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ABSTRACT: It is known that the anomalous Chern-Simons (CS) coupling of O,-plane is
not consistent with the T-duality transformations. Compatibility of this coupling with the
T-duality requires the inclusion of couplings involving one R-R field strength. In this paper
we find such couplings at order a/2.

By requiring the R-R and NS-NS gauge invariances, we first find all independent
couplings at order a/?. There are 1, 6, 28, 20, 19, 2 couplings corresponding to the R-R field
strengths F*=4  p-2) p@) pe+2)  pe+) and FE6) | respectively. We then impose
the T-duality constraint on these couplings and on the CS coupling C?~3) A RA R at order
a'? to fix their corresponding coefficients. The T-duality constraint fixes all coefficients in
terms of the CS coefficient. They are fully consistent with the partial couplings that have

been already found in the literature by the S-matrix method.
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1 Introduction

The best candidate for quantum gravity is the superstring theory in which the graviton
appears as a specific mode of a relativistic superstring at weak coupling [1, 2]. Superstring
has massless and infinite tower of massive states which appear in the low energy effective
action, as higher derivative corrections to the supergravity. Study of these higher derivative
corrections are important because they signal the stringy nature of the quantum gravity.
One of the most exciting discoveries in perturbative string theory is the T-duality
which has been observed first in the spectrum of string when one compactifies theory on a
circle [3, 4]. This symmetry may be used to construct the effective action of string theory
including its higher derivative corrections, in the Double Field Theory formalism in which
the T-duality transformations are the standard O(D, D) transformations whereas the gauge
transformations are non-standard [5-7]. It has been also speculated that the invariance of
the effective actions of string theory and its non-perturbative objects, i.e., D-branes and
O-planes, under the standard gauge transformations and non-standard T-duality transfor-
mations may be used as a constraint to construct the effective actions [8]. In this approach,
one first constructs the most general gauge invariant and independent couplings at a given
order of o/ with arbitrary parameters. Then the parameters may be fixed in the string
theory by imposing the T-duality symmetry on the couplings. That is, one reduces the
couplings on a circle and requires them to be consistent with the T-duality transformations
which are the standard Buscher rules [9, 10] plus their o/-corrections [11-14]. Using this
approach, the effective action of the bosonic string theory at order o/ and o/ have been
found in [14, 15]. It has been shown in [16, 17| that the leading order effective action of



type II superstring theories, including the Gibbons-Hawking-York boundary term [18, 19],
can also be rederived by the T-duality constraint. The couplings involving metric and
dilaton in both heterotic string and in superstring theories at order o3 have been also
rederived by the T-duality constraint in [20]. There are many other approaches for con-
structing the effective actions including the S-matrix approach [21, 22], the sigma-model
approach [23-25], and the supersymmetry approach [26-29]

The T-duality approach for constructing the effective action of D,-brane (O,-plane) is
such that one first writes all gauge invariant and independent D,-brane (O,-plane) world-
volume couplings at a specific order of o/ with some unknown p-independent coefficients.
Then one reduces the world-volume theory on the circle. There are two possibilities for the
killing coordinate. Either it is along or orthogonal to the brane. The reduction of the world-
volume theory when the killing coordinate is along the brane (the world-volume reduction),
is different from the reduction of the world-volume theory when the killing coordinate is
orthogonal to the brane (the transverse reduction). However, the T-duality transformation
of the world-volume reduction of D,-brane (O,-plane) should be the same as the transverse
reduction of the D,,_;-brane (Op_1-plane) theory, up to some total derivative terms which
have no physical effects for closed spacetime manifold [8].

Since Op-planes are at the fixed points of spactime, i.e., X’ = 0, some world-volume
couplings are forbidden by orientifold projection [1]. The Op-plane effective action has no
open string couplings, no couplings that have odd number of transverse indices on metric
and dilaton and their corresponding derivatives, and no couplings that have even number of
transverse indices on B-field and its corresponding derivatives [1]. These O-plane conditions
make the study of the O-plane couplings to be much easier than the D-brane couplings.
The T-duality constraint has been used in [30, 31] to find the effective action of O,-planes
of type II superstring at order o/? for NS-NS fields. In this paper, we are interested in
applying the T-duality constraint on the effective action of Op-plane when there is one
R-R field strength.

The O,-plane CS action at the leading order of o is given as [1]

SO — Tp/ C (1.1)
Mp+1

where C = Zi:o C™ is the R-R potential and 7, » is the Op-plane tension. It is invariant
under the R-R gauge transformation

5C = dA + HA (1.2)

where A = ZZZO A" and H = dB. Note that the last term in 6C is zero for O,-plane when
all indices of the R-R potential are world-volume, as in (1.1). The curvature corrections to
D,-brane action has been found by requiring that the chiral anomaly on the world-volume
of intersecting D-branes cancels with the anomalous variation of the CS action [32-34].
The corresponding corrections for O,-plane has been found in [36] to be

£(7T206/RT)
=T —_— 1.
Scs b /Mp+1 ¢ L(m%a/Ry) (1.3)



where L(R7 n) is the Hirzebruch polynomials of the tangent and normal bundle curvatures
respectively,

L(m?c’Ry) 1 2o’

Amo ir) trR2 — trR2) 4 - - - 1.4
L(r2a/Ry) g (rRr —trRy) + (1.4)

where R7 y are the curvature 2-forms of the tangent and normal bundles respectively. The
corresponding curvature corrections to the CS action of D,-brane is the same as (1.4) in
which £(R/4) is replaced by the A-roof genus A(R) which produces up to a factor of —2,
the same curvature corrections at order a/?. However, the curvature corrections at higher
orders of order o/ are not the same in both cases.

The action (1.4) at order &' in component form is'

212
S(CQ§ = _%/dﬁlxeaom%mcﬁwz RaomabRazas ab = Ragar” Rayas ij] (1.5)
The above couplings have been confirmed by the S-matrix element calculations in [35-37].
Using the cyclic symmetry of the Riemann curvature, one can verify that the above dif-
feomorphism invariant action is also invariant under R-R gauge transformation. As it has
been argued in [38, 39], the above couplings, however, are not consistent with the T-duality
transformations.

On the other hand, there are many other gauge invariant couplings at this order which
can not be found by the anomaly analysis. The R-R gauge symmetry requires all such
couplings to be in terms of the nonlinear R-R field strength, i.e.,

F® = gc=Y 4 g A=) (1.6)

which is invariant under the R-R gauge transformation (1.2). Some of these couplings
involving one R-R field strength F®=2) and two NS-NS fields have been found for D-brane
in [40-43] by linear T-duality and by the disk-level S-matrix calculations. The complete
couplings involving one R-R field strength F®), F(P+2) or FP*+4) and one NS-NS field have
been found in [44] by the S-matrix method and have been shown that they are invariant
under the linear T-duality. However, these couplings are not invariant under the full
nonlinear T-duality either. Hence, the T-duality of the CS coupling (1.5) may require
adding couplings involving one R-R field strength and an arbitrary number of NS-NS fields

at order o2

in which we are interested in this paper.

An outline of the paper is as follows: in section 2, we find the minimal gauge invariant
couplings involving one R-R field strength. We use the Bianchi identities, total derivative
terms and €% -tensor identities to find the minimum number of gauge invariant cou-
plings. We find there are 1, 6, 28, 20, 19, 2 such couplings corresponding to the R-R field
strengths FP—4 =2 p) pe+2) pe+d pe+6) respectively. We then reduce them

on a circle in section 3 to impose the T-duality constraint on them.

'Our index convention is that A, B, --- are 10-dimensional bulk indices, p, v, - - - are 9-dimensional base
indices, y is killing index, a,b,--- and ao, - - - , ap are world-volume indices and 1, 7, - - - are transverse space
indices.



An appropriate method for reducing a gauge invariant coupling to 9-dimensional base
space has been presented in [15]. In this method one keeps the U(1) x U(1) gauge invariant
part in the reduction of the Riemann curvature and other components of a given coupling
and removes all other terms. In section 3, we extend this method for the reduction of the
couplings involving R-R fields as well, i.e., we find the U(1) x U(1) gauge invariant part of
the reduction of R-R field strength and its first derivatives. In section 4, we impose the
T-duality constraint on the independent gauge invariant couplings to fix their parameters.
That is, we use the Bianchi identities, total derivative terms and €% ®-1-tensor identities
in the base space to write the T-duality constraint in terms of independent structures, and
then solve them. In this section, we show that the T-duality can fix all parameters of the
gauge invariant couplings in terms of an overall factor, and they are consistent with the
partial couplings that have been already found in the literature by the S-matrix method.
In section 5, we present the final form of the gauge invariant couplings and briefly discuss
our results.

2 Minimal gauge invariant couplings

In this section we would like to find minimum number of gauge invariant couplings on the
world-volume of O,-plane involving one R-R field strength and an arbitrary number of
NS-NS fields at order o/?, i.e.,

T 7.[.20/2
S, = _P48t/}ﬁ+%p£" (2.1)
where L" is the Lagrangian which includes the minimum number of gauge invariant cou-
plings involving one R-R field strength F(™). As it has been argued in [30], since we are
interested in O,-plane as a probe, it does not have back reaction on the spacetime. As
a result, the massless closed string fields must satisfy the bulk equations of motion at or-

0. Using the equations of motion, one can rewrite the terms in the world-volume

der o
theory which have contraction of two transverse indices, e.g., V;V‘®, or R;4'g in terms
of contraction of two world-volume indices, e.g., V,V?*®, or R,4%p. This indicates that
the former couplings are not independent. The O-plane couplings should also satisfy the
orientifold projection.

The couplings involving the Riemann curvature and its derivative and the couplings
involving derivatives of H and derivatives of R-R field strength satisfy the following Bianchi

identities

Raep) =0
ViaRpcipe =0
dH =0

dF™ + HAF2) = (2.2)

Moreover, the couplings involving the commutator of two covariant derivatives of a tensor
are not independent of the couplings involving the contraction of this tensor with the



Riemann curvature, i.e.,
[V,V]O = RO (2.3)

This indicates that if one considers all gauge invariant couplings at a given order of o/,
then only one ordering of the covariant derivatives is needed to be considered.

Using the symmetries of €% % the R-R field strength F(™, H and the Riemann
curvature, one can easily verify that it is impossible to have non-zero contractions of one
F™) and some R, H, V® at order o/ for n < p— 4 and n > p + 6. Moreover, the parity
of the coupling (1.5) indicates that the couplings of the R-R field strength F(*=2) are non-
zero when there are even number of B-field. The consistency with linear T-duality then
indicates that the couplings of the R-R field strength F®—% F®) and F®P*+4 are non-zero
when there are odd number of B-field, and the couplings of the R-R field strength F(®+2)
and F®16) are non-zero when there are even number of B-field. There are similar parity
selection rule for the corresponding S-matrix elements [48]. For n = p — 4 there is only one
non-zero independent coupling,? i.e.,

(p—5)!

where we have used the O-plane conditions that there is no H term with even number

ﬁp74 — %0 ap

Fia6~~-apHiaoa1Hja2a3Hja4a5 (2'4)

of transverse indices. In above equation, the transverse indices are raised by the tensor
1% = G (see next section for the definition of tensor 1), and coefficient a is an arbitrary
parameter at this point. This parameter may be fixed by studying the RP?-level S-matrix
element of one R-R and three NS-NS vertex operators which is a very lengthy calculation.
We expect this parameter to be fixed by the T-duality constraint.

There is no derivative on the R-R field strength and on the B-field strength in the
above coupling. Hence, there is no Bianchi identity involved here. Since there is only one
term, there would be no e-tensor identity either. Moreover, there is no total derivative term
here. This is not the case for n > p — 4 cases. Let us discuss each of the cases n = p — 2,
n=p,n=p+2,n=p+4and n =p+ 6 separately.

2.1 n=p-—2 case

To find all gauge invariant and independent couplings corresponding to one R-R field
strength F?=2) we first consider all contractions of one €% % one F, VF or VVF, even
number of H and VH, and any number of V&, VV®, VVV®, R, VR at four-derivative
order. Because of the relation (2.3), we consider only one ordering of the covariant deriva-
tives. We then remove the forbidden couplings for O-plane, and remove the couplings in
which two transverse indices in a term contracted, i.e., we impose the equations of motion.
We call the remaining terms, with coefficients b},b),---, the Lagrangian LP~2. Not all
terms in this Lagrangian, however, are independent. Some of them are related by total
derivative terms, by Bianchi identity and by e-tensor identity.

To remove the total derivative redundancy, we write all total derivative terms at order
o2 which involve the R-R field strength F(®~2). To this end we first write all contractions

2We have used the package “xAct” [46] for performing the calculations in this paper.



of one €% one F', VF, even number of H and VH, and any number of V&, VV®, R at
three-derivative order. Then we remove the forbidden couplings and impose the equations
of motion. We call the remaining terms, with arbitrary coefficients, the vector 1?72, The
total derivative terms are then

Jr2 = / Pl guby, 1P (2.5)

where g% = G is inverse of the pull-back metric (see next section for the definition
of the pull-back metric). Adding the total derivative terms to LP~2, one finds the same

Lagrangian but with different parameters by, bo,---. We call the new Lagrangian £P~2.
Hence

APTZ_ g2 = (2.6)
where AP=2 = £P=2 _ [P=2 ig the same as LP~2 but with coefficients dby, 6bo, - -- where

db; = b; —b]. Solving the above equation, one would find some linear relations between only
&by, 0bo, - - - which indicate how the couplings are related among themselves by the total
derivative terms. The above equation would also give some relation between the coefficients
of the total derivative terms and by, dbg, - - - in which we are not interested.

However, to solve the above equation one has to impose the Bianchi identity and e-
tensor identities. To impose the Riemann curvature and H-field Bianchi identities (2.2),
one may contract the term on the left-hand side of each Bianchi identity with appropriate
couplings to produce terms at order o/2. The coefficients of these terms are also arbitrary.
Adding these terms to the equation (2.6), then one could solve the equation to find the
linear relations between only dbi,dby,---. This method has been used in [30] to find
the independent couplings involving only the NS-NS fields. Alternatively, to impose the
Riemann curvature Bianchi identities, one may rewrite the terms in (2.6) in the local frame
in which the first derivative of metric is zero. Similarly, to impose the H-field Bianchi
identity, one may rewrite the terms in (2.6) which have derivatives of H in terms of B-field
potential, i.e., H = dB. The last Bianchi identity in (2.2) relates the couplings involving
derivative of F(P=2) to themselves and to the couplings involving F*~%. However, the
independent couplings involving F®~%) have been already fixed in (2.4). Hence, the last
Bianchi identity in (2.2) should relate only the couplings involving F(®=2) 'je. one should
impose the identity dFP~2) = 0. To impose this identity on the couplings in (2.6) as
well, one may rewrite the terms involving the derivatives of the R-R field strength F®—2)
in terms of the R-R potential, i.e., F?=2) = dC®=3)  In this way, all Bianchi identities
satisfy automatically [47]. We find that this latter approach is easier to impose the Bianchi
identities by computer. Moreover, in this approach one does not need to introduce a large
number of arbitrary parameters to include the Bianchi identities to the equation (2.6).
However, in this approach the gauge invariant equation (2.6) is written in terms of non-
gauge invariant couplings. In this paper we use this approach for imposing the Bianchi
identities.

After imposing the Bianchi identities, the non-gauge invariant couplings are not yet
independent. To rewrite them in terms of independent couplings, one has to use the fact



that the number of world-volume indices in each coupling must be the same as the world-
volume indices of €% It has been observed in [44] that imposing this constraint, one may
find some relations between couplings involving €% "*». Some of these e-tensor identities for
the simple case of two-field couplings, have been found in [44]. To impose this constraint
on the couplings in (2.6) as well, we write the non-gauge invariant couplings explicitly in
terms of the values that each world-volume index can take, e.g., ag = 0,1,2,--- ,p. It is
easy to perform this step by computer using the “xAct” package [46].

Using the above steps, one can rewrite the different gauge invariant couplings on the
left-hand side of (2.6) in terms of independent but non-gauge invariant couplings. The
solution to the equation (2.6) then has two parts. One part is relations between only db;’s,
and the other part is a relation between the coefficients of the total derivative terms and
0b;’s in which we are not interested. The number of relations in the first part gives the
minimum number of gauge invariant couplings in £P~2. To write the independent couplings
in a specific scheme, one must set some of the coefficients in LP~2 to zero. However, after
replacing the non-zero terms in (2.6), the number of relations between only db;’s should
not be changed. In the present case this number is 6. We set the coefficients of the terms
that have world-volume derivative on the R-R field strength, to be zero. After setting this
coefficients to zero, there are still 6 relations between db;’s. This means we are allowed to
remove these terms. We choose some other coefficients to zero such that the remaining
coefficients satisfy the 6 relations §b; = 0. In this way one can find the minimum number
of gauge invariant couplings. One particular choice for the 6 couplings is the following:3

by
(p—2)!
Fa3...ap vaHiaom Hia a2

_ b1 4 , .
[’(p 2) - an...ap 7| viFja4...ap HZ apal H] azas3 + Fa3...ap vaHiaao Hl aias

(p—3)
by

+M Fag...ap vaoHiaal Hm a2 +
bz

b
(p—2)!

. . by
=y Fiesean Vol anas B s 0=

where the world-volume indices are raised by the first fundamental form G® = G (see next

Fag...ap Hiaao Hl ajas vaq) (27)

section for the definition of the first fundamental form), and the b’s are arbitrary coefficients.
These coefficients do not depend on p. In fact the p-dependence of the couplings has been
written explicitly by 1/n! where n is the number of indices of the R-R field strength that
are contracted with €. These couplings are consistent with the linear T-duality for
the special case that the world-volume killing index of €*0% contracts with the R-R field
strength. That is,

1 oG Grry 1 1 .

MGGO Am Am+1 apF_..amamﬂ--.ap(' . ) = Meao ap 1yF"CLma7TL+1"-ap71y(' .. )_1_. .
1 .ee

— MECLO ap—lF--amam+1...ap71(. .. ) + ...

where the dots before the index a,, in the R-R field strength are the world-volume or
transverse indices that contract with other parts of the coupling, i.e., contract with (---).

3If one does not use the e-tensor identities, then one would find 10 independent couplings.



In the first line we assume one of the world-volume indices is the killing index y, and in the
second line we have used the linear T-duality transformation for the linearised R-R field
strength, i.e., F(Z) = F.@fl), and the identity e %-1¥ = % %-1_ The couplings (2.7)
for arbitrary coefficients, however, are not consistent with the linear T-duality when the
killing index is not carried by the R-R field strength. We are interested in constricting
these coefficients and the coefficients of other R-R field strengths that we will find in
the subsequent subsections, by requiring the couplings to be consistent with nonlinear
T-duality.

There is no term in (2.7) which involves only one NS-NS field. This indicates that
the RP2-level S-matrix element of one R-R field strength F®=2) and one NS-NS vertex
operators should not have four-derivative terms. It has been observed in [44] that the
disk-level S-matrix element of one R-R and one NS-NS vertex operators produce no such
term at order /2. On the other hand, it has been observed in [45] that the low energy
expansion of RP2-level and disk-level S-matrix element of two massless closed string vertex
operators are the same at order o/, up to an overall factor.

The disk-level S-matrix element of one R-R potential C®~3) and two B-field vertex
operators has been calculated in [42, 43] from which the couplings of one F (=2 and two
H has been found for D,-brane. The orintifold projection of the couplings found in [43] are
the same as the above couplings with the following coefficients:

1
bi=br=0, by=—bi=bs= (2.8)

where we have also used the Bianchi identity dH = 0 to relate the couplings found in [43] to
the couplings in (2.7). We will see that exactly the same coefficients (2.8) are reproduced by
the T-duality constraint. This observation and the observation made in [45] may indicate

2 are the same

that the orientifold projection of the disk-level S-matrix elements at order o/
as the corresponding RP?-level S-matrix elements at order o/, up to overall factors.

The independent couplings (2.7), however, are not the most general gauge invariant
couplings because they do not include the Riemann curvature. The gauge invariant cou-
plings involving the Riemann curvature are the couplings in the CS action (1.5) which are
found by the anomaly cancellation mechanism. The T-duality constraint should reproduce
these couplings as well. Hence, we include in this subsection the following gauge invariant
couplings with arbitrary coefficients:

'Cgs_g) = elomer (p 613)!CCSZ?'?&LRGOG1”RGQGB i + (p i23)l

The two parameters a4, as which are known from the anomaly cancellation mechanism and

-3 a
CLSZ"'G)I)RGOU«I bRa2a3 ab (29)

also from the S-matrix calculation, should be fixed by the T-duality constraint as well.

2.2 n =p case

To find all gauge invariant and independent couplings involving one R-R field strength
F®) we first consider all contractions of one €%% one F, VF or VVF, odd number of
H,VH and VVH, and any number of V&, VV®, VVV®, R, VR at four-derivative order.



We remove the terms which are forbidden for O-plane and impose the equations of motion.
We then impose the total derivative terms, use the Bianchi identities and e-tensor identities
with the same strategy that is discussed in the previous subsection. In this manner one
finds 28 independent couplings. One particular form for them is the following:*

C2
(p—1)!
C .
+p—j’ ViFuy..ap H'® 4 Va® +

C3
(p—1)!
Fay..ap V*H' 4a;, Vo @

E(p) = an...ap vaFiag...ap vaoHia a1l + vaFiaQ...ap vaHi apal

_
(p—1)!
cs

+W Fiag...ap vaHi apal Vaq) +
C .

+ﬁ Fiag...ap HZ aai Vavaotl) +
C .

+ﬁ Fiay...ap H' apa, VIO Vo +
€17 A iab 7. j

+(p — 1)| F]ag...ap H HzabH apal + (p — 3)'

C23 ' , i Gkl C24
(p— a1 Haseap Moo Heses H0 0 7y

C28 iab i C30 iab 777
+— Fjag...ap H™ Hiaao HY bay + m Fiaba4...ap H" HY apal Hja2a3

(p—1)!
T Fiag...ap HZ apal ijl ij:l

c .
;01)' Fiag...ap H' apal vava@

(p—

C13

(p—1)!
c )
ﬁ Fiag.“ap H' aal VCLO@V‘@

C21

Fjag...ap Hiaga, V'VI @

ikl j
ijla4...ap H Hiaoal H’ azas

”
+ szag...ap Hiaao HY Hj “ ay

+W Eag...ap Hiaoal H' Ik H]kl +

gyt Fasan HH ity +
C35

ia j k
Ejka4...ap H ag HY aalH asas

o

+7| Fkag...ap HZ]IC Riaojal + W Fjag...ap HZ aaoRial Ja

(p—1)
C39

+M Fjaag...ap Hiaoal Riaj a2 + W Fjag...ap Hiaao Riaj ay

C40 ; ik C43
+7! Fijka4...ap HZ apal R] az a3 + W

(p — 3) Fiag...ap Hz apal Rab ab
Eag...ap HZ aal Rab apb (210)

+ﬁ Fiay...ap Hiab Roaoba; + W
Note that in this case also we have set the coefficients of the terms that have world-volume
derivative on the R-R field strength, to be zero. However, in the couplings in the first
line we use an integration by part to remove one of the two derivatives on H because in
imposing T-duality in the next section one needs to dimensionally reduce the couplings.
The reduction of VFV H is much easier to perform than the reduction of FVV H. In above
equation, ca,- - ,cqg are 28 arbitrary coefficients that do not depend on p. They may be
found by the T-duality constraint.
The coefficients co, ¢ has been fixed by the tree-level S-matrix element of one R-R and
one NS-NS vertex operators [44], i.e.,
1

Cy = 2, C3 = —5 (211)

41f one does not use the e-tensor identities, then one would find 46 independent couplings.



In finding this result we write the two-field terms in (2.10) and the couplings found in [44]
in terms of independent structures, and then force them to be the same.

2.3 n=p+2case

To find all gauge invariant and independent couplings involving one R-R field strength
F®+2) e consider all contractions of one €% one F, VF or VVF, even number of H
and VH, and any number of V&, VV®, VVV®, R, VR at four-derivative order. We then
impose the equations of motion, the O-plane conditions, the total derivative terms, and
use the Bianchi identities and e-tensor identities with the same strategy that is discussed
in the subsection 2.1. In this manner one finds 20 independent couplings. One particular
form for them is the following:’

_ds
(p+1)!
d1o

E(p+2) — ¢@0--ap

Vkﬂao...ap Hijk Hij ! + vz‘F’jao,__ap Hiac Hj ac

2
(p+1)!

dy . .
+ﬁ Vz‘ijlag...ap H' 490 M 4

) ikl
ijiklag...ap H' apal HY

(p—1) (p— 1!
di1 . d12 o
‘|‘m ViFjag...ap V'V + W ViFjag..ap R,
d d
p”’ VaFijar...ay R o plf” Fijay..ay R 4y V, @
d d
+ p2!1 ijal ap VaHUk Higqo + ;'2 F]kal ap VZHJka Higay
d d g
+ ;‘6 F]kal .ap \% Hmao H”k + ﬂ szlal .ap vaOHZ]k Hij !
d . . d . A
ﬁ Fijal...ap VaI{Z bag H]ab + ﬂ Fz]m .ap vaoI_IZ ab H]ab
d3e » ’ d41 ; .
+F Fijay...ap YV H" [ bao + M Fijklas...ap VaoH' ayas HiM
d42 d43 . .
+— p! lem .ap V ijao ijl (p — 2)' Fijklag...ap H* aias H]kl vaoq)
dy7 d48 y
o Fijay...ap H'" H 40y Va® + — Fjkay .ap Hiaao H?* V@ (2.12)
where the p-independent coefficients do, - - - , d4g may be found by the T-duality constraint.

The coefficients dy1, d12, d15 have been fixed by the tree-level S-matrix element of one
R-R and one NS-NS vertex operators [44]. They are

din=—2, dio = —2, dis =2 (2.13)

In finding the above result, we have imposed the first Bianchi identity in (2.2) on the
two-field couplings found in [44]. Note that as observed in [44] the above results indicate
that the curvature R/, and VV/® appear in the O-plane action as ij-component of the
following combination:

RAB = RAB L vAVE® (2.14)

°If one does not use the e-tensor identities, then one would find 53 independent couplings.
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where A, B are 10-dimensional bulk indices. Note that the transverse contraction of the
Riemann curvature, i.e., R4*5; has been removed at the onset by imposing the equations
of motion. This dilaton-Riemann curvature appears also in NS-NS couplings of O-plane
action at order o/? [31]. We speculate that the second derivative of dilaton appears in all
O-plane and D-brane couplings in above combination.

2.4 n=p-+4 case

Performing the same steps as in subsection 2.1, one finds there are 19 independent couplings
on the world-volume of O,-plane that are not related to each other by the Bianchi identities,
e-tensor identities and the total derivative terms. One particular form for the couplings is
the following:%

L0 = s | s Vo Fijtag..ap VT + 22 Pk, VU H Vo

+ﬁ Fijkag..ay HIF VOV, O + ﬁ Fjktag...a, HM VIV;®
+ﬁ Fijhag..ap HI* V0 V,® + ﬁ Fronna..a) HOVH ™ H ™
+ﬁ Ftmnas...ay H' agay H® H; ™ + ﬁ Fjktag...ay H™ Hiqy H*
oyt Fobaoa Hiao HM I 2 Bt oy H 0y HY oy HA
+ﬁ Fijhag..ap H® H gc H* ¢ + ﬁ Fhmnag...a, Hijr HI' HF™™
+(p€%21)! Fjkimnas...ay Hiagay HF H™™ + (pejgl)! Fmnag...a, H® Hyjp, H™
+ﬁ Fhtmao...a, Hi ¥ R9™ 4 ﬁ Fiktag...ay HI* R 5,
+(p%21)! Fiikag...ay H' ap R7*° + (pe_441>! Fyjkimas..ay HP* R 40 ™ o
oyt Pk HOE B (2.15)

where the p-independent coefficients ey, - - - , e47 may be found by the T-duality constraint.

The coeflicient e; has been fixed by the tree-level S-matrix element of one R-R and
one NS-NS vertex operators [44], i.e.,

1

5 (2.16)

e =
The proposal that the combination (2.14) should appear in the world-volume couplings,
dictates that the T-duality should fix the coefficient eg to be the same as es7. As we will
see in section 4, the T-duality indeed produces this relation.

SIf one does not use the e-tensor identities, then one would find 47 independent couplings.
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2.5 n=p-+6 case

Similar calculation for the couplings involving one R-R field strength F®*6) gives the
following two independent coupling:

f2
(p+1)!

where f1, fo are two arbitrary coefficients that may be found by the T-duality constraint.

A ;
E(p+6) — ¢toap [ J1 -Fijklmnal...apvaoHUk Hlmn +

p' viijlmnaoA..ap Hiijlmn (217)

There are no couplings involving one NS-NS field which is consistent with the tree-level S-
matrix element of one R-R and one NS-NS vertex operators [44]. The above two coefficients
may be fixed by the low energy expansion of RP2-plane S-matrix element of one R-R and
two NS-NS vertex operators at order /2. The disk-level calculations have been fixed these
coefficients to be zero [42]. We will see that the T-duality also fix these coefficients for
O-plane to be zero which is consistent with the speculation that the orientifold projection
of D-brane couplings at order o/? is the same as O-plane couplings at order a'?, up to
overall factors.

Therefore, there are 76 independent couplings at order o> which have one R-R field.
These gauge invariant couplings are the appropriate couplings on the world-volume of
O,p-plane for some specific values for the 76 parameters. They may be found by the S-
matrix or other methods in string theory. We are going to find these parameters in this
paper by the T-duality constraint. We will find that all 76 parameters are fixed up to an
overall factor.

3 T-duality transformations

When compactifying the superstring theory on a circle with radius p and with the coor-
dinate y, the full nonlinear T-duality transformations at the leading order of o’ for the
NS-NS and R-R fields are given in [9, 10, 49], i.e.,

20 — ﬁ. G = L
Gyy ' W Gyy
B GuyGry — By B
1 _ Dy 1o py vy nyBry
Gy nyy ' G = Guv — Gyy
G B,,Gyy — Gy B
B/,iy = GZ;/’ BA,LV = B/LV - Vyny Ry (3'1)
(n—1)
) _ 1) _ Gy @lely
C,un-uay - C,u-nuoz - Gi )
vy

(n—1
Ci ) BlagyGlaly

/(n) _ (ntl) (n—1) [p-vly
Cli"-uocﬁ o C,u~~~uaﬁy + C[u~~~uaB5]y + ny

where p, v denote any direction other than y. Our notation for making antisymmetry is
such that e.g., C{(jfm B, = ;(121)@ BM3V—C,823L2 Buw"‘c;(g)mBugw In above transformations

the metric is in the string frame. If one assumes fields are transformed covariantly under
the coordinate transformations, then the above transformations receive corrections at order
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o’ in the superstring theory [20] in which we are not interested because the couplings in
this paper are at order a/?.

To impose the T-duality constraint on the effective action, one should first write all
independent gauge invariant couplings of Op-plane, as we have done in the previous section,
and then reduce them on the circle when O,p-plane is along the circle. The T-duality
transformation of the reduced action should be the same as the reduction of O,_1-plane
when it is orthogonal to the circle, up to some total derivative terms. To impose the T-
duality constraint on the effective action, however, it is convenient to use the following

reductions for the metric, B-field, dilaton and the R-R potentials [17, 50]:

= T 1 1
Gap = Guv + ewgugu etpgu . Bup = buu + §bugu - §bl/gu bu
e?gy e¥ —by 0
D =¢+ /4 (3.2)
n _(n _(n—1
C/(Ar)"un = C;(n)~~-un + c[(m"#)tnqg#n]
_(n—1)

(n) _
Chir' i1y = Cua-pin—1
where g, BW, ¢ and &™) are the metric, B-field, dilaton and the R-R potentials, respec-
tively, in the 9-dimensional base space, and g, b, are two vectors in this space. In this
parametrization, inverse of metric becomes

GAB _ <§W —g" ) (3.3)

—9” €%+ gag®

where g" is the inverse of the base metric which raises the indices of the vectors. The
nonlinear T-duality transformations (3.1) in the parametrizations (3.2) then become re-
markably the following linear transformations:

¢'=—¢, gu=bu, Y, =gu (3.4)
and all other 9-dimensional fields remain invariant under the T-duality transformation.
Note that the T-duality transformation of the base space R-R potential &™) is trivial in the
parametrization (3.2), however, the R-R gauge transformation of this potential in which
we are not interested in this paper, seems to be non-trivial.

0

One can easily verify that the CS action at order o/ is invariant under the T-duality.

If the killing coordinate y is a world volume, then the T-duality transformation of the
reduction of O,-plane action in the parametrization (3.2) becomes

1
Tp1/dp$€ao...ap129'5215)“_%_1 (3‘5)

where we have used the relation 2wpT, = T),_1 and € "%-1Y = %=1 On the other
hand, the reduction of the O,_i-plane action in the parametrization (3.2) when the y-
coordinate is transverse to the O,_1-plane is

vy L[ _(p—
Tp_I/dPx €20 p—lp'(c((f;),..apl —|—pc$0._1_31p2gap_1]> (3.6)
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Using the fact that g,, , is the component of the 10-dimensional metric which has one
y-index and y is a transverse index in this case, the last term above is removed for the
O-plane. The rest is the same as the action (3.5).

There is no such symmetry for the CS action at higher orders of o/ because the Riemann
curvature is not invariant under the T-duality transformations. As a result, one has to add
some other terms to this action to make it T-duality invariant as in the leading order
term. Since the new couplings involve R-R and NS-NS field strengths and their covariant
derivatives, it is convenient to first find the reduction of these field strengths and then
apply them to find the reduction of each gauge invariant coupling.

Using the reductions (3.2), it is straightforward to calculation reduction of the Riemann
curvature, H, VH, V® or VV®. As it has been argued in [15], after writing the reductions
in terms of H which is defined as

| 1
H=db— g AW~ bAV (3.7)

where W = db and V = dg, they have two parts. One part includes terms which are
invariant under U(1) x U(1) gauge transformations corresponding to the gauge fields g, b,.
They have been found in [15] (see eq. (35), eq. (36) and eq. (37) in this reference”). The
other part which is not invariant under the U(1) x U(1) gauge transformations, includes
the gauge fields g, b, without derivative on them. Such terms are cancelled at the end of
the day in the reduction of a 10-dimensional gauge invariant coupling. So one may keep
only the U(1) x U(1) gauge invariant parts of the reduction of the Riemann curvature, H,
VH, Vo and VV®, and the following reduction of the inverse of the spacetime metric:

g
aAB = 9 3.8
< 0 e‘P> (3:8)

and removes all other terms in the reduction. In this way one can find the reduction of any
gauge invariant bulk coupling. However, the metric GAZ is not used in constructing the Op-
plane couplings in the previous section. The world-volume couplings in fact are constructed
by contracting the tensors with the first fundamental form GAB = 9, X48,X BG which
projects the spacetime tensors to the world-volume directions, and with L 4% = GAB —GAB
which projects the tensor to the transverse directions. In the first fundamental form, g
is inverse of the pull-back metric Gy = 9, X2 XEG ap.

In the static gauge where X% = ¢ and for the Op-plane at X* = 0, one has Gl = Got =
Gia = 0, and G = 3%, Gab = Gap. When O,p-plane is orthogonal to the killing coordinate,
the first fundamental form and world-volume components of the inverse of the spacetime
metric have no component along the y-direction, because y is a transverse direction. Hence,
in this case 1% = 0. Moreover 1% = G% = ( by the orientifold projection. The non-zero
components in this case are

- y y Gt
Gab — Gab — gab7 18 =Gy = g E) (39)
0 e®

"There is a typo in the reduction of V, Hyay in eq. (37) in the published version of [15]. The first term
on the right hand side of this expression should be negative.
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The gauge field g; does not appear in é“b, however, it appears in the reduction of 1%, As
n (3.8), we have ignored it because we have ignored the non-gauge invariant terms in the
reduction of the Riemann curvature, H, VH, V® and VV®.

On the other hand, when O,-plane is along the killing coordinate, both the first fun-
damental form and world-volume components of the inverse of the spacetime metric have
component along the y-direction, however, because G® = G one again has 1% = 0. In
this case the non-zero components are

_ =ab . 3 g
G% =G = (go 9¢> , LY =Gv =g¥ (3.10)
e

The gauge field g; does not appear in L%, however, it appears in the reduction of G that
we have again removed it.

Using the reduction of the R-R potential in (3.2), one can find the reduction of R-
R field strength and its first derivative which appear in the couplings in the previous
section. They have again two parts. One part is not invariant under the U(1) x U(1) gauge
transformations which is cancelled in the gauge invariant couplings, hence we ignore it.
The U(1) x U(1) gauge invariant part of the reduction is

/S?) Pn—1Y — F(n /1L)n i (_1)(7173) Wi EEZ_:L)",l] + H[muzu:ﬂ EZ t)n = FW;(ZiL)nq
F/E?.)..un = F;S?.)..un + (D" VY, € ﬁ: i) T Hipiy s EEZ ?L)n] = FV;(Z)un
v FIST) Pn—1Y %ép [FV( ) Hn—1p Ve — FWEMIQ )Mn 1VM1}H}
S == [P S P V|
VEM = {w s (—1)<”*1>FWEZ; ffmvm],,]
VM = {W PV eV v, W) vyw] (3.11)

where the covariant derivatives on the right-hand side are 9-dimensional and F' = dé. One
can check that the reduction of VH found in [15] can be found from the above reduction
when one uses HV®?) = W and HV®) = H. Obviously, the U(1) x U(1) gauge invariant
part of the reduction of the R-R potential C' is

Cﬁ("rlL')"Hn = EEZ) ‘Hn

CA 1y = s (3.12)

Using the above U(1) x U(1) gauge invariant part of the reductions, one can calculate the
reduction of any 10-dimensional gauge invariant coupling. The result would be the same
as writing the coupling in terms of ordinary derivatives of metric, B-field, dilaton and R-R
potential and then using the reductions (3.2). For example, using the above reduction for
the R-R field strength, one finds the following reduction for the gauge invariant coupling F:
e—®

(n—1)!

i‘ ) pn) i' FV®) . V) 4 FW=1) . pWn—1) (3.13)
n: n:
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which is the correct reduction that has been found in [17] by writing the R-R field strength
in terms of R-R potential and using the reductions (3.2). It is obvious that the left-hand
side is invariant under the 10-dimensional R-R gauge transformations, hence, the right-
hand side should be also invariant under the 9-dimensional R-R gauge transformations.
This might be used to define the gauge transformation of the base space R-R potential ()
in which we are not interested in this paper.

As another example, the Op-plane world-volume reduction of the CS terms in (1.5) are

1

(a0-ap = 3)!0552)? Ruyarij Ragay ¥ = (3.14)
€a0--ap=1 o 20 [4(19 1_ 1! (_i,(ﬁii)p,l Vaoar Vasas Vij V¥
- ! 317 (VaroVaraa VsV 4 Voo VigVarasV )
€00 e O, Rt Ry =
(001 g [(p_lg)' & <ewva0vabvaal V2 — €9V oy VeaVWVaray — €V aVagas VEV2,

—e?Vea ViV 10y Voo — 22 Vs VO 0y V2 0y Vo — VWViaiay Voo Vg
-2 Vamz vavao@ +2Vv° a2 vavaﬁo Vao‘P -2 Vamz VaVaoso vaSO

_%1a2 VCL(')D VaQD Vag@) =+

(p— 1 a
(p _ 4)| ngl-.-éla)pfl <4 e‘p Vab 14 b VaOal Va2a3

1 1
+§ e’ Vab Ve ao Vb al Vagag + 5 va‘/;zgag vaVaom + vaValag Ve agvaOSO

1
+Vavaoa1 Vagas Vpa + ve a1 Vagas Va Vo + 9 Vaoar Vagas Vap Va90>

In finding the above result we have separated the world-volume indices to y and the world
indices which do not include the y-index, then we have used the reduction for each tensors.
We have assumed the 9-dimensional base space is flat, and removed the terms that are
projected out by the orientifold projection, e.g., we have removed V,; because g; is related
to Gy and y is world-volume index, hence, it is projected out. Note that the world-volume
indices on the right-hand side do not include the y-index.

The O,_1-plane transverse reduction of the CS terms are

i

1
ag...ap— —4
ettt ) Ragarij Ragas ¥ =

(p _ 4)' a4...ap_1

6a0~--ap71i5(p74) }VV ViV, V. V.iv
(p—4)1 -t g " o0N a203 iVaraz Vas Vao¥

1 _
(007t CE) P By ™ = 0 (3.15)

In finding the above result we have separated the transverse indices to y and the transverse
indices which do not include the y-index, then we have used the reduction for each tensors.
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Here, we have also removed the terms that are projected out for O-plane, e.g., we have
removed V,; because g, is related to G4, and y is transverse index, hence, it is projected
out. Note that the transverse indices on the right-hand side do not include the y-index.
Similar calculations as above can be done for all couplings in the previous section. Writing
the reduced couplings in terms of the base fields ¢, V,-- -, one can easily transform them
under the T-duality transformations (3.4).

4 T-duality constraint on the couplings

It has been observed in [14, 15] that the T-duality constraints on the couplings in the
bosonic string theory at order o’ and a’? are the same whether or not the base space is
flat. In fact, the constraints that one finds between the coefficients of effective action when
base space is flat are exactly the same constraints as one finds for the curved base space.
So it is convenient to consider the reduction of the couplings in section 2 on the flat base
space, and then impose the T-duality constraint on them to find the unknown coefficients
of the couplings.
The T-duality constraint is

A—J =0 (4.1)

where A =O;,_1)-plane-(Op-plane)’. The first term in A is transverse reduction of O,_1)-
plane and the second term is T-duality of world-volume reduction of O,-plane. The J in
above equation represents some total derivative terms in the flat base space, i.e.,

Jn = / 0P G0, T] (4.2)

where the vector Z)' is made of €#°""%»—1 and the base space fields, ™ V. W, H, dp, 0 and
their derivatives at three derivative orders. Moreover, to produce the the same structures
that appear in A, one should multiply each WW or its derivatives by factor e”%, each V'V
by factor e¥, each extra W by factor e™¥ and each extra V or VW with no such factor.
These factors are traced to the parametrisation we have used in the reductions (3.2).

The T-duality constraint (4.1) is similar to the equation (2.6). Hence, to solve it one
should use the following Bianchi identities for the field strengths V, W, H:

3
AW =03 dV =05 dH =~ WAV (4.3)

and should use the e-tensor identities. Here also we find that it is easy to impose the above
Bianchi identities by writing the field strengths W,V or H, in terms of the potentials
by Gus l_’;w- Moreover, to impose the e-tensor identities, we write the resulting non-gauge
invariant couplings explicitly in terms of the values that each world-volume index can take,
e.g., ap = 0,1,2,--- ,p — 1. Performing these steps, one rewrites the equation (4.1) in
terms of independent structures. Solving them then one finds the parameters of the gauge
invariant couplings found in section 2. This is the strategy that we follow in this section.
To impose the constraint (4.1), we note that the reduction of F®)involves the base

space fields &1, &n=2) &n=3) and "4, So the world-volume reduction of O,-plane
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and the transverse reduction of O,_1-plane produces the following 9-dimensional R-R po-
tentials:

Ft6) O, : &P gletd) r+3) - r+2)
Op—1 : gp+4) , z(P+3) ’ z(P+2) ’ 1)

o) {Op Pt )| o) | o)
Op_1 : &P2)  got1) - &p) - Ep=1)
Op_1:¢P | ¢V cp=2) - p=3)
rw _ {Op s e | gle=2)  Gle=3) | Ep—4)
Op—1: ¢r=2)  w=3)  lp—4) a5
o2 {op . Ep=3) | ) D) Hp—6)
Op-1: 5(1)—4), 5(1)—5), 5(1)—6), ap=7)

. A(p=5)  A(p—6) A(p=T) A(p—8
-1 _, {Op : ¢w=b) | glp=6) Gle=7)  &p—8) (4.4)

Op_1: cP=6)  cp=7)  cp=8) " &p=9)

We have to impose the T-duality constraint (4.1) for each potential ™).

Let us begin with the most simple case. It can easily be observed that the T-duality
constraint fixes the coefficient of the coupling F®~% to be zero. We look at the term in
the reduction which produces @P~9). This term is produced only by the reduction of the
coupling (2.4) when one of the transverse indices of the R-R field strength carries the y-
index. The reduction of this term, however, is zero after imposing the O-plane conditions.
So this can not constraint the coefficient of the coupling (2.4). We consider instead the
reductions which produce ¢?~%). When the Op-plane is along the circle, it produces the
following reduction:

€0 =1 |:(p il4)!g[iaazz?é((f;ii)p_l]ﬁiaoal HjazagHja4a5:| +- (4'5)
where dots represent some other terms which do not include P~®). On the other hand,
when O,_1-plane is orthogonal to the circle, the reduction of the coupling (2.4) produces
the following terms:

a 7 _(p—8 i 5 (7]
0=t |:(p — 4)!H[ia6a7c((f;“.a)p_1]Hzaoa1 <Hja2a3Hja4a5 + Wa2a3Wa4a5>:| +- (4'6)

where dots represent some terms with other structures. The difference between this term
and the T-duality transformation of (4.5) produces the following term which involves &P~8):

w—an

This term can not be cancelled by total derivative terms, so the T-duality constraint

Apfg — 6ao---ap_1|: ﬁ[ia6a7é(p_8) ﬁia0a1Wa2a3Wa4a5:| (47)

ag--ap—1]

predicts the coefficient of the coupling (2.4) to be zero, i.e.,

a=0 (4.8)
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Hence, the T-duality constraint force the coupling (2.4) to be zero. It is a nontrivial result
which would be very difficult to confirm with the S-matrix element of one R-R and three
NS-NS vertex operators.

It can be also easily observed that the T-duality constraint fixes the coefficients of
the F®+6)_ couplings to be zero. In this case we look at the term in the reduction which
produces &P+5) . This term is produced only by the world-volume reduction of the couplings
in (2.17). The T-duality transformation of this term produces the following term for ¢®+5):

APFD — caoap-1 (—;})je“’ (31— fz)E(]%i)nao---ap_lWiOHOijlmn (4.9)
which can not be cancelled by a gauge invariant total derivative term. Hence, the T-duality
constraint forces the above term to be zero, i.e., 3f; — fo = 0. To fix these coefficients
completely, we look also at the terms in the reduction which produce P4 . The difference
between the O,_i-plane and the T-duality of O,-plane produces many terms involving
¢P+4)_ Here we focus on the terms involving ¢?t% and V. One can easily find that
only the reduction of the second term in (2.17) produces such term. The T-duality of
the reduction of O,-plane produces FPTVoHH, whereas, the reduction of Op—1-plane
produces FPT?VWW. They can not cancel each other unless the coefficient of the second
term in (2.17) to be zero, i.e., fo = 0. Combining with the previous constraint, one finds

fi=0,f2=0 (4.10)

This is the result that the S-matrix calculation produces [42].

Since the coefficient of the F(~%-coupling is zero, the next simple case to look at is
the terms involving ¢P~7). One finds 77 is produced only by the transverse reduction of
the couplings F*~2) in (2.7) which have R-R field strength with transverse indices. Since
only the couplings with coefficients by, by in (2.7) involves the R-R field strength with the
transverse indices, and the transverse reduction of these terms produces non-zero results
which are not total derivative terms, one finds that the T-duality constraint (4.1) fixes
these coefficients to be zero, i.e.,

by =0, by =0 (4.11)

The above result can also be found by looking at the terms involving ¢?~6). One finds that
only the reductions of the terms with coefficients by, b7y survived the O-plane conditions.
The T-duality constraint then forces these coefficients to be zero. This result is consistent
with the S-matrix calculation (2.8).

The surviving terms in (2.7) have R-R field strength with only world-volume indices.
One finds that the reduction of these terms produce terms involving ¢?~%). However,
they are removed by the O-plane conditions. Having no ¢®~%-term from the reduction
of F(P=2)_couplings, one concludes that the transverse reduction of F®)-couplings on the
Op—1-plane which also produces ¢P=5) must be zero. So one has to consider the R-R field
strengths F(®), VF®) in (2.10) which have transverse indices because only those terms
produce &P~%). In fact all terms in (2.10) have such structure. However, the transverse
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reduction of those terms that have only one transverse index, produce H A &P~ with only
world-volume indices which is removed by the O-plane condition. Therefore, they produce
no non-zero term after reduction. The terms in (2.10) which have more than one transverse
indices, i.e., co1, 23, C34, C49, however, produce non-zero result after imposing the O-plane
conditions. The T-duality constraint (4.1) then requires these terms to be zero, i.e.,

Co1 = O, Co3 = 0, C34 = 0, Cq40 = 0 (4.12)

Since the reduced couplings involve only ¢?~5) there is no total derivative terms connecting
the reduced couplings. Moreover, since they involve no derivative of field strength H, there
is no Bianchi identity relation between the reduced couplings. Hence, the coefficients of all
terms must be zero, as we have set in above equation.

Since the coefficients of the couplings involving F®+6) are zero, i.e., (4.10), the next
simple case to consider is to look at the terms involving ¢P+3). One finds ¢P3) is produced
only by the world-volume reduction of the couplings in (2.15) which have R-R field strength
with no y index. So all terms in (2.15), except the terms in which the R-R field strength
carries the world-volume indices ag, - - - , ap, produce ¢®+3) . The T-duality constraint (4.1)
makes the coefficients of all these terms to be zero, i.e.,

e13 =0, e36=0,e30=0,¢e44 =0 (4.13)

In finding the above result, we have added all possible total derivative terms and imposed
the Bianchi identities and the e-tensor identities. We find that there is no total derivative
term involved here.

There are still further T-duality constraint on the non-zero couplings involving F®+4).
The T-duality constraint (4.1) produces the following relations for the other coefficients:

er7 =0, e3 =0, e33 =0, ess =0, eq7 = 0, e¢ = 0, eg =0,
1 3 1
ez =e1, e3z7 = —3e1, eq = —bey, eg = —3e1, epp= 56 €20 = 5€1, €28 = ;€1
(4.14)

In this case we find that there is some total derivative term involved in which we are not
interested in this paper. Up to an overall coefficient e1, then all terms in (2.15) are fixed
by the T-duality constraint that we have considered so far.

It is interesting that the coefficients eg, es7 are identical which is in accord with the
proposal that the second derivative of dilaton appears in the world-volume action as the
dilaton-Riemann curvature (2.14). Moreover, the first derivative of dilaton appears only in
the term with coefficient e3. Using an integration by part on the first term in (2.15), and
the relation es = e1, one finds that the first derivative of dilaton appears in the following
extension of V,V*HABC.

V,V¢HABC 5 D, VeHABY, D, =V, -V, (4.15)

We will see that this structure appears in all couplings that the T-duality produces. Note
that the transverse contraction of two derivatives, i.e., V;V* has been removed at the onset
by imposing the equations of motion.
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Imposing the constraints that we have found so far, i.e., (4.8), (4.10), (4.12), (4.13),
and (4.14), the remaining reductions in (4.4) are

Fo+a) {Op : ety )

Op_1 : dot) | ) | D)

(p+2)
F - Op-1: 5(17)’ 5(1’—1)’ z(P—2) ’ &(r—3)

{ 0, : vt &) | ee-1) r-2)

rw _ Op : er=1) g2 Fp=3)  glp—4)
Op1: &P=2)  cp=3)  &p=4)

- glp=3)  &p—4)
F-2) _, {851 °: Cé(p_4)’ ¢ (4.16)
The next case that we are going to consider in the reductions (4.16), is ¢t Since
one part of the reduction involve the F®*2)_couplings, the T-duality constraint should
relate the remaining constant e; in F®+4)_couplings to the d-parameters in (2.12). The
T-duality constraint (4.1) in this case remarkably fixes e; and all d’s in terms of one overall
parameter, i.e.,

d9:0, le:O, d22:0, d36:0, d41 :0, d42:(), d43:0, d47:07
1 1 .
61—Ed117 dio=di1, dis=—di1, dig=—d11, d2—§d117 d21——1d117

1 1 1 3 1 1
d%:_idllv d27:_§d117 d29=—§d11, d3=—§d117 d30=—§d11, d48:1d11 (4.17)

In this case also, the T-duality constraint requires some total derivative terms in which we
are not interested.

The coefficients di2,dy5 in (4.17) are consistent with the S-matrix result (2.13). More-
over, the relation between e; and dj; is also consistent with the S-matrix results (2.13)
and (2.16). As pointed out before, since d1; = di2 the second derivative of dilaton appears
as the dilaton-Riemann curvature (2.14). The first derivative of dilaton also appears as
dilaton-derivative extension of world-volume derivative contraction with Riemann curva-
ture and with H, i.e.,

vaRaABC N DaRaABC

V. HAP — D, HAB (4.18)

Note that the transverse derivative contraction with the Riemann curvature and with H
have been removed by the equations of motion. We will see that this extension appears in
other couplings that the T-duality produces.

Since all e-parameters and d-parameters are fixed up to the overall factor dii, one
does not need to consider &) because this term is produced only by F®+t4- and F@+2)_
couplings. In fact, we have checked that the T-duality constraint on é®) reproduces only
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the relations in (4.14) and (4.17). Hence, for the next case we consider P~V in the
reductions (4.16). The T-duality constraint on this term should give some relations between
F@t4)_ p@e+2)_ and F®)-couplings. Since the parameters in the first two set of couplings
are fixed, this constraint should fix the c-parameters in (2.10). The T-duality constraint
(4.1) in this case fixes dq; and all ¢’s in terms of one overall parameter cy2, i.e.,

c7=0, ¢32=0, c37=0, c10=0,  c14=0, c16=0,  c25=0, ¢3=0, c7=0,
1 1
d11=2c12, €13 = 5C12, co2=—2c12, €3=5C12, (33=~5C12, C38=5C12, C39=—C12, C44=2cC12,
1 1 1
C46 = —C12, C5 = —2C12, C8=5C12, C24=7C12, C30 =" 55C12, (31 = €12, 35 = —C12 (4.19)

In this case also there are some total derivative terms in which we are not interested in
this paper because we assumed the spacetime manifold has no boundary.

The coefficients ¢, c3 in (4.19) are consistent with the S-matrix result (2.11). Moreover,
the relation between di; and ¢z is also consistent with the S-matrix results (2.11) and (2.13).
The coefficients cq9, c46 are not identical, so one may conclude that the corresponding
couplings in (2.10) are not in accord with the proposal that the second derivative of dilaton
appears in the world-volume action as the dilaton-Riemann curvature (2.14). However,
using the R-R Bianchi identity (2.2), one can write

—1
ViED)., = pVF® PP =D

iaz--ap 9

—2
Hialachg)mal (420)
where we have used the O-plane conditions on H and the fact that there is an overall
tensor €. Then up to a total derivative term, one can write the term in (2.10) with
coefficient c¢5 as

Lo ) ppia __ 1 o» g L o ia
TV H 00 Vol = s Bl M0 Voo ® 4 5 P, Vo 0 Va
1 —2) rria
_WHMGQFCE?..GZ,H 2 Va® (4.21)

The first term on the right hand side then has the same structure as the term with coeflicient
c12. Since c12+c5 = ¢46, one can write the corresponding couplings in (2.10) as the dilaton-
Riemann curvature (2.14). The second term on the right hand side can be combined with
the first term in (2.10) to write them as dilaton-derivative combination (4.15). The last
term should be added to the bg-coupling in (2.7).

The coefficients c3, cg are identical, hence, the corresponding couplings can be combined
as the dilaton-derivative (4.15). It seems, however, that the second derivative of dilaton
in the coupling with coefficient ¢;3 in (2.10) can not be combined with any coupling with
structure F'H R to be written as the dilaton-Riemann curvature. This steams from the fact
that when we have written the independent couplings in (2.10), we had not paid attention
on the proposal (2.14). Now that we have found the couplings we may use appropriate
e-tensor identities to write the couplings as the dilaton-Riemann curvature. In fact, writing
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the world-volume indices explicitly as 0,1, --- , p, one can find the following identity:

m Fjaag...ap HiaoalR a2 — W
1 .
- W Fjay...ap Hiagar B o

Using this e-tensor identity, one finds that the couplings in (2.10) with coefficients ¢13, css,

iaj
Fjag...ap Hiaao R J ay

c39 can be written as the dilaton-Riemann curvature (2.14).

The T-duality constraint (4.1) for éP~2) should reproduce only the relations in (4.19).
We have checked it explicitly.

Finally, to relate the constant cj2 to the b-parameters in (2.7) and a-parameters
in (2.9), one can consider the T-duality constraint on ¢P=3) or &P~%). We consider ¢»—3)
in the reductions (4.16). The T-duality constraint on this term should give some relations
between F®Pt2)_ F®)_and F (p_Q)—couplings and the couplings in (2.9). Since the parame-
ters in the first two sets of couplings are fixed, this constraint should fix the b-parameters
in (2.7), a-parameters in (2.9) and cj2 in terms of one overall parameter. The T-duality
constraint in this case produces the following relations:

oy = —aq, by = =20, by = 2a1, by = =201, bg = —2a1, c12 = 4oy (4.22)

In this case also there are some total derivative terms in which we are not interested in
this paper. The first relation above is consistent with CS coupling (1.5). The coefficients
ba, by, bs are consistent with the S-matrix result (2.8). The coefficient by is consistent
with the proposal that the first derivative of dilaton appears in the dilaton-derivative
combination. To see this we note that the last term in (4.21) has the same structure as
bo-coupling. Hence, this structure has coefficient bg — ¢5/2 = 21 which is minus of be. As
a result they can be combined into the dilaton-derivative combination (4.15). This ends
our illustrations that the T-duality constraint (4.1) can fix all parameters of the minimal
gauge invariant couplings that we have found in section 2 up to an overall factor.

5 Discussion

In this paper, imposing only the gauge symmetry and the T-duality symmetry on the

effective action of Op-plane, we have found the following couplings at order a’?:
212
S = _alTPZZQI /d”“x [Lg’§3) 4+ £®=2) ) L plo+2) L(p+4)} (5.1)

where o7 is an overall constant that can not be fixed by the T-duality constraint. The
gauge invariant Lagrangians are the following:

_ _ Iy 1 _
E(Cps 3) =0 [MC(Z---iLRaoalszagag i (p — 3)!01(1{:---?1)1,Ra0a1abRa2a3 ab:|
_ 1 ,
L(p 2) _ 900-+-ap [ _ M F%map DaHiaao Hi oras
1 ) 1 )
+M Fag...ap VaoHiaal H* az M Fa3...ap vaHiaoal H* a2:| (52)
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_ 2
(p—1)!

1

,C(p) = 40 Ean“P Davaon “ m

aryt
EQQ...(IP Dav H apal

1 : 1 g
(p - 1)! FQOaP 7 o Raao * m Fja?"'ap HiaothR”
1 " 1 —
+m Fkag..‘ap Hiaao i Hj ’ “ m Fiaba”““ap H" H’ apail Hjazas
1 PR 1 b i
1 ik 9 b
_m Fkaz...ap HY R’L'Cbojal + m FiaQ...ap H* Raaobal
1 ’ 3 ‘ .
(p+2) _g.a0...ap | ____ ~ ijk rr. 1 2 . iac 1j
E - 86 0 P 8(p + 1)! Vk-Flao..‘ap H HZ] 8(p + 1)! VZFjaO"-ap H H ac
1 - 1 g
+]7! Fijm...ap D, R' ap — 47]?' ija1...ap DaHZ‘aaO Hk
1 - 1 - 1 .
+mviFja0~ﬂp RY — rp!Fijkal..,apvaHUkHiaao N @Fklal...apvaoHUkHijl
1 A b 1 A b
_z—pl Fijal...ap V. H* bao Hiab _ 87p!Fija1...apva0HZ B HI® ]
2 1 . . .
4 ijk kl
L(P‘f' ) — geao ap | _ mFijkao...ap D, VOH Uk m ijlao...ap H*RI,
2(]9 T 1)' kmnag...ap % gl 2(]9 T 1)' jklag...ap 11iab
1 . ) 6 . ‘
TS Fijkag...ap H® H? o H" ¢ — CES] Fijkag...ap H' ab RJ“’“”} (5.3)

The second derivative of dilaton appears in the dilaton-Riemann curvature (2.14) and the
first derivative of dilaton appears in the dilaton-derivative (4.15). Most of the couplings
in (5.1) are new couplings which have not been found by any other method in string theory.
This action is fully consistent with the partial couplings that have been already found in
the literature by the S-matrix method, i.e., the couplings of one arbitrary R-R field strength
and one NS-NS, and also the couplings of one R-R field strength F®~2) and two B-fields.

We have seen that the O-plane couplings at order ', found by the T-duality constraint,
are the same as the orientifold projection of the partial couplings that have been found in the
literature from the disk-level S-matrix elements. However, the world-sheet corresponding to
the tree-level S-matrix elements of O-plane is RP2. This may indicate that the orientifold
projection of disk-level S-matrix elements and the RPZ-level S-matrix elements should

have the same low energy expansion at order a/2.

In other worlds, up to overall factors,
the orientifold projection of Dp-brane couplings at order o 2 should produce the Op-plane
couplings at order /2. This is not, however, the case for higher orders of o’ which can be

seen from the curvature expansion of the anomalous CS couplings, i.e.,

(47T20/)2 2 N4 1 2 7
2 1) — _ _
L@aR) = 1+ o p(R) — (4n%) ( 155spd(R) = goospa(R) ) +
(47r20/)2 2 n4 I 1
2 Py — 1 _ _
A(4m?a/R) = 1 T p1(R) 4+ (47°a) 2560p1(R) 2880p2(R) + (5.4)
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where the first one is for O-plane and the second one is for D-brane [36]. The reason that
the couplings are proportional at order /> but not at the higher orders, may be rooted to
the fact that the T-duality transformation at order a’? has no higher derivative correction
whereas one expects corrections to the Buscher rules at higher orders of /. If the T-duality
transformations are the Buscher rules (3.4) which are linear, then the T-duality constraint
would satisfy at each order of o/ separately. The resulting couplings at a given order of
o then can be divided to two parts by the orientifold projection. One part would be the
O-plane couplings. However, the corrections to the Buscher rules which are not linear, mix
the constraints at different orders of o’. That is, the constraints at a given order of o’ has
contribution from the couplings at that order as well as couplings at lower orders of «’.
Then the orientifold projection of the resulting T-duality invariant couplings at the given
order of o would not be the same as the couplings that one would find by imposing the
orientifold projection at all orders of o’. Hence, the orientifold projection of the D-brane
couplings at order o/ hand higher would not produce the corresponding O-plane couplings.

The disk-level S-matrix elements of one arbitrary R-R and two NS-NS vertex operators
have been calculated in [48, 51]. The low energy expansion of them should produce D-brane

couplings at order a/2.

The orientifold projection of those couplings should then be the
same as the couplings that we have found in (5.1). It would be interesting to perform this
calculation.

We have seen that the derivatives of dilaton appears only through the dilaton-Riemann
curvature (2.14) and the dilaton-derivative (4.15). It has been shown in [44] that the
dilaton-Riemann curvature is invariant under linear T-duality. The dilaton-derivative is
also invariant under the linear T-duality. In fact one can write the contraction of the

dilaton-derivative with an arbitrary vector at the linear order of metric perturbation as
1
D A% = 9, A% + 5Aanbcaahbc — 9, DA (5.5)

where Gaop = nap + hap. Separating the world-volume indices to y-index and other
world-volume indices, and using the linear T-duality transformations hy, — —h,, and
® — & — hy,/2, then one finds the above expression is invariant under the linear T-
duality. Similar analysis has been done in [44] to show that the dilaton-Riemann curvature
is invariant under the linear T-duality. The invariance of the world-volume action under
linear T-duality requires the derivatives of dilaton appear in the dilaton-Riemann and
dilaton-derivative combinations. However, the invariance of the effective action under full
nonlinear T-duality requires that the couplings of one R-R and an arbitrary number of
NS-NS fields appear only through the combination (5.1).

The action (5.1) is complete action of Op-plane at order o’? for ay = —1/4. This
action however has only one R-R field. The O,-plane action for zero R-R field have been
found in [30, 31]. This action should have couplings involving two, three and four R-R
fields as well. Each set of couplings may be found by the T-duality constraint up to an
overall factor. Then the S-duality may be used to relate the overall factor of three R-R
couplings to the couplings (5.1), and the two and four R-R couplings to the couplings found
in [30, 31]. It would be interesting to perform this calculation to find a gauge invariant
action which is also invariant under the T-duality and the S-duality.

— 95—



It would be also interesting to extend the calculation in this paper to find the D,-brane
couplings at order o’?. A difficulty in this calculation is that each coupling in the effective
action at order a’?> may have an arbitrary number of By,. They may also have world-volume
derivative of this field, i.e., d, By which does not appear in the field strength H,p.. They are
consistent with the gauge symmetry because the D-brane has also open string gauge field
strength f,;, and the combination B, + fup is invariant under the gauge transformation.
The T-duality does not relate the massless closed string fields to the massless open string
fields. Hence, in the T-duality constraint for the massless closed string fields, one may have
couplings that are not gauge invariant. The reduction of those couplings then would not
be invariant under the U(1) x U(1) gauge transformations. That makes problem in using
the trick used in section 3 to keep only the U(1) x U(1) gauge invariant part of reduction
of the Riemann curvature and other field strengths.

In finding the parameters in section 4, we have ignored some total derivative terms
in the base space. If O-plane are at the fixed point of closed spacetime, then there would
be no boundary in the base space and the total derivative terms become zero by using
the Stokes’s theorem. However, if the spacetime has boundary, then the base space has
boundary as well. In this case, the O-plane may end to the boundary. Hence, the total
derivative terms in the base space can not be ignored. They produce some boundary terms
in the boundary of the base space [16]. In that case, one should consider some couplings at
the boundary of O-plane. The boundary terms in the boundary of the base space should
be cancelled by the T-duality of the couplings on the boundary of O-plane. This constraint
may fix the couplings at the boundary of the O-plane. It would be interesting to find the
boundary terms in the effective action of O-plane.
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