionary learning. Peyre et al. [8] also proposed adaptive MCA using predetermined global 

dictionaries alongside local learnt dictionaries. They combine the process of image decomposition and 

dictionary learning in a single global optimization problem. However, using limited number of training 

samples and facing large number of unknown parameters in multiple dictionaries may lead to suboptimal 
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solution or even cause divergence. In this paper, we propose a novel framework, called Bi-level Adaptive 

MCA (BAMCA), to work on retinal image patches with severe DR in order to extract vessels and exudate 

lesions as diagnostically helpful components of the input image. 

Recently, utilizing dictionary learning within MCA has yielded promising results in variety of 

applications including clutter reduction [9], [10], noise suppression in low dose computed tomography 

(LDCT) images [11], text detection [12], separation of interference stripes in hyperspectral images [13] or 

analysis of painting X-ray images [14]. In all these applications, it was possible to learn a separate 

dictionary for each source component using a sequence of images that only contains corresponding 

component. However, in our case where training samples of each component are not available separately, 

using this method is impossible. Therefore, we adapt the dictionary learning process to use binary maps of 

lesion and vessels alongside the original retinal images in order to obtain the dictionaries offline. In fact, 

for learning the vessel and exudate dictionaries in the proposed BAMCA framework, K-SVD (K-singular 

value decomposition) algorithm [15] is modified to use a gated error which considers the foreground 

containing main structures (vessel or exudate) of the retinal image and discards the noisy background.  

In the proposed framework, the sparse representation of input image is obtained locally at patch level 

whereas the decomposition process occurs globally at the image level. In fact, BAMCA iteratively cycles 

between local competitions among atoms from different dictionaries within each patch, and a global 

competition among the coefficients at image level to determine their contributions for each component. 

For this purpose, the coefficients of all patches over both dictionaries are computed (local phase), the 

appropriate value for the MCA threshold is determined based on an image level competition which 

combines the collective effects of local patch representations within the overlapping regions (global 

phase).  

The rest of the paper is organized as follows. Section II, gives a literature review of the vessel and 

exudate detection in retinal image. In Section III, the concept of MCA is briefly reviewed. A description 

of the proposed BAMCA method, the way that MCA and dictionary learning is applied to separate 

vessels from exudate lesions, is provided in Section IV. Experimental results are presented in Section V 

and discussed in Section VI. Finally Section VII draws conclusion and future work. 

2 Literature review of vessel and exudate segmentation  

A review of existing methods for blood vessel and exudate detection is presented in the literature [16], 

[17]. Some of these methods will be briefly summarized in this section. 

Tracking based methods are the first methods for vessel segmentation. In these methods, the vessel 

map segmented by tracing vessels from some seed points and following them using local information 

[18], [19]. In the match filter methods, a series of different Gaussian shape filters are employed to detect 

blood vessels [20]–[23]. Wavelet and Gabor transforms [24]–[26] are other methods used to enhance 

blood vessel detection with different thicknesses and orientations. Azzopardi et al. [27] also applied  a 

combination of shifted filter responses (COSFIRE) for vessel segmentation. Multiscale approaches are 

aimed at producing vessel with varying widths [28]. Vlachos and Dermatas [29] combined the multiscale 

line tracking results and quantized them to achieve the final vessel map. Vessel detection method based 

on complex continuous wavelet transform [30] was proposed to represent vessel structure in different 

scales and directions. Nguyen et al. [31] proposed vessel detection method based on line detection. In [32] 

vesselness and Hessian multiscale enhancement filters were applied for automatic detection of vessels. 
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Recently, unsupervised and supervised methods for vessel segmentation have attracted considerable 

attention. The approaches based on unsupervised methods attempt to achieve the inherent features of 

blood vessels without contribute directly the ground truths [33], [34]. In supervised methods, each image 

pixel is represented by a feature vector then a supervised classifier is trained to determine that a pixel 

belongs to vessel or not [35]–[38]. Sparse representation-based classifier has been successfully applied to 

vessel segmentation by Zhang et al. [4]. They proposed a vessel segmentation method based on multiscale 

production of matched filters and sparse representation-based classifier. In contrast to this approach which 

depends on fixed dictionaries, the vessel segmentation algorithm based on discriminative dictionary 

learning and sparse representation was proposed in [5]. In this method, two discriminative dictionaries for 

vessel and non-vessel image patches were learned, and then a voting scheme was utilized to generate the 

binary vessel map. A novel framework based on MCA algorithm using fix dictionaries was presented in 

[6], [7]. In this method, MCA algorithm with non-subsampled shearlet transform and non-subsampled 

contourlet transform was adopted to separate vessels and lesions from each other.  

Besides these approaches, vessel segmentation methods were proposed based on applying 

morphological operations [39], [40] and explicit vessel models [41], [42]. Siva and Vasuki [43] proposed 

vessel segmentation method using binary morphological operations and templates illustrated by Soares 

[38]. The overall accuracy of their method was increased with the removal of the optic disc region using 

anisotropic diffusion filter.   

Main exudate detection algorithms can be classified into four categories: (1) Pattern recognition, (2) 

mathematical morphology, (3) region growing and (4) thresholding-based approaches. 

Sopharak et al. [44] proposed a method for exudate detection using fuzzy C-means clustering 

algorithm. A combination of fuzzy C-means algorithm, genetic algorithm and neural network has been 

applied to segment exudate by Osareh et al. [45]. Figueiredo et al. [46] extracted the multiscale features 

based on wavelet and Hessian multiscale analysis then detected several lesions from retinal images with 

appropriate binary classifiers. A visual words dictionary representing points of interest within the fundus 

image was constructed by speeded up robust features and k-means clustering [47]. Using this dictionary 

and a quantization process, each image was represented by a signature of the visual words it contains, and 

then classified as a normal or abnormal image by SVM (support vector machine). Other related 

approaches used Bayesian classifier [48] and Gaussian mixture model [49] to improve the exudate 

detection algorithm. Liu et al. [50] described the structure of the exudates using the histogram of 

completed local binary patterns and then classified them with a random forest classifier. 

Some approaches used morphological operators to obtain the exudate map. Walter et al. [51] used the 

grey level image variation to find exudate lesions and then determined their contours by means of 

morphological reconstruction technique. Welfer et al. [52] proposed a coarse-to-fine strategy based on 

morphological reconstruction, regional minima detection and H-maxima transformation for exudate 

segmentation. Harangi and Hajdu [53] introduced a method based on mathematical morphology and 

active contours to detect precise exudates. In Zhang et al. [54] method, all exudate candidates were 

detected using morphological operators then each lesion was classified based on classical and contextual 

features.  

Region growing methods segment the image based on homogeneity features. To detect exudates, 

Sinthanayothin et al. [55] introduced a method which was a combination of the recursive region growing 
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algorithm and a new technique, termed a Moat operator. Li and Chutatape [56] combined region growing 

algorithm and canny edge detector for exudate detection. 

Local or global gray level analysis was used for exudate detection in thresholding based approaches. 

Sánchez et al. [57] presented a thresholding algorithm based on statistical mixture models. Then a post-

processing method based on edge detection was applied to distinguish exudates from other bright lesions. 

A method based on applying a threshold on distance map belonged to an atlas image was developed by 

Ali et al. [58]. A thresholding method and ant colony optimization were combined to segment exudate 

regions by Pereira et al. [59]. García et al. [60] applied a method based on global and adaptive 

thresholding algorithms to obtain the lesion candidates. They extracted a group of features from 

candidates then employed radial basis function classifier to determine the true positive regions. 

Recently, deep learning has been introduced as a powerful tool for many image related problems 

including DR screening [61]–[65]. In 2015, the California healthcare foundation put Kaggle competition 

with the goal to design an automated system for DR grading. All of the top teams in the challenge trained 

Convolutional Neural Networks (CNNs) to grade the severity of DR in 5 levels [66]. Ranking in the 

Kaggle competition was based on quadratic weighted Kappa score [67]. The winning teams in this 

challenge achieve high Kappa scores and their performance was comparable with an ophthalmologist 

grading. Nevertheless, there are some limitations which arise from the nature of deep networks. Training 

very large networks with many parameters requires great learning costs in terms of preparing numerous 

training samples and computation time [64], [68]. 

Furthermore, such networks are usually just provided with the image and the associated grade in the 

training phase and hence, their output does not contain any explicit detection and recognition of 

diagnostically helpful components such as microaneurysm, exudate or vessel features. These components 

are considered very important in clinical decision making such as checking patient status, type and 

duration of treatment. However, quite recently few researchers try to obtain segmentation maps for 

vessels [69]–[71] or lesions [62], [72]. Melinscak et al. [69] applied deep max-pooling convolutional 

neural networks (MPCNN) proposed by [73] to segment blood vessels, while Maji et al. [70] used an 

ensemble of CNNs for this purpose. Finally, Li et al. [71] remodels the segmentation algorithm as a 

problem of cross-modality data transformation from retinal images to vessel maps using deep networks. 

All these vessel segmentation methods process the input image patch by patch, using deep networks. This 

strategy shrinks the network size and makes training possible using tens of thousands training patches 

which can be extracted from the available datasets that only contain few tens images accompanied with 

the ground truth vessel maps. In the case of lesion detection, Yang et al. [74] uses a similar patch based 

strategy to detect different lesion types while Quellec et al. [62] and Gondal et al. [75] applies a Kaggle 

winner architecture [76] to obtain segmentation maps for different lesion types. In the following, we will 

compare our method against these state-of-the-art deep learning based approaches.  

3 Image decomposition using MCA 

The task of decomposing signals into their building components has attracted a growing attention to 

signal and image processing. A novel decomposition method called MCA that is based on sparse 

representation and different morphological diversity of signals has been presented by Starck et al. [77]–

[79]. MCA assumed that each signal is a linear mixture of different components which are 

morphologically distinct. 
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Assumed that the signal      is the linear mixture of K morphological components   and it can 

possibly contain noise   with standard deviation   :  

  ∑                
 

 

   

    , -     (1) 

The aim of MCA framework is recovering all components *  +   
  from their observed linear mixture 

which is an ill-posed inverse problem. Each component    can be sparsely represented in an associated 

sub-dictionary    as: 

                                  (2) 

where    is a sparse coefficient vector that only a few coefficients are large. A concatenated dictionary 

,       - can be developed in a way that the sub-dictionary    can be sparsely represented the 

component    while inefficient (not as sparse) in representing the other components            . In the 

traditional MCA, the analytical transforms such as wavelet, curvelet, contourlet, sheerlet transforms are 

used as dictionaries to sparsely represent the source components. To characterize the complex 

components of the signal, another possible approach is using dictionary learning framework. The 

dictionaries generated by this approach are generally more fitted to the data. 

In [77], [78], a method for estimating the components *  +   
  has been proposed which is based on 

solving the following optimization problem: 
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 is the sparsity term and σ is typically chosen as    , where    is the noise standard deviation 

and   is a constant. The constraint is related to the presence of noise. A similar objective could 

alternatively be written as: 

   
       

 

 
‖  ∑    

 

   

‖

 

 

  ∑  ‖  ‖ 
 

 

   

   (4) 

where   is a regularization parameter. Generally, finding a solution to problem (4) is very difficult 

especially for p < 1. It is an NP-Hard problem for p = 0. However, if all components except for the k
th
 one 

are fixed, then a problem can be solved by hard thresholding (for p = 0) or soft thresholding (for p = 1) of 

the marginal residuals      ∑         in   . The marginal residuals    contain potentially 

significant content about   . MCA is a coarse-to-fine process in which the most salient contents of each 

component is calculated at each iteration. These estimates are then progressively refined as the threshold 

reduces.  

4 Methods 

In this section, the proposed vessel and exudate detection algorithm based on morphological 

component analysis and dictionary learning is discussed in detail. The proposed method is composed of 

three fundamental stages: 
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1) Preprocessing, this involves extracting the region of interest from the retinal image, removing 

the non-uniform illumination by a large mask median filter and then enhancing the contrast by 

local histogram equalization. 

2) Obtaining vessels and exudates components of the input, using the learnt dictionaries and 

decomposition method based on BAMCA. 

3) Postprocessing, Vessel and exudate segmentation which is applied to the corresponding 

separated components. 

4.1 Preprocessing 

Since the vessels and exudates have the highest contrast with the background in the green plane of 

color fundus image, this plane is chosen to implement the proposed method. To accelerate further 

processing stages, a region of interest (ROI) located at the center of the image and surrounded by dark 

background pixels is detected. To obtain ROI, a mask is applied to the retinal image and the retinal image 

is cropped with the mask. To generate the mask, Otsu thresholding algorithm [80] is applied to the green 

plane of the retinal image then morphological operations are used to remove missed labeled pixels that are 

generated on the mask. To accelerate next processing stages, the cropped retinal image is downsized to 

512 × 512 by bicubic interpolation method. The background intensity variations in the fundus image can 

be eliminated by estimating the background image    with a median filter of size 30 and subtracting it 

from the original green plane image    as follows: 

    (   )    (   )    (   ) (5) 

where      is the enhanced retinal image. Finally the values of      are normalized to the range of 0 to 1. 

Furthermore, to improve locally the contrast of the image the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) [81] is applied to the image     . 

4.2 Exudate and vessels separation 

The blood vessels and exudate lesions appear as curved-like and deposits dot-like with sharp borders. 

Therefore, these components are morphologically distinct and can be separated using appropriately 

adapted MCA. To properly separate the components of the retinal image, it is crucial to construct two 

appropriate dictionaries; each of which sparsely represents one of the morphological components 

corresponding to vessels and exudates. Traditionally, MCA is performed using fix dictionaries obtained 

from known transforms such as DCT, contourlet or shearlet. The complexity of the retinal image contents 

makes component separation with known transforms difficult. In order to improve the representation 

which more tightly fitted to the morphological components, we utilize a modified dictionary learning 

algorithm. In the following subsection, the modified dictionary learning algorithm is described. 

4.2.1 Dictionary learning for vessel and exudate  

In this paper, two distinct dictionaries    and    corresponding to vessel and exudate parts are 

learned from training images (see Fig. 1). The training images are selected randomly from the vessel and 

exudate lesion datasets. Similar to many sparse representation-based methods, each image is divided into 

N overlapping vectorized patches                    . Each vectorized patch is then centered by 

subtracting the mean value of patch pixels. Using the training samples    ,          -, the dictionary 

       with L atoms (each column of the dictionary is called an atom) is learned as: 

*   +        
   

  ‖    ‖ 
             ‖ ‖     (6) 
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where   ,          - is the sparse coefficients matrix for the patches of   and    controls the 

sparsity level. This model is used to learn vessel (  ) and exudate (  ) dictionaries. 

K-SVD algorithm solves problem (6) using an alternate optimization on   and  . In the spare coding 

stage,   is kept constant while   is obtained as optimal coefficients typically implemented using greedy 

orthogonal matching pursuit (OMP) [82] or gradient descent based basis pursuit (BP) [83]. The search for 

a better dictionary, dictionary update stage, is then performed column-wise using singular value 

decomposition (SVD).  

In order to adapt K-SVD algorithm to generate vessel and exudate dictionaries for retinal images two 

slight but salient changes have been done in this paper. The first change is applied to the dictionary 

update stage in K-SVD. More specifically, assuming the coefficient matrix   is constants, the dictionary 

update stage in K-SVD algorithm is performed as: 

* +        
 

  ‖    ‖ 
  (7) 

In this process, one column    of the dictionary (i.e. one atom) is isolated from the others and 

Frobenius norm is rewritten as: 

‖    ‖ 
   ‖  ∑    

 

   

‖

 

 

  ‖(  ∑    
   

)       ‖

 

 

  ‖       ‖ 
  (8) 

 

 

Fig. 1 Schematic representation of the dictionary learning method 

where    is j
th
 row in the sparse coefficients matrix   and    (  ∑        ) is the error matrix. 

Therefore, the optimal solution for    is obtained by minimizing the objective function given in Eq. (8). 

Let (  )  be obtained by choosing the columns of    that correspond to the samples which use atom   . 

The rank-one approximation of (  )  using SVD yields the atom    and its corresponding coefficients. 

This process is repeated until all atoms are updated. 

As noted earlier, the target source components, vessels and exudates, do not exist separately and in 

retinal images they are accompanied by noisy background. Therefore, as all sources are presented in the 
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samples, training the dictionaries is not straightforward. To tackle this issue, we construct the map matrix 

  ,          - where    corresponds to the binary map of vessel or exudate pixels of the patch    

which is input to the algorithm for training samples as the ground truth. Using this matrix we can force 

the dictionaries to train only on the foreground which contain the main components of the retinal image. 

By discarding the complex and noisy background, the learning process is accelerated and enhanced. To 

do this, the error matrix    is changed to     according to: 

         (  ∑    
   

)   
(9) 

where the symbol “.” represents the entry-wise product of matrices. In fact, the background pixels are 

ignored as they are multiplied by zeros in the corresponding map matrix  . Therefore, the dictionary 

learning is modified to use a gated error     defined as Eq. (9). Please refer to Algorithm 1 for more 

detail. 

The second improvement is applied in dictionary initialization. The initialization of the dictionary is 

very important for the success of the dictionary learning algorithm. The underlying optimization problem 

is non-convex and may hence converge to suboptimal solutions. On the other hand, due to the 

computational cost associated with dictionary learning procedure, random re-initialization is practically 

inefficient. Therefore, a smart initialization is proposed in this paper. To initialize vessel and exudate 

dictionaries, patches with at least 10% of their pixels marked as vessel or exudate in the ground truth 

maps are selected as atoms of the corresponding dictionaries. These atoms are normalized to have unit   -

norm. Moreover, in the initialization, mutual coherence between atoms in different dictionaries, measured 

as their inner product of two atoms, is used to remove similar atoms from the both dictionaries. This 

improves the discrimination capability of the two dictionaries. 

Algorithm 1: The modified K-SVD dictionary learning algorithm 

1. Parameters:   ,          - includes all image patches.   ,          - is the ground truth map matrix 

includes all binary vessel or exudate maps.   ,          - is the sparse coefficients matrix.    controls the 

sparsity level. 

2. Initialize: Set the dictionary  ( )       with unit   -norm columns. Set     . 

3. Perform until convergence: 

           Update the coefficients: Use OMP algorithm to compute the coefficients matrix   by solving: 

   
 
  ‖    ‖ 

             ‖ ‖       

           Update the dictionary: Each column         of the dictionary  (   ) updated as: 

           –  Compute the residual matrix    : 

    (  ∑    
   

)   

– Obtain (   )  by choosing the columns of     that correspond to the samples which use atom   .  

– Apply SVD to (   )     
 . Set the updated atom  ̂  to the first column of   and the corresponding coefficients 

 ̂  to the first column of   multiplied by  (   ). 
Set       

4. Output: Dictionary  .   

4.2.2 BAMCA method for exudate and vessel separation  

As discussed in the previous subsection, the off-line learnt dictionaries [     -, provide sparse 

representation for vessel and exudate components of the retinal image. In this section, BAMCA method 
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(refer to Algorithm 2) which is used to separate vessels from exudate lesions based on these learnt 

dictionaries is described.  

In Algorithm 2,    and    are the current vessel and exudate parts that are initialized to zero. At each 

iteration, the residual            is obtained and the coefficients of the residual over vessel and 

exudate dictionaries are calculated. To obtain the coefficients matrix      for the residual image, patches 

are extracted from the residual image. Then for each vectorized patch, the coefficient vector      is 

calculated using BP problem (for p = 1) given in Eq. (4). The coefficients matrix      is constructed by 

concatenating all coefficients vectors as      ,                   - where N is the total number of 

patches. These coefficients determine the value of the threshold. The method that the threshold is 

determined can affect the quality of the separation. 

In this paper, the adaptive thresholding strategy, namely, mean of maximum (MOM) [84] has been 

selected. The threshold   is set to the mean of the largest values of the residual coefficients over vessel 

and exudate dictionaries. If the largest coefficient corresponds to the vessel dictionary, i.e. vessel 

dictionary wins, the vessel part    is updated while the looser exudate part    remains fixed, and vice 

versa. In this update process, negligible coefficients of the winner dictionary are discarded to keep the 

representation sparse. However, to compensate for the lack of individually insignificant coefficients 

which overall may contribute significantly to the representation of the input image patch, the survived 

coefficients are re-estimated through least squares.  

More formally, let   
    and   

     be the sub-matrices that include the survived atoms and 

coefficients then to obtain the new coefficients  ̂ 
 , the following optimization problem is solved using 

nonlinear least squares: 

 ̂ 
        

  
 

‖  
     

     
    ‖

 

 

 (10) 

where   
   is i

th
 patch extracted from     (the sum of the residual and vessel part image is    ). Then the 

image patch is reconstructed with the new coefficients and finally all patches are averaged to reconstruct 

the vessel part image   .  

Algorithm 2: The proposed BAMCA decomposition method 

1. Parameters: The enhanced image     , the vessel and exudate dictionaries   ,     -, number of iterations      , 

stopping threshold     and the regularization parameter   . 

2. Initialize: Let set I =     , the matrix RFM = {1} and UFM = {0}. Initial solution     ,      , the residual image of 

the previous iteration    
    

  . 

3. Perform       times: 
Calculate the residual image            
Obtain the coefficients   

    over the dictionary    for     using the sub-algorithm 2.1. 
Obtain the coefficients   

    over the dictionary    for     using the sub-algorithm 2.1. 

Calculate the threshold:   
 

 
(‖  

   ‖  ‖  
   ‖ ) 

If  (      )  finalized the algorithm. Else continue.  
If  (‖  

   ‖  ‖  
   ‖ )  

      Update    assuming    is fixed:  

           – Calculate the image          . 

           – Obtain the coefficients    over the dictionary    for image     using sub-algorithm 2.2. 

           – Obtain     * |          
 ( )   + for each patch   

            .     

           – Construct the sub-matrix   
    that includes the selected atoms for each patch.                               

           – Obtain the new coefficients  ̂ 
  using Eq. (10) and reconstruct the patch as  ̂         ̂  .                
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           – Average all overlapping patches  ̂ 
  to reconstruct   . 

    Else  

    Update    assuming    is fixed:  

          – Calculate the image            . 

          – Obtain the coefficients    over the dictionary    for image     using sub-algorithm 2.2. 

          – Obtain     * |          
 ( )   + for each patch   

            . 

          – Construct the sub-matrix   
    that includes the selected atoms for each patch.  

          – Obtain the new coefficients   ̂ 
  using Eq. (10) and reconstruct the patch as  ̂         ̂  .  

          – Average all overlapping patches  ̂ 
  to reconstruct   . 

     Set   
    

    
4. Output: Morphological components    and     

MCA is a coarse-to-fine iterative algorithm, as it progresses the variance of the residual is likely to 

decrease and the resulting components converge. Therefore, a stopping threshold      is used to end the 

main loop when further iteration does not change the results significantly. Please refer to Algorithm 2 for 

more detail. The schematic representation of the proposed decomposition method based on BAMCA 

method has been shown in Fig. 2 (a). After separating, one possible approach to evaluate the quality of 

vessel or exudate components quantitatively, is analyzing each part to extract the binary vessel or exudate 

maps, see Fig. 2 (b). To do this, we use our previous works on vessel and exudate segmentation which are 

recently developed [6], [7]. The vessel segmentation algorithm is based on Morlet wavelet transform and 

adaptive thresholding. Mathematical morphologies and dynamic thresholding are used in the exudate 

segmentation algorithm. The detail of the segmentation algorithms has been provided in [6], [7]. 

To enhance the computational efficiency of the proposed BAMCA method some improvements have 

been suggested. These improvements are shown in the sub-algorithm 2.1 and 2.2 and will be described in 

detail in the following subsection. 

 

Fig. 2 Schematic representation of the proposed method (a) decomposition method based on BAMCA method; (b) vessel and 

exudate segmentation 

4.2.3 Improved BAMCA method for separation  

In MCA algorithm, the number of necessary iterations is important but difficult to estimate. There is 

no general method to adjust it. Using a large number is computationally expensive, whereas, a poor 

separation may be resulted if it is set too small. According to our experiments on separation of retinal 

image components, the adaptive thresholding based on MOM leads to the best quality. However, number 

of iterations may easily reach to a hundred or more and hence, the decomposition process get inefficient 

and slow. Therefore, in the following, we also suggest some minor but crucial improvements to 

considerably increase the efficiency of our method.  
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Since the energy of the residual is decreased along iterations, processing the patches which are already 

reconstructed in the previous iterations for few times would be useless since usually they are not left with 

any salient content. We name these patches as useless patches and omit them from the competition in the 

next iterations. If, the maximum value of coefficients of a patch is below the threshold,     , it is marked 

as a useless patch and its corresponding coefficients will not be recalculated in the next iterations till the 

end of the algorithm, leading to noticeable reduction in run time and improvement in the computational 

efficiency of BAMCA method.  

Furthermore, in the global competition phase in each iteration, only few patches get seriously 

involved, and values of the coefficients in many others, regardless of which dictionary is considered, 

remain well below the current threshold,  . Therefore, such patches are not handed over to any specific 

dictionary and remain unchanged during the current iteration. This means it is not necessary to recalculate 

their coefficients in the next iteration. However, since the patches overlap, we should take care of the 

regions which are shared with other changing patches. In fact, only the completely unchanged patches are 

omitted from the representation phase obtained by BP problem for just the next iteration. The 

representations for other patches are updated as usual if the residual norm difference between the last two 

iterations is greater than another threshold      ; otherwise they are also skipped over in the next 

iteration. All these improvements are considered in sub-algorithm 2.1 and 2.2, and combined together, 

they save up to 90% of the normal run time of the algorithm. 

Sub-algorithm 2.1: Improved residual coefficients calculation algorithm 

1. Parameters: The current residual image    and previous one   
    

, the dictionary                  , the residual 

coefficients matrix   
   , the difference threshold      ,the threshold     . Reconstructive flag matrix    . Useless flag 

matrix    . 

2. Perform: 

Extract all patches                 from the current residual image   . 

Extract all patches     
    

               from the previous residual image   
    

. 

3. Perform   times: 

Calculate  ‖  ‖
 
 ‖    

    
‖
 
 . 

If (          ) 

    Set to zero, the element i corresponding to the patch    in     matrix. 
Else 
    If (RFM(i)=1 and UFM(i)=0) 

        Update coefficients     
   

 for patch    over the dictionary    using Eq. (4). 

        If  ‖    
   
‖
 
          

             Set to one, the element i corresponding to the patch    in     matrix. 
4. Output: The coefficients   

    , the matrix     and the matrix     

Sub-algorithm 2.2: Improved reconstruction algorithm 

1. Parameters: The image                   , the dictionary   , the threshold  . The coefficients matrix   . 

Reconstructive flag matrix    . Useless flag matrix    . 

2. Perform: 

Extract all patches                 from the image    . 
3. Perform   times: 

If (RFM(i)=1 and UFM(i)=0) 

     Update the coefficients   
  for patch    over the dictionary    using Eq. (4). 

If (‖  
 ‖
 
  ) 

     Set to ones, the elements i and its neighbors in the matrix     for using in the next iteration. 
Else 
     Set to zero, the element i in the matrix     for using in the next iteration. 

4. Output: The coefficients    and the matrix     
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5 Experimental results 

5.1 Materials 

To evaluate the vessel segmentation algorithm, two public datasets DRIVE [36] and STARE [23] 

which contain ground truth vessel maps are used. DRIVE dataset contains a total of 40 color fundus 

images divided into equal training and test set of images with size 584 × 565. Since a large number of 

patches are extracted from one image, only a few number of images are selected to train dictionaries. To 

learn the vessel dictionary, training patches are randomly extracted from four images of DRIVE training 

dataset. The performance of the proposed method is measured on the test images of DRIVE and STARE 

dataset which includes 20 color fundus images of size 605 × 700.  

In the following, the performance of the exudate segmentation is assessed using DIRATEDB1 [85] 

and e-ophtha EX datasets[54]. The public dataset DiaretDB1 contains 89 retinal images with a resolution 

of 1500 × 1152 pixels. Randomly, four images of DIRATEDB1dataset are selected for training the 

dictionary and the remaining ones are used for the test phase. E-ophtha EX dataset which contains 47 

images with four different resolutions, ranging from 1440 × 960 to 2544 × 1696 pixels, is also used to 

measure the performance of the proposed method. 

5.2 Performance measures  

The performance of the binary segmentation methods is usually quantitatively assessed based on three 

measures: Sensitivity, Specificity and Accuracy, which are defined as: 

     
             

                            
 

(11) 

      
             

                            
 

(12) 

     
                           

                                                         
 

(13) 

In vessel segmentation, these measures are evaluated at pixel level as the output vessel map is a single 

connected component. On the other hand, in detection of lesions it is quite natural to evaluate the 

screening results at the image level based on presence or absence of lesions in each image. In other words, 

the segmentation result for an image is considered as true positive (or true negative) if the input image 

contains (doesn’t contain) exudates according to both the segmentation method and the ground truth. 

Based on this definition, the rest of indicators are similarly calculated. However, in clinical usages further 

than screening where localization of separated lesion regions is desired, more exact assessment can be 

obtained by calculating the above measures at lesion level. At this level, the calculation of true and false 

positives and negatives is carried on based on the percentage of overlapped pixels of each lesion region in 

the output map and the ground truth. In fact, when a minimum amount of overlap is detected
1
, then all of 

the pixels corresponding to that lesion are counted as true positives and similarly for the rest of indicators, 

then the above measures are obtained; see [54] for more details.  

Since, the threshold value used in the final stage of segmentation [6], [7] is affecting the 

aforementioned measures; we report the receiver operating characteristic (ROC) curve by plotting 

Sensitivity as the vertical axis versus (1-Specificity) as the horizontal axis when changing the threshold 

                                                      
1
 To provide comparable results, the same value suggested by Zhang et al. [54] is used here and the minimal 

overlap ratio is set to 0.2. 
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over its range. Area under ROC curve (AUC) summarizes each curve in a single number and the reported 

values in the tables are selected as points of ROC with approximately highest accuracy. 

5.3 Parameter setting 

In the proposed method, after preprocessing stage, vessel and exudate dictionaries are learnt using 

patches extracted from the training images. The patch size is set to 16×16 with sliding distance of 5 pixels 

to train a dictionary of 1024 atoms with four-fold redundancy. Using training patches, the maximal 

number of coefficients or the sparsity level    in Eq.(6) is set to 10. In order to improve the efficiency of 

the learning dictionaries, patches which at least 10% of their pixels marked as vessel or exudate in the 

ground truth maps are considered as training patches. In addition, some of these patches which have low 

mutual coherence (less than 80%) are selected for the initialization of the dictionaries. The atoms of 

dictionaries are normalized to have unit   -norm. The parameters of BAMCA algorithm (Algorithm 2) are 

empirically set using numerous experiments on training images as follows: The number of iterations       

is set to 100 since further iterations does not seem to have significant effect on the results of separation; 

the regularization parameter   is adjusted to 40% of the maximum image intensity and the value of the 

stopping threshold      is considered to be 10
-4

. The threshold value       was set to 0.08. The selected 

settings for different parameters in this paper may not be optimal. More careful cross validation may help 

to choose better values for the parameters and improve the results reported here. 

5.4 Experiments  

Comparison between different image separation algorithms is greatly dependent on the application and  

hence is done according to the considered target task [77]. In this paper, in addition to visual qualitative 

assessments, we want to quantitatively measure the performance of the proposed method in effectively 

separating diagnostically helpful components of the retinal image. Therefore, we devise four different 

experiments:  

First, the decomposition results are shown on sample retinal images to visually inspect the separated 

components and judge their quality. Then, in the second and third experiments, results of vessel and 

exudate segmentation are quantitatively compared to some state-of-the-art segmentation algorithms. 

Finally, in the last part of this section, the results of two well-known and publicly available vessel 

segmentation algorithms are reported in two different scenarios as the forth experiment: when BAMCA is 

acting as preprocessing step and calls the segmentation algorithm on the obtained vessel part versus the 

usual case where the original retinal image is used as input. 

5.4.1 Separation of vessel and exudate components in retinal image 

The results of applying BAMCA method to seven sample abnormal retinal images
1
 are illustrated in 

Fig. 3, where Fig. 3 (b) depicts the vessel parts and Fig. 3 (c) shows the obtained exudate components 

which are renormalized to completely span the available range of gray scales. As it can be seen, the 

presence of noisy background does not affect the performance of our separation algorithm; as such 

additional contents are sparsely represented by neither of vessel nor exudate dictionaries. Therefore, the 

exudate component is well separated from the vessel part in the shown examples. This is an important 

achievement, since the output of our system is supposed to be used visually by ophthalmologists to 

support clinical decision making. According to International Council of Ophthalmology, DR grading can 

be done based on location of exudate lesions with respect to the optic disk and fovea [86]. Moreover, 

                                                      
1
 Image number 8 from DRIVE and image numbers 3,44, 6, 67,14,16 from DIARETDB1 
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providing physicians with the lesion components of the retinal image, help them make decisions on type 

and duration of treatment, scheduling patients’ arrival to the clinic and other necessary status checks. 

The obtained components from the separation phase are then fed to the segmentation algorithms [6], 

[7] to obtain binary vessel and exudate maps which are depicted in Fig. 3 (d) and (e) respectively. As 

shown, the binary vessel maps extracted well even in the third and seventh images which suffer from low 

contrast. Interestingly, in the first image (image number 8 from Drive), the obtained vessel map is quite 

clean and does not have noticeable false positive pixels. Most of state-of-the-art vessel segmentation 

algorithms fail on this image by including exudate pixels in their output vessel map, see for example [5], 

[24], [31]. Since DRIVE contains mostly healthy retinal images, such failures are less noticed in the 

reported numerical results. 
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(a) (b) (c) (d) (e) 

Fig. 3 Results of the vessel and exudate separation and segmentation algorithm on abnormal images (a) original retinal images; 

(b) vessel parts; (c) exudate parts; (d) vessel detection maps and (e) corresponding exudate detection maps 
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As mentioned earlier, the work presented by Imani et al. [6] is the only approach which separates the 

retinal image components. However, this method severely gets limited in the case of retinal images with 

proliferative DR. For better comparison, Fig. 4 shows the separation results obtained by Imani and our 

method for images with sever DR. As it can be seen, a major portion of exudates remains in the vessel 

component obtained by Imani (first row in Fig. 4 (c)) and some vessels with high tortuosity are also 

missed and appeared in the exudate lesion part (second row in Fig. 4 (e)) separated by Imani. Therefore, 

the capability of the proposed method shown in Fig. 4 (b) and (d) is superior in such pathological cases. 

 

     

     

(a) (b) (c) (d) (e) 

Fig. 4 Visual comparison of Imani et al. method [6] with the proposed BAMCA method: (a) original retinal images; vessel 

component separated by (b) BAMCA; (c) Imani et al. [6]; exudate component separated by (d) BAMCA; (e) Imani et al. [6] 

 

5.4.2 Blood vessel segmentation 

To quantitatively evaluate the quality of vessel component obtained by BAMCA, we use our previous 

work on vessel segmentation [6]. The extracted vessel component is input to the segmentation algorithm 

and the obtained vessel map is compared with the state-of-the-art vessel segmentation algorithms. The 

results in terms of ROC curves using DRIVE and STARE datasets are depicted in Fig. 5, which 

correspond to quite similar AUC values 0.9586 and 0.9523 respectively. Noticeably, the curves for the 

two different datasets are close together though STARE dataset contains much more abnormal images. 

This shows the consistency of the proposed method in working with normal and abnormal images which 

are visually very different. 

Table 1 reports Sensitivity, Specificity and Accuracy obtained using the proposed method against 

some other state-of-the-art methods applied on both DRIVE and STARE datasets. Although the proposed 

method is a generative approach which delivers separated components of the retinal image and the binary 

maps considered in the segmentation experiments are its side products, yet the reported results are 

comparable with the methods originally designed for vessel segmentation or even better in most cases. 

Elbalaoui et al. [32] reports relatively high Sensitivity on STARE dataset although at the cost of lower 

Specificity and Accuracy. Since usually vessel pixels are roughly one quarter of the image, in adjusting 

the segmentation threshold loosing each percentage of Specificity may add around four percent to 

Sensitivity by encouraging the algorithm to denote unclear pixels as vessels. Hence, the reported higher 

Sensitivity in the third row of Table 1 is simply result of different parameter setting and does not bring 
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any advantage. Another common issue in traditional vessel segmentation methods is producing false 

positive vessel pixels around the optic disc boundary. To overcome this problem, Siva and Vasuki [43] 

eliminated this region from retinal images before vessel segmentation. Therefore, as the authors also 

mention in [43], their reported results in the fourth row of Table 1 are not directly comparable with others. 

The last three rows in Table 1 belong to state-of-the-art deep learning based approaches [69]–[71]. As it 

can be seen, the proposed method gains higher Sensitivity and Accuracy in comparison to CNN based 

approaches with the exception of Accuracy results reported by Li et al. [71] on STARE dataset. This can 

be caused by the fact that in our setup the algorithm has to learn from DRIVE and is tested on images of 

STARE while they use leave-one-out approach and train on STARE images which are considerably more 

similar to the left-out test case. 

 

Fig. 5 ROC curve of the proposed method for vessel segmentation on DRIVE and STARE datasets 

Table 1 Comparison results for vessel segmentation on DRIVE and STARE datasets 

Method DRIVE STARE 

 Sen Spec Acc Sen Spec Acc 

Human observer - - 94.73 - - 93.50 
Nguyen et al.[31] - - 94.07 - - 93.24 

Elbalaoui et al. [32] 76.30 97.13 94.43 84.40
*
 94.76 93.26 

Siva and Vasuki [43]** 93.99 98.37 98.08 93.60 98.96 95.94 
Bankhead et al. [24] 70.27 97.17 93.71 - - - 

Akram and Khan [26] - - 94.62 - - 95.02 
You et al. [37] 74 97 94 72 97 94 

Delibasis et al. [18] 72.88 95.05 93.11 - - - 
Lam et al. [42] - - 94.72 - - 95.67 

Miri and Mahloojifar [39] - - 94.58 - - - 
Fraz et al. [40] 71.52 97.69 94.30 73.11 96.80 94.42 
Imani et al. [6] 75.24 97.53 95.23 75.02 97.45 95.90 
Zhang et al. [4] 58.09 98.97 - 73.91 99.52 - 
Javidi et al. [5] 72.01 97.02 94.50 77.80 96.53 95.17 

Melinscak et al. [69] 72.76 97.85 94.66 - - - 
Maji et al. [70] - - 94.70 - - - 

Li et al. [71] 75.69 98.16 95.27 77.26 98.44 96.28 

Proposed method 77.59 97.28 95.28 78.62 96.05 95.01 
                *

Higher Sensitivity is obtained at the cost of lower Specificity and Accuracy. At similar condition, our results would be 

Sensitivity=84.15, Specificity=94.46 and Accuracy=93.50.  
**

When optic disk is eliminated from retinal images before vessel segmentation. 
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To observe quality of vessel segmentation and obtain visual comparison of state-of-the-art, in Fig. 6, 

we show the binary vessel maps resulted from various methods on abnormal retinal images
1
 which are 

intentionally selected to belong to different stages of DR. It is noticeable that vessel maps of our rivals, 

contain spurious components around optic disk and lesions; whereas simultaneous separation in the 

proposed method removes these false positives (marked as green circles in Fig. 6). Moreover, as can be 

seen, our method successfully extracts several thin vessels with more details. 

  

                                                      
1
 Image numbers 8,14 from DRIVE and image number 1from STARE 
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(1) (2) (3) (4) (5) 

  

  

(6) (7) (8) (9) 

     

(10) (11) (12) (13) (14) 

   

 

  

(15) (16) (17) (18) 

     

(19) (20) (21) (22) (23) 
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(24) (25) (26) (27) 

Fig. 6 Comparison results for different vessel segmentation algorithms on abnormal retinal images of DRIVE and STARE 

datasets: (1,10,19) RGB retinal images; vessel maps segmented (2,11,20) manually; (3,12) by Bankhead et al.[24] (4,13) by 

Nguyen et al.[31]; (5,14) Martinez et al.[28]; (6,15,24) Soares et al.[38]; (7,16,25) by Imani et al.[6] (8,17,26) by Javidi et al.[5] 

(9,18,27) by BAMCA method; (21) Wang et al.[25]; (22) Hoover et al.[23]; (23) Zhang et al.[4] 

 

To visually assess vessel segmentation performance in different grading levels, Fig. 7 and Fig. 8 depict 

the obtained vessel maps for selected images from Kaggle [87] and IDRiD [88] datasets that are annotated 

with DR grading at 5 levels. As it can be seen, few lesions are detected as vessels, and the pathological 

lesions appearing with the progression of DR, do not have significant effect on the result of the vessel 

maps obtained by the proposed method. Advantageously, thin vessels around the lesions are also 

accurately extracted. 

    

    

 

  

 

Fig. 7 The original retinal images and results of blood vessel segmentation of five severe stages of DR on Kaggle Database; from 

the top left to the bottom right: No DR (grade 0); Mild DR (grade 1); Moderate DR (grade 2); Severe DR (grade 3) and 

Proliferative DR (grade 4) 
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Fig. 8 The original retinal images and results of blood vessel segmentation of five severe stages of DR on IDRiD Database; from 

the top left to the bottom right: No DR (grade 0); Mild DR (grade 1); Moderate DR (grade 2); Severe DR (grade 3) and 

Proliferative DR (grade 4) 

5.4.3 Exudate segmentation  

In this section, the effectiveness of BAMCA in separation of exudate component is quantitatively 

evaluated both at exudate level and image level. For this purpose, the exudate segmentation method [7] is 

applied to the exudate component and the result is compared with the state-of-the-art exudate 

segmentation algorithms.  

In exudate segmentation, non-exudate pixels by far dominate the retinal image. As a result, for typical 

segmentation algorithms Specificity approaches to one and ROC curve is highly compressed toward left. 

Therefore, to better compare performance of different methods, usually positive predictive value (PPV) is 

additionally reported. PPV is defined as:  

     
             

                            
 (14) 

Since ground truth images in e-ophtha EX dataset are carefully contoured by the expert, it is possible 

to evaluate a segmentation algorithm at lesion level as shown in Table 2. As can be seen, the results 

specially in terms of Sensitivity and PPV values are better than all methods even the most recent work 

proposed by Liu et al. [50]. On the other hand, as exudate maps in DIARETDB1 dataset contains rough 

annotations and they have not been precisely contoured, most state-of-the-art methods report their results 

at image level for this dataset. Hence, we similarly report image level Sensitivity, Specificity, and 

Accuracy values in Table 3. As it can be seen, our method performs equally well or even better.  
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Although it’s not traditional to report free-response ROC (FROC) for exudate detection at lesion level 

but Quellec et al. [62] and Gondal et al. [75] report this curve to assess their performance. As 

mentioned, Quellec and Gondal methods correspond to deep learning approaches that has 

recently attracted considerable attention. To make a better comparison, FROC curves and the area under 

the FROC curve (AUC) are illustrated in Fig. 9. As it shown; our method outperforms their 

approaches so that for the same false positive rate, the proposed method yields higher 

Sensitivity. Furthermore, the image level ROC Curve of our exudate detection is compared against 

state-of-the-art in Fig. 10. Our approach performs superior to all traditional methods while Quellec’s 

ensemble of deep CNNs surpasses it although with much smaller margin with respect to what it already 

lost in Fig. 9. Overall, this results suggest that we may obtain improved results if we invest more on post-

processing which generate our image level outputs from the processed patches. Moreover, to visually 

compare the output exudate maps obtained by our method against Quellec et al. [62], Fig. 11 illustrates. 

As can be seen, our result outperforms Quellec’s method by catching its missed lesion marked with green 

circle and reducing false positive clutters highlighted with red circle.  

 

 

Table 2 Comparison of lesion level (region based evaluation with overlap ratio: 0.2) exudate detection on e-ophtha EX dataset 

Method AUC Sen Spec PPV 

Zhang et al. [54] - 74 - 72 
Walter et al. [51] - 44 - 65 
Welfer et al. [52] - 79 - 55 
Imani et. al. [7] 0.937 80.32 99.83 77.28 
Liu et al. [50] - 76 - 75 

Proposed method 0.9375 80.51 99.84 77.3 
 

 

 

Table 3 Comparison of image level exudate detection on DIARETDB1 dataset 

Method Sen Spec  Acc 

Walter et al. [51] 86 69 77 
Welfer et al. [52] 100 0 48 

Sopharak et al.[44]  100 14 64 
Harangi and Hajdu [53] 92 68 82 

Liu et al. [50] 83 75 79 
Gondal et al. [75] 93.3 *  
Proposed method 96 83 90 
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* Specificity value 97.6% over all lesion types has been reported  

 

Fig. 9 Exudate detection performance at the lesion level on DIARETDB1 dataset 

 

Fig. 10 ROC curve of image level exudate detection on DIARETDB1 dataset 

Furthermore, at lesion level, the results in terms of ROC curves using DIARETDB1
1
 and e-ophtha EX 

datasets are shown in Fig. 12, respectively corresponding to AUC values of 0.959 and 0.9375. As newer 

e-ophtha EX dataset contains trickier images, naturally our result is slightly worse on this dataset similar 

to other reported efforts. Corresponding visual comparison is given in Fig. 13. As can be seen, the 

proposed method can detect more true positive regions while keeping a low false negative rate. 

 

                                                      
1
 All exudate lesions in images of this dataset have been manually contoured for lesion level assessment. 
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(a) (b) (c) 

Fig. 11 Visual comparison of Quellec et al. method [62] with the proposed BAMCA method: (a) original retinal images; exudate 

map obtained by (b) Quellec et al [62] and (c) the proposed BAMCA method 

 

 

 

 

Fig. 12 ROC curve of the proposed method for lesion level exudate detection on DIARETDB1 and e-ophtha EX datasets  
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Fig. 13 visual comparison of exudate segmentation methods on first image of DIARETDB1: (a) green plane of the original image 

that contains exudates; exudate map overlaid on image by (b) manually (ground truth); (c) Sopharak et al.[44]; (d) Walter et 

al.[51] ; (e) Welfer et al.[52]; (f) Imani et al.[7]; (g) Yang et al.[89] and (h) The proposed BAMCA method 

 

5.4.4 Assessment of separation performance using third party algorithms  

Having vessel and exudate components of the retinal images separated, one may decide to use each 

component for further processing. Hence, in order to evaluate the quality of separated components of the 

retinal images, in this section we apply third party state-of-the-art segmentation methods to see if 

excluding non-relevant components from the method can improve it or not, and to what extents. 

Therefore, two recent successful methods [27], [31] with publicly available implementations
1
 are selected 

along with our previous work [6] on vessel segmentation. Each of these three vessel segmentation 

methods are studied in two different cases and the results are compared in Table 4: when the original 

image green plane is input to the method versus the case that only the vessel component of green plane is 

used as its input. The results indicate that noticeable improvement is achieved when the vessel component 

is used as input of the segmentation algorithms and the higher accuracy value is reported in this case. 

                                                      
1
 Nguyen method: http://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation and B-COSFIRE method: 

https://gitlab.com/nicstrisc/B-COSFIRE-MATLAB 

http://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation/
https://gitlab.com/nicstrisc/B-COSFIRE-MATLAB
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Table 4 Effect of exudate lesion separation on vessel segmentation results 

Method  DRIVE STARE 

  Sen Spec Acc Sen Spec Acc 

Nguyen et al. [31] 
Without separation - - 94.07       - - 93.24 

With separation 76.63 96.98 94.94 80.03 95.40 94.02 

B-COSFIRE method [27] 
Without separation 76.55 97.64 94.42 77.16 97.01 94.97 

With separation 77.09 97.32 95.28 75.30 97.10 95.14 

Imani et al. [6] 
Without separation 68.88 98.00 95.01 73.21 97.23 94.95 

With separation 77.59 97.28 95.28 78.62 96.05 95.01 

6 Discussion 

As described, the proposed BAMCA method simultaneously separates vessel and exudate lesion 

components from the input retinal image in an iterative procedure. The suggested two-level process of the 

algorithm lets us properly join the iterative decomposition scheme of MCA, with the adaptive sparse 

patch-based representation obtained via dictionary learning. Although recently automatic DR grading has 

seen a noticeable progress with the introduction of deep leaning methods in the field, still there are lots of 

unsolved challenges in automatic and computerized analysis of retinal images as sources of valuable 

medical information about the patients. Detecting lesions accurately enough and locating pathological 

regions at pixel level is yet to be done. 

In our research, we focus on decomposition of retinal images into clinically useful components such as 

vessels and different lesion types; as it can be a prerequisite for providing useful information for the 

ophthalmologists in performing many medical procedures including diagnosis, treatment selection and 

other clinical decision making. Hence in this paper, separation of vessels and exudate lesions is studied 

which our collaborator physicians most needed in their daily jobs in choosing among different treatment 

methods and convalescent care. 

In general, the comparison between different image separation algorithms is done with respect to their 

application [77]. In our application, two different scenarios may be considered: when the obtained 

components are supposed to be visually assessed by a specialist physician or when they have to be input 

to the other automatic processing stages such as segmentation. Both such scenarios are considered in this 

paper and the obtained results are promising, though still much more efforts are needed in integrating 

such automations in the clinical procedures. 

The reported results of separating vessel and exudate components using BAMCA in Fig. 3 show an 

important advantage of the proposed approach: the pathological conditions do not have significant effect 

on the vessel segmentation. Therefore, even thin vessels around the lesions can still be extracted 

accurately enough which is of great value since such vessels are the first to demonstrate signs of next 

stages of diabetes. Moreover, the vessels near the optic disk are retrieved well enough, where many 

traditional vessel segmentation methods produce false results. On the other hand, the reported exudate 

detection outcome is not sensitive to the size of pathological lesions and hence, as shown in Fig. 3 (e), 

both small and large exudates are well extracted. 

Qualitative visual inspection of the obtained components confirm the effectiveness of the proposed 

algorithm in separation of vessel and exudate parts even when the retinal image is severely changed from 

its normal state and get affected by the progress of DR. Since the proposed method is a generative 

approach which delivers meaningful separated parts of the retinal image, our main achievement is not 

necessarily surpassing the results of methods originally designed for vessel segmentation or exudate 
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detection. Nevertheless, we achieved comparable accuracy with state-of-the-art in both tasks and using 

different datasets. 

A strong point of the proposed two-level MCA is setting up an iterative competition between different 

dictionaries in order to separate existing components of the retinal image. This feature lets the algorithm 

change its opinion as the separation process progresses. In addition, the flexibility obtained from learning 

the proper dictionaries greatly help to adapt to very complex target structures which are clinically 

important. On the other hand, the computation cost and limited number of available training samples 

severely restricts size and quality of the learned dictionaries. In fact, to capture more complex structures, 

one needs larger patch sizes and larger number of atoms to obtain proper representation; both of which 

intensely increase computation costs. Using multiresolution techniques may help but dictionary learning 

scenarios should also be improved. Another downside of the presented approach is lots of parameters 

which should be adjusted a priori. What we presented here was a proof of concept, and we do not claim 

that our parameter settings were optimal. Careful validations are necessary to optimize value of each 

parameter through experiments and according to well justified approaches in machine learning. 

7 Conclusion and future work 

In this paper, we proposed a novel framework, called BAMCA, based on extension of MCA algorithm 

in order to adopt the adaptive representation obtained via dictionary learning. The vessels and exudate 

lesions were extracted as diagnostically helpful morphological components of the retinal images. An 

iterative bi-level strategy was presented: each patch is sparsely represented using the offline pre-learnt 

dictionaries; while image components are gradually taken out in an iterative global competition at image 

level. As images of single component are not available, the dictionary learning phase was properly 

customized to use pairs of retinal images and their vessel and lesion maps. Reported results confirmed the 

effectiveness of the proposed method in the separation of vessel and exudate components even when the 

retinal image was severely deviated from its normal healthy state and got affected by the progress of DR. 

Using the separated vessel component, we could achieve above 95% accuracy in vessel segmentation 

and also improve third party algorithms by a few percent in accuracy. The resulted exudate component 

was also successfully used in detection of various size exudates with satisfactory outcome comparable 

with state-of-the-art. 

Extending our method by properly training other lesion-specific dictionaries is our next step. In our 

future research, we plan to use the proposed approach in developing an automatic screening system which 

would support the ophthalmologists not only in grading the diabetic retinopathy, but also in deciding 

about the type and duration of treatment, scheduling patients’ arrival to the clinic and other necessary 

status checks or lab visits. Such system can also be used in training of fresh ophthalmologists and 

education of residents. 
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