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1 Introduction

The best candidate for quantum gravity is the superstring theory in which the graviton

appears as a specific mode of a relativistic superstring at weak coupling [1, 2]. Superstring

has massless and infinite tower of massive states which appear in the low energy effective

action, as higher derivative corrections to the supergravity. Study of these higher derivative

corrections are important because they signal the stringy nature of the quantum gravity.

One of the most exciting discoveries in perturbative string theory is the T-duality

which has been observed first in the spectrum of string when one compactifies theory on a

circle [3, 4]. This symmetry may be used to construct the effective action of string theory

including its higher derivative corrections, in the Double Field Theory formalism in which

the T-duality transformations are the standard O(D,D) transformations whereas the gauge

transformations are non-standard [5–7]. It has been also speculated that the invariance of

the effective actions of string theory and its non-perturbative objects, i.e., D-branes and

O-planes, under the standard gauge transformations and non-standard T-duality transfor-

mations may be used as a constraint to construct the effective actions [8]. In this approach,

one first constructs the most general gauge invariant and independent couplings at a given

order of α′ with arbitrary parameters. Then the parameters may be fixed in the string

theory by imposing the T-duality symmetry on the couplings. That is, one reduces the

couplings on a circle and requires them to be consistent with the T-duality transformations

which are the standard Buscher rules [9, 10] plus their α′-corrections [11–14]. Using this

approach, the effective action of the bosonic string theory at order α′ and α′2 have been

found in [14, 15]. It has been shown in [16, 17] that the leading order effective action of
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type II superstring theories, including the Gibbons-Hawking-York boundary term [18, 19],

can also be rederived by the T-duality constraint. The couplings involving metric and

dilaton in both heterotic string and in superstring theories at order α′3 have been also

rederived by the T-duality constraint in [20]. There are many other approaches for con-

structing the effective actions including the S-matrix approach [21, 22], the sigma-model

approach [23–25], and the supersymmetry approach [26–29]

The T-duality approach for constructing the effective action of Dp-brane (Op-plane) is

such that one first writes all gauge invariant and independent Dp-brane (Op-plane) world-

volume couplings at a specific order of α′ with some unknown p-independent coefficients.

Then one reduces the world-volume theory on the circle. There are two possibilities for the

killing coordinate. Either it is along or orthogonal to the brane. The reduction of the world-

volume theory when the killing coordinate is along the brane (the world-volume reduction),

is different from the reduction of the world-volume theory when the killing coordinate is

orthogonal to the brane (the transverse reduction). However, the T-duality transformation

of the world-volume reduction of Dp-brane (Op-plane) should be the same as the transverse

reduction of the Dp−1-brane (Op−1-plane) theory, up to some total derivative terms which

have no physical effects for closed spacetime manifold [8].

Since Op-planes are at the fixed points of spactime, i.e., Xi = 0, some world-volume

couplings are forbidden by orientifold projection [1]. The Op-plane effective action has no

open string couplings, no couplings that have odd number of transverse indices on metric

and dilaton and their corresponding derivatives, and no couplings that have even number of

transverse indices on B-field and its corresponding derivatives [1]. These O-plane conditions

make the study of the O-plane couplings to be much easier than the D-brane couplings.

The T-duality constraint has been used in [30, 31] to find the effective action of Op-planes

of type II superstring at order α′2 for NS-NS fields. In this paper, we are interested in

applying the T-duality constraint on the effective action of Op-plane when there is one

R-R field strength.

The Op-plane CS action at the leading order of α′ is given as [1]

S
(0)
CS = Tp

∫
Mp+1

C (1.1)

where C =
∑8

n=0C
(n) is the R-R potential and Tp is the Op-plane tension. It is invariant

under the R-R gauge transformation

δC = dΛ +HΛ (1.2)

where Λ =
∑7

n=0 Λ(n) and H = dB. Note that the last term in δC is zero for Op-plane when

all indices of the R-R potential are world-volume, as in (1.1). The curvature corrections to

Dp-brane action has been found by requiring that the chiral anomaly on the world-volume

of intersecting D-branes cancels with the anomalous variation of the CS action [32–34].

The corresponding corrections for Op-plane has been found in [36] to be

SCS = Tp

∫
Mp+1

C

√
L(π2α′RT )

L(π2α′RN )
(1.3)
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where L(RT,N ) is the Hirzebruch polynomials of the tangent and normal bundle curvatures

respectively, √
L(π2α′RT )

L(π2α′RN )
= 1− π2α′2

48
(trR2

T − trR2
N ) + · · · (1.4)

where RT,N are the curvature 2-forms of the tangent and normal bundles respectively. The

corresponding curvature corrections to the CS action of Dp-brane is the same as (1.4) in

which L(R/4) is replaced by the A-roof genus A(R) which produces up to a factor of −2,

the same curvature corrections at order α′2. However, the curvature corrections at higher

orders of order α′ are not the same in both cases.

The action (1.4) at order α′2 in component form is1

S
(2)
CS = −Tpπ

2α′2

48

∫
dp+1xεa0···ap

1

4(p− 3)!
C

(p−3)
a4···ap

[
Ra0a1

abRa2a3 ab −Ra0a1 ijRa2a3 ij
]

(1.5)

The above couplings have been confirmed by the S-matrix element calculations in [35–37].

Using the cyclic symmetry of the Riemann curvature, one can verify that the above dif-

feomorphism invariant action is also invariant under R-R gauge transformation. As it has

been argued in [38, 39], the above couplings, however, are not consistent with the T-duality

transformations.

On the other hand, there are many other gauge invariant couplings at this order which

can not be found by the anomaly analysis. The R-R gauge symmetry requires all such

couplings to be in terms of the nonlinear R-R field strength, i.e.,

F (n) = dC(n−1) +H ∧ C(n−3) (1.6)

which is invariant under the R-R gauge transformation (1.2). Some of these couplings

involving one R-R field strength F (p−2) and two NS-NS fields have been found for D-brane

in [40–43] by linear T-duality and by the disk-level S-matrix calculations. The complete

couplings involving one R-R field strength F (p), F (p+2) or F (p+4) and one NS-NS field have

been found in [44] by the S-matrix method and have been shown that they are invariant

under the linear T-duality. However, these couplings are not invariant under the full

nonlinear T-duality either. Hence, the T-duality of the CS coupling (1.5) may require

adding couplings involving one R-R field strength and an arbitrary number of NS-NS fields

at order α′2 in which we are interested in this paper.

An outline of the paper is as follows: in section 2, we find the minimal gauge invariant

couplings involving one R-R field strength. We use the Bianchi identities, total derivative

terms and εa0···ap-tensor identities to find the minimum number of gauge invariant cou-

plings. We find there are 1, 6, 28, 20, 19, 2 such couplings corresponding to the R-R field

strengths F (p−4), F (p−2),F (p), F (p+2), F (p+4), F (p+6), respectively. We then reduce them

on a circle in section 3 to impose the T-duality constraint on them.

1Our index convention is that A,B, · · · are 10-dimensional bulk indices, µ, ν, · · · are 9-dimensional base

indices, y is killing index, a, b, · · · and a0, · · · , ap are world-volume indices and i, j, · · · are transverse space

indices.
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An appropriate method for reducing a gauge invariant coupling to 9-dimensional base

space has been presented in [15]. In this method one keeps the U(1)×U(1) gauge invariant

part in the reduction of the Riemann curvature and other components of a given coupling

and removes all other terms. In section 3, we extend this method for the reduction of the

couplings involving R-R fields as well, i.e., we find the U(1)×U(1) gauge invariant part of

the reduction of R-R field strength and its first derivatives. In section 4, we impose the

T-duality constraint on the independent gauge invariant couplings to fix their parameters.

That is, we use the Bianchi identities, total derivative terms and εa0···ap−1-tensor identities

in the base space to write the T-duality constraint in terms of independent structures, and

then solve them. In this section, we show that the T-duality can fix all parameters of the

gauge invariant couplings in terms of an overall factor, and they are consistent with the

partial couplings that have been already found in the literature by the S-matrix method.

In section 5, we present the final form of the gauge invariant couplings and briefly discuss

our results.

2 Minimal gauge invariant couplings

In this section we would like to find minimum number of gauge invariant couplings on the

world-volume of Op-plane involving one R-R field strength and an arbitrary number of

NS-NS fields at order α′2, i.e.,

Sn = −Tpπ
2α′2

48

∫
dp+1xLn (2.1)

where Ln is the Lagrangian which includes the minimum number of gauge invariant cou-

plings involving one R-R field strength F (n). As it has been argued in [30], since we are

interested in Op-plane as a probe, it does not have back reaction on the spacetime. As

a result, the massless closed string fields must satisfy the bulk equations of motion at or-

der α′0. Using the equations of motion, one can rewrite the terms in the world-volume

theory which have contraction of two transverse indices, e.g., ∇i∇iΦ, or RiA
i
B in terms

of contraction of two world-volume indices, e.g., ∇a∇aΦ, or RaA
a
B. This indicates that

the former couplings are not independent. The O-plane couplings should also satisfy the

orientifold projection.

The couplings involving the Riemann curvature and its derivative and the couplings

involving derivatives of H and derivatives of R-R field strength satisfy the following Bianchi

identities

RA[BCD] = 0

∇[ARBC]DE = 0

dH = 0

dF (n) +H ∧ F (n−2) = 0 (2.2)

Moreover, the couplings involving the commutator of two covariant derivatives of a tensor

are not independent of the couplings involving the contraction of this tensor with the
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Riemann curvature, i.e.,

[∇,∇]O = RO (2.3)

This indicates that if one considers all gauge invariant couplings at a given order of α′,

then only one ordering of the covariant derivatives is needed to be considered.

Using the symmetries of εa0···ap , the R-R field strength F (n), H and the Riemann

curvature, one can easily verify that it is impossible to have non-zero contractions of one

F (n) and some R, H, ∇Φ at order α′2 for n < p − 4 and n > p + 6. Moreover, the parity

of the coupling (1.5) indicates that the couplings of the R-R field strength F (p−2) are non-

zero when there are even number of B-field. The consistency with linear T-duality then

indicates that the couplings of the R-R field strength F (p−4), F (p) and F (p+4) are non-zero

when there are odd number of B-field, and the couplings of the R-R field strength F (p+2),

and F (p+6) are non-zero when there are even number of B-field. There are similar parity

selection rule for the corresponding S-matrix elements [48]. For n = p− 4 there is only one

non-zero independent coupling,2 i.e.,

Lp−4 = εa0···ap
[

a

(p− 5)!
Fia6···apH

i
a0a1Hja2a3H

j
a4a5

]
(2.4)

where we have used the O-plane conditions that there is no H term with even number

of transverse indices. In above equation, the transverse indices are raised by the tensor

⊥ij = Gij (see next section for the definition of tensor ⊥), and coefficient a is an arbitrary

parameter at this point. This parameter may be fixed by studying the RP 2-level S-matrix

element of one R-R and three NS-NS vertex operators which is a very lengthy calculation.

We expect this parameter to be fixed by the T-duality constraint.

There is no derivative on the R-R field strength and on the B-field strength in the

above coupling. Hence, there is no Bianchi identity involved here. Since there is only one

term, there would be no ε-tensor identity either. Moreover, there is no total derivative term

here. This is not the case for n > p− 4 cases. Let us discuss each of the cases n = p− 2,

n = p, n = p+ 2, n = p+ 4 and n = p+ 6 separately.

2.1 n = p− 2 case

To find all gauge invariant and independent couplings corresponding to one R-R field

strength F (p−2), we first consider all contractions of one εa0···ap , one F , ∇F or ∇∇F , even

number of H and ∇H, and any number of ∇Φ, ∇∇Φ, ∇∇∇Φ, R, ∇R at four-derivative

order. Because of the relation (2.3), we consider only one ordering of the covariant deriva-

tives. We then remove the forbidden couplings for O-plane, and remove the couplings in

which two transverse indices in a term contracted, i.e., we impose the equations of motion.

We call the remaining terms, with coefficients b′1, b
′
2, · · · , the Lagrangian Lp−2. Not all

terms in this Lagrangian, however, are independent. Some of them are related by total

derivative terms, by Bianchi identity and by ε-tensor identity.

To remove the total derivative redundancy, we write all total derivative terms at order

α′2 which involve the R-R field strength F (p−2). To this end we first write all contractions

2We have used the package “xAct” [46] for performing the calculations in this paper.
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of one εa0···ap , one F , ∇F , even number of H and ∇H, and any number of ∇Φ, ∇∇Φ, R at

three-derivative order. Then we remove the forbidden couplings and impose the equations

of motion. We call the remaining terms, with arbitrary coefficients, the vector Ip−2a . The

total derivative terms are then

Jp−2 =

∫
dp+1x g̃ab∇aIp−2b (2.5)

where g̃ab = Gab is inverse of the pull-back metric (see next section for the definition

of the pull-back metric). Adding the total derivative terms to Lp−2, one finds the same

Lagrangian but with different parameters b1, b2, · · · . We call the new Lagrangian Lp−2.
Hence

∆p−2 − Jp−2 = 0 (2.6)

where ∆p−2 = Lp−2 − Lp−2 is the same as Lp−2 but with coefficients δb1, δb2, · · · where

δbi = bi−b′i. Solving the above equation, one would find some linear relations between only

δb1, δb2, · · · which indicate how the couplings are related among themselves by the total

derivative terms. The above equation would also give some relation between the coefficients

of the total derivative terms and δb1, δb2, · · · in which we are not interested.

However, to solve the above equation one has to impose the Bianchi identity and ε-

tensor identities. To impose the Riemann curvature and H-field Bianchi identities (2.2),

one may contract the term on the left-hand side of each Bianchi identity with appropriate

couplings to produce terms at order α′2. The coefficients of these terms are also arbitrary.

Adding these terms to the equation (2.6), then one could solve the equation to find the

linear relations between only δb1, δb2, · · · . This method has been used in [30] to find

the independent couplings involving only the NS-NS fields. Alternatively, to impose the

Riemann curvature Bianchi identities, one may rewrite the terms in (2.6) in the local frame

in which the first derivative of metric is zero. Similarly, to impose the H-field Bianchi

identity, one may rewrite the terms in (2.6) which have derivatives of H in terms of B-field

potential, i.e., H = dB. The last Bianchi identity in (2.2) relates the couplings involving

derivative of F (p−2) to themselves and to the couplings involving F (p−4). However, the

independent couplings involving F (p−4) have been already fixed in (2.4). Hence, the last

Bianchi identity in (2.2) should relate only the couplings involving F (p−2), i.e., one should

impose the identity dF (p−2) = 0. To impose this identity on the couplings in (2.6) as

well, one may rewrite the terms involving the derivatives of the R-R field strength F (p−2)

in terms of the R-R potential, i.e., F (p−2) = dC(p−3). In this way, all Bianchi identities

satisfy automatically [47]. We find that this latter approach is easier to impose the Bianchi

identities by computer. Moreover, in this approach one does not need to introduce a large

number of arbitrary parameters to include the Bianchi identities to the equation (2.6).

However, in this approach the gauge invariant equation (2.6) is written in terms of non-

gauge invariant couplings. In this paper we use this approach for imposing the Bianchi

identities.

After imposing the Bianchi identities, the non-gauge invariant couplings are not yet

independent. To rewrite them in terms of independent couplings, one has to use the fact

– 6 –
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that the number of world-volume indices in each coupling must be the same as the world-

volume indices of εa0···ap . It has been observed in [44] that imposing this constraint, one may

find some relations between couplings involving εa0···ap . Some of these ε-tensor identities for

the simple case of two-field couplings, have been found in [44]. To impose this constraint

on the couplings in (2.6) as well, we write the non-gauge invariant couplings explicitly in

terms of the values that each world-volume index can take, e.g., a0 = 0, 1, 2, · · · , p. It is

easy to perform this step by computer using the “xAct” package [46].

Using the above steps, one can rewrite the different gauge invariant couplings on the

left-hand side of (2.6) in terms of independent but non-gauge invariant couplings. The

solution to the equation (2.6) then has two parts. One part is relations between only δbi’s,

and the other part is a relation between the coefficients of the total derivative terms and

δbi’s in which we are not interested. The number of relations in the first part gives the

minimum number of gauge invariant couplings in Lp−2. To write the independent couplings

in a specific scheme, one must set some of the coefficients in Lp−2 to zero. However, after

replacing the non-zero terms in (2.6), the number of relations between only δbi’s should

not be changed. In the present case this number is 6. We set the coefficients of the terms

that have world-volume derivative on the R-R field strength, to be zero. After setting this

coefficients to zero, there are still 6 relations between δbi’s. This means we are allowed to

remove these terms. We choose some other coefficients to zero such that the remaining

coefficients satisfy the 6 relations δbi = 0. In this way one can find the minimum number

of gauge invariant couplings. One particular choice for the 6 couplings is the following:3

L(p−2) = εa0...ap
[

b1
(p− 3)!

∇iFja4...ap H i
a0a1 H

j
a2a3 +

b2
(p− 2)!

Fa3...ap ∇aHiaa0 H
i
a1a2

+
b4

(p− 2)!
Fa3...ap ∇a0Hiaa1 H

ia
a2 +

b5
(p− 2)!

Fa3...ap ∇aHia0a1 H
ia
a2

+
b7

(p− 4)!
Fija5...ap ∇a0H i

a1a2 H
j
a3a4 +

b9
(p− 2)!

Fa3...ap Hiaa0 H
i
a1a2 ∇aΦ

]
(2.7)

where the world-volume indices are raised by the first fundamental form G̃ab = Gab (see next

section for the definition of the first fundamental form), and the b’s are arbitrary coefficients.

These coefficients do not depend on p. In fact the p-dependence of the couplings has been

written explicitly by 1/n! where n is the number of indices of the R-R field strength that

are contracted with εa0···ap . These couplings are consistent with the linear T-duality for

the special case that the world-volume killing index of εa0···ap contracts with the R-R field

strength. That is,

1

(p+1−m)!
εa0···amam+1···apF···amam+1···ap(· · · ) =

1

(p−m)!
εa0···ap−1yF···amam+1···ap−1y(· · · )+· · ·

→ 1

(p−m)!
εa0···ap−1F···amam+1···ap−1(· · · ) + · · ·

where the dots before the index am in the R-R field strength are the world-volume or

transverse indices that contract with other parts of the coupling, i.e., contract with (· · · ).
3If one does not use the ε-tensor identities, then one would find 10 independent couplings.
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In the first line we assume one of the world-volume indices is the killing index y, and in the

second line we have used the linear T-duality transformation for the linearised R-R field

strength, i.e., F
(n)
···y = F

(n−1)
··· , and the identity εa0···ap−1y = εa0···ap−1 . The couplings (2.7)

for arbitrary coefficients, however, are not consistent with the linear T-duality when the

killing index is not carried by the R-R field strength. We are interested in constricting

these coefficients and the coefficients of other R-R field strengths that we will find in

the subsequent subsections, by requiring the couplings to be consistent with nonlinear

T-duality.

There is no term in (2.7) which involves only one NS-NS field. This indicates that

the RP 2-level S-matrix element of one R-R field strength F (p−2) and one NS-NS vertex

operators should not have four-derivative terms. It has been observed in [44] that the

disk-level S-matrix element of one R-R and one NS-NS vertex operators produce no such

term at order α′2. On the other hand, it has been observed in [45] that the low energy

expansion of RP 2-level and disk-level S-matrix element of two massless closed string vertex

operators are the same at order α′2, up to an overall factor.

The disk-level S-matrix element of one R-R potential C(p−3) and two B-field vertex

operators has been calculated in [42, 43] from which the couplings of one F (p−2) and two

H has been found for Dp-brane. The orintifold projection of the couplings found in [43] are

the same as the above couplings with the following coefficients:

b1 = b7 = 0, b2 = −b4 = b5 =
1

2
(2.8)

where we have also used the Bianchi identity dH = 0 to relate the couplings found in [43] to

the couplings in (2.7). We will see that exactly the same coefficients (2.8) are reproduced by

the T-duality constraint. This observation and the observation made in [45] may indicate

that the orientifold projection of the disk-level S-matrix elements at order α′2 are the same

as the corresponding RP 2-level S-matrix elements at order α′2, up to overall factors.

The independent couplings (2.7), however, are not the most general gauge invariant

couplings because they do not include the Riemann curvature. The gauge invariant cou-

plings involving the Riemann curvature are the couplings in the CS action (1.5) which are

found by the anomaly cancellation mechanism. The T-duality constraint should reproduce

these couplings as well. Hence, we include in this subsection the following gauge invariant

couplings with arbitrary coefficients:

L(p−3)CS = εa0···ap
[

α1

(p− 3)!
C

(p−3)
a4···apRa0a1

ijRa2a3 ij +
α2

(p− 3)!
C

(p−3)
a4···apRa0a1

abRa2a3 ab

]
(2.9)

The two parameters α1, α2 which are known from the anomaly cancellation mechanism and

also from the S-matrix calculation, should be fixed by the T-duality constraint as well.

2.2 n = p case

To find all gauge invariant and independent couplings involving one R-R field strength

F (p), we first consider all contractions of one εa0···ap , one F , ∇F or ∇∇F , odd number of

H, ∇H and ∇∇H, and any number of ∇Φ, ∇∇Φ, ∇∇∇Φ, R, ∇R at four-derivative order.
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We remove the terms which are forbidden for O-plane and impose the equations of motion.

We then impose the total derivative terms, use the Bianchi identities and ε-tensor identities

with the same strategy that is discussed in the previous subsection. In this manner one

finds 28 independent couplings. One particular form for them is the following:4

L(p) = εa0...ap
[

c2
(p− 1)!

∇aFia2...ap ∇a0H ia
a1 +

c3
(p− 1)!

∇aFia2...ap ∇aH i
a0a1

+
c5
p!
∇iFa1...ap H ia

a0 ∇aΦ +
c7

(p− 1)!
Fia2...ap ∇aH i

aa1 ∇a0Φ

+
c8

(p− 1)!
Fia2...ap ∇aH i

a0a1 ∇aΦ +
c10

(p− 1)!
Fia2...ap H

i
a0a1 ∇a∇aΦ

+
c12

(p− 1)!
Fia2...ap H

i
aa1 ∇a∇a0Φ +

c13
(p− 1)!

Fja2...ap Hia0a1∇i∇jΦ

+
c14

(p− 1)!
Fia2...ap H

i
a0a1 ∇aΦ∇aΦ +

c16
(p− 1)!

Fia2...ap H
i
aa1∇a0Φ∇aΦ

+
c17

(p− 1)!
Fja2...ap H

iabHiabH
j
a0a1 +

c21
(p− 3)!

Fjkla4...ap H
iklHia0a1 H

j
a2a3

+
c23

(p− 3)!
Fjkla4...ap Hia0a1 H

i
a2a3 H

jkl +
c24

(p− 1)!
Fka2...ap Hiaa0 H

ijkHj
a
a1

+
c28

(p− 1)!
Fja2...ap H

iabHiaa0 H
j
ba1 +

c30
(p− 3)!

Fiaba4...ap H
iabHj

a0a1 Hja2a3

+
c31

(p− 1)!
Fla2...ap Hia0a1 H

i
jkH

jkl +
c32

(p− 1)!
Fia2...ap H

i
a0a1 H

jklHjkl

+
c33

(p− 1)!
Fia2...ap H

iabHj
aa0Hjba1 +

c34
(p− 3)!

Fijka4...ap H
ia
a0 H

j
aa1H

k
a2a3

+
c35

(p− 1)!
Fka2...ap H

ijk Ria0ja1 +
c37

(p− 1)!
Fja2...ap H

i
aa0Ria1

ja

+
c38

(p− 2)!
Fjaa3...ap Hia0a1R

iaj
a2 +

c39
(p− 1)!

Fja2...ap Hiaa0 R
iaj

a1

+
c40

(p− 3)!
Fijka4...ap H

i
a0a1 R

j
a2
k
a3 +

c43
(p− 1)!

Fia2...ap H
i
a0a1 R

ab
ab

+
c44

(p− 1)!
Fia2...ap H

iabRaa0ba1 +
c46

(p− 1)!
Fia2...ap H

i
aa1 R

ab
a0b

]
(2.10)

Note that in this case also we have set the coefficients of the terms that have world-volume

derivative on the R-R field strength, to be zero. However, in the couplings in the first

line we use an integration by part to remove one of the two derivatives on H because in

imposing T-duality in the next section one needs to dimensionally reduce the couplings.

The reduction of ∇F∇H is much easier to perform than the reduction of F∇∇H. In above

equation, c2, · · · , c46 are 28 arbitrary coefficients that do not depend on p. They may be

found by the T-duality constraint.

The coefficients c2, c3 has been fixed by the tree-level S-matrix element of one R-R and

one NS-NS vertex operators [44], i.e.,

c2 = 2 , c3 = −1

2
(2.11)

4If one does not use the ε-tensor identities, then one would find 46 independent couplings.
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In finding this result we write the two-field terms in (2.10) and the couplings found in [44]

in terms of independent structures, and then force them to be the same.

2.3 n = p+ 2 case

To find all gauge invariant and independent couplings involving one R-R field strength

F (p+2), we consider all contractions of one εa0···ap , one F , ∇F or ∇∇F , even number of H

and ∇H, and any number of ∇Φ, ∇∇Φ, ∇∇∇Φ, R, ∇R at four-derivative order. We then

impose the equations of motion, the O-plane conditions, the total derivative terms, and

use the Bianchi identities and ε-tensor identities with the same strategy that is discussed

in the subsection 2.1. In this manner one finds 20 independent couplings. One particular

form for them is the following:5

L(p+2) = εa0...ap
[

d2
(p+ 1)!

∇kFla0...ap H ijkHij
l +

d3
(p+ 1)!

∇iFja0...ap H iacHj
ac

+
d9

(p− 1)!
∇iFjkla2...ap H i

a0a1 H
jkl +

d10
(p− 1)!

∇jFikla2...ap H i
a0a1 H

jkl

+
d11

(p+ 1)!
∇iFja0...ap ∇i∇jΦ +

d12
(p+ 1)!

∇iFja0...ap Riaj a

+
d15
p!
∇aFija1...ap Riaj a0 +

d16
p!

Fija1...ap R
iaj

a0 ∇aΦ

+
d21
p!

Fjka1...ap ∇aH ijkHiaa0 +
d22
p!

Fjka1...ap ∇iHjkaHiaa0

+
d26
p!

Fjka1...ap ∇aHiaa0 H
ijk +

d27
p!

Fkla1...ap ∇a0H ijkHij
l

+
d29
p!

Fija1...ap ∇aH i
ba0 H

jab +
d30
p!

Fija1...ap ∇a0H i
abH

jab

+
d36
p!

Fija1...ap ∇aH iabHj
ba0 +

d41
(p− 2)!

Fijkla3...ap ∇a0H i
a1a2 H

jkl

+
d42
p!

Fila1...ap ∇iHjka0 H
jkl +

d43
(p− 2)!

Fijkla3...ap H
i
a1a2 H

jkl∇a0Φ

+
d47
p!

Fija1...ap H
iabHj

ba0 ∇aΦ +
d48
p!

Fjka1...ap Hiaa0 H
ijk∇aΦ

]
(2.12)

where the p-independent coefficients d2, · · · , d48 may be found by the T-duality constraint.

The coefficients d11, d12, d15 have been fixed by the tree-level S-matrix element of one

R-R and one NS-NS vertex operators [44]. They are

d11 = −2 , d12 = −2 , d15 = 2 (2.13)

In finding the above result, we have imposed the first Bianchi identity in (2.2) on the

two-field couplings found in [44]. Note that as observed in [44] the above results indicate

that the curvature Riaja and ∇i∇jΦ appear in the O-plane action as ij-component of the

following combination:

RAB = RAaBa +∇A∇BΦ (2.14)

5If one does not use the ε-tensor identities, then one would find 53 independent couplings.
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where A,B are 10-dimensional bulk indices. Note that the transverse contraction of the

Riemann curvature, i.e., RAiBi has been removed at the onset by imposing the equations

of motion. This dilaton-Riemann curvature appears also in NS-NS couplings of O-plane

action at order α′2 [31]. We speculate that the second derivative of dilaton appears in all

O-plane and D-brane couplings in above combination.

2.4 n = p+ 4 case

Performing the same steps as in subsection 2.1, one finds there are 19 independent couplings

on the world-volume of Op-plane that are not related to each other by the Bianchi identities,

ε-tensor identities and the total derivative terms. One particular form for the couplings is

the following:6

L(p+4) = εa0...ap
[

e1
(p+ 1)!

∇aFijka0...ap ∇aH ijk +
e3

(p+ 1)!
Fijka0...ap ∇aH ijk∇aΦ

+
e6

(p+ 1)!
Fijka0...ap H

ijk∇a∇aΦ +
e8

(p+ 1)!
Fjkla0...ap H

ikl∇j∇iΦ

+
e9

(p+ 1)!
Fijka0...ap H

ijk∇aΦ∇aΦ +
e12

(p+ 1)!
Fkmna0...apH

ijkHi
lmHjl

n

+
e13

(p− 1)!
Fiklmna2...ap H

i
a0a1 H

jklHj
mn +

e17
(p+ 1)!

Fjkla0...ap H
iabHiabH

jkl

+
e20

(p+ 1)!
Fjkla0...ap HiabH

iklHjab +
e26

(p− 1)!
Fijklma2...ap H

ia
a0 H

j
aa1 H

klm

+
e28

(p+ 1)!
Fijka0...ap H

iabHj
acH

k
b
c +

e31
(p+ 1)!

Flmna0...ap HijkH
ijlHkmn

+
e32

(p− 1)!
Fjklmna2...ap Hia0a1 H

ijkH lmn +
e33

(p+ 1)!
Flmna0...ap H

ijkHijkH
lmn

+
e35

(p+ 1)!
Fklma0...ap Hij

k Riljm +
e37

(p+ 1)!
Fjkla0...ap H

ijk Rla ia

+
e42

(p+ 1)!
Fijka0...ap H

i
abR

jakb +
e44

(p− 1)!
Fijklma2...ap H

ijk Rl a0
m
a1

+
e47

(p+ 1)!
Fijka0...ap H

ijk Rab ab

]
(2.15)

where the p-independent coefficients e1, · · · , e47 may be found by the T-duality constraint.

The coefficient e1 has been fixed by the tree-level S-matrix element of one R-R and

one NS-NS vertex operators [44], i.e.,

e1 = − 1

3!
(2.16)

The proposal that the combination (2.14) should appear in the world-volume couplings,

dictates that the T-duality should fix the coefficient e8 to be the same as e37. As we will

see in section 4, the T-duality indeed produces this relation.

6If one does not use the ε-tensor identities, then one would find 47 independent couplings.
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2.5 n = p+ 6 case

Similar calculation for the couplings involving one R-R field strength F (p+6) gives the

following two independent coupling:

L(p+6) = εa0...ap
[
f1
p!
Fijklmna1...ap∇a0H ijkH lmn +

f2
(p+1)!

∇iFjklmna0...ap H ijkH lmn

]
(2.17)

where f1, f2 are two arbitrary coefficients that may be found by the T-duality constraint.

There are no couplings involving one NS-NS field which is consistent with the tree-level S-

matrix element of one R-R and one NS-NS vertex operators [44]. The above two coefficients

may be fixed by the low energy expansion of RP 2-plane S-matrix element of one R-R and

two NS-NS vertex operators at order α′2. The disk-level calculations have been fixed these

coefficients to be zero [42]. We will see that the T-duality also fix these coefficients for

O-plane to be zero which is consistent with the speculation that the orientifold projection

of D-brane couplings at order α′2 is the same as O-plane couplings at order α′2, up to

overall factors.

Therefore, there are 76 independent couplings at order α′2 which have one R-R field.

These gauge invariant couplings are the appropriate couplings on the world-volume of

Op-plane for some specific values for the 76 parameters. They may be found by the S-

matrix or other methods in string theory. We are going to find these parameters in this

paper by the T-duality constraint. We will find that all 76 parameters are fixed up to an

overall factor.

3 T-duality transformations

When compactifying the superstring theory on a circle with radius ρ and with the coor-

dinate y, the full nonlinear T-duality transformations at the leading order of α′ for the

NS-NS and R-R fields are given in [9, 10, 49], i.e.,

e2φ
′

=
e2φ

Gyy
; G′yy =

1

Gyy

G′µy =
Bµy
Gyy

; G′µν = Gµν −
GµyGνy −BµyBνy

Gyy

B′µy =
Gµy
Gyy

; B′µν = Bµν −
BµyGνy −GµyBνy

Gyy
(3.1)

C
′(n)
µ···ναy = C

(n−1)
µ···να −

C
(n−1)
[µ···ν|yG|α]y

Gyy
;

C
′(n)
µ···ναβ = C

(n+1)
µ···ναβy + C

(n−1)
[µ···ναBβ]y +

C
(n−1)
[µ···ν|yB|α|yG|β]y

Gyy

where µ, ν denote any direction other than y. Our notation for making antisymmetry is

such that e.g., C
(2)
[µ1µ2

Bµ3]ν = C
(2)
µ1µ2Bµ3ν−C

(2)
µ3µ2Bµ1ν+C

(2)
µ3µ1Bµ2ν . In above transformations

the metric is in the string frame. If one assumes fields are transformed covariantly under

the coordinate transformations, then the above transformations receive corrections at order
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α′3 in the superstring theory [20] in which we are not interested because the couplings in

this paper are at order α′2.

To impose the T-duality constraint on the effective action, one should first write all

independent gauge invariant couplings of Op-plane, as we have done in the previous section,

and then reduce them on the circle when Op-plane is along the circle. The T-duality

transformation of the reduced action should be the same as the reduction of Op−1-plane

when it is orthogonal to the circle, up to some total derivative terms. To impose the T-

duality constraint on the effective action, however, it is convenient to use the following

reductions for the metric, B-field, dilaton and the R-R potentials [17, 50]:

GAB =

(
ḡµν + eϕgµgν e

ϕgµ
eϕgν eϕ

)
, BAB =

(
b̄µν + 1

2bµgν −
1
2bνgµ bµ

−bν 0

)
Φ = φ̄+ ϕ/4 (3.2)

C
(n)
µ1···µn = c̄

(n)
µ1···µn + c̄

(n−1)
[µ1···µn−1

gµn]

C
(n)
µ1···µn−1y = c̄

(n−1)
µ1···µn−1

where ḡµν , b̄µν , φ̄ and c̄(n) are the metric, B-field, dilaton and the R-R potentials, respec-

tively, in the 9-dimensional base space, and gµ, bµ are two vectors in this space. In this

parametrization, inverse of metric becomes

GAB =

(
ḡµν −gµ

−gν e−ϕ + gαg
α

)
(3.3)

where ḡµν is the inverse of the base metric which raises the indices of the vectors. The

nonlinear T-duality transformations (3.1) in the parametrizations (3.2) then become re-

markably the following linear transformations:

ϕ′ = −ϕ , g′µ = bµ , b′µ = gµ (3.4)

and all other 9-dimensional fields remain invariant under the T-duality transformation.

Note that the T-duality transformation of the base space R-R potential c̄(n) is trivial in the

parametrization (3.2), however, the R-R gauge transformation of this potential in which

we are not interested in this paper, seems to be non-trivial.

One can easily verify that the CS action at order α′0 is invariant under the T-duality.

If the killing coordinate y is a world volume, then the T-duality transformation of the

reduction of Op-plane action in the parametrization (3.2) becomes

Tp−1

∫
dpx εa0···ap−1

1

p!
c̄
(p)
a0···ap−1 (3.5)

where we have used the relation 2πρTp = Tp−1 and εa0···ap−1y = εa0···ap−1 . On the other

hand, the reduction of the Op−1-plane action in the parametrization (3.2) when the y-

coordinate is transverse to the Op−1-plane is

Tp−1

∫
dpx εa0···ap−1

1

p!

(
c̄
(p)
a0···ap−1 + pc̄

(p−1)
[a0···ap−2

gap−1]

)
(3.6)
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Using the fact that gap−1 is the component of the 10-dimensional metric which has one

y-index and y is a transverse index in this case, the last term above is removed for the

O-plane. The rest is the same as the action (3.5).

There is no such symmetry for the CS action at higher orders of α′ because the Riemann

curvature is not invariant under the T-duality transformations. As a result, one has to add

some other terms to this action to make it T-duality invariant as in the leading order

term. Since the new couplings involve R-R and NS-NS field strengths and their covariant

derivatives, it is convenient to first find the reduction of these field strengths and then

apply them to find the reduction of each gauge invariant coupling.

Using the reductions (3.2), it is straightforward to calculation reduction of the Riemann

curvature, H, ∇H, ∇Φ or ∇∇Φ. As it has been argued in [15], after writing the reductions

in terms of H̄ which is defined as

H̄ = db̄− 1

2
g ∧W − 1

2
b ∧ V (3.7)

where W = db and V = dg, they have two parts. One part includes terms which are

invariant under U(1)×U(1) gauge transformations corresponding to the gauge fields gµ, bµ.

They have been found in [15] (see eq. (35), eq. (36) and eq. (37) in this reference7). The

other part which is not invariant under the U(1) × U(1) gauge transformations, includes

the gauge fields gµ, bµ without derivative on them. Such terms are cancelled at the end of

the day in the reduction of a 10-dimensional gauge invariant coupling. So one may keep

only the U(1)×U(1) gauge invariant parts of the reduction of the Riemann curvature, H,

∇H, ∇Φ and ∇∇Φ, and the following reduction of the inverse of the spacetime metric:

GAB =

(
ḡµν 0

0 e−ϕ

)
(3.8)

and removes all other terms in the reduction. In this way one can find the reduction of any

gauge invariant bulk coupling. However, the metric GAB is not used in constructing the Op-

plane couplings in the previous section. The world-volume couplings in fact are constructed

by contracting the tensors with the first fundamental form G̃AB = ∂aX
A∂bX

B g̃ab which

projects the spacetime tensors to the world-volume directions, and with ⊥AB = GAB−G̃AB

which projects the tensor to the transverse directions. In the first fundamental form, g̃ab

is inverse of the pull-back metric g̃ab = ∂aX
A∂bX

BGAB.

In the static gauge where Xa = σa and for the Op-plane at Xi = 0, one has G̃ij = G̃ai =

G̃ia = 0, and G̃ab = g̃ab, g̃ab = Gab. When Op-plane is orthogonal to the killing coordinate,

the first fundamental form and world-volume components of the inverse of the spacetime

metric have no component along the y-direction, because y is a transverse direction. Hence,

in this case ⊥ab = 0. Moreover ⊥ai = Gai = 0 by the orientifold projection. The non-zero

components in this case are

G̃ab = Gab = ḡab, ⊥ij = Gij =

(
ḡĩj̃ 0

0 e−ϕ

)
(3.9)

7There is a typo in the reduction of ∇µHναy in eq. (37) in the published version of [15]. The first term

on the right hand side of this expression should be negative.
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The gauge field gã does not appear in G̃ab, however, it appears in the reduction of ⊥ij . As

in (3.8), we have ignored it because we have ignored the non-gauge invariant terms in the

reduction of the Riemann curvature, H, ∇H, ∇Φ and ∇∇Φ.

On the other hand, when Op-plane is along the killing coordinate, both the first fun-

damental form and world-volume components of the inverse of the spacetime metric have

component along the y-direction, however, because G̃ab = Gab one again has ⊥ab = 0. In

this case the non-zero components are

G̃ab = Gab =

(
ḡãb̃ 0

0 e−ϕ

)
, ⊥ij = Gij = ḡij (3.10)

The gauge field gã does not appear in ⊥ij , however, it appears in the reduction of G̃ab that

we have again removed it.

Using the reduction of the R-R potential in (3.2), one can find the reduction of R-

R field strength and its first derivative which appear in the couplings in the previous

section. They have again two parts. One part is not invariant under the U(1)×U(1) gauge

transformations which is cancelled in the gauge invariant couplings, hence we ignore it.

The U(1)×U(1) gauge invariant part of the reduction is

F (n)
µ1...µn−1y = F̄ (n−1)

µ1...µn−1
+ (−1)(n−3)W[µ1µ2 c̄

(n−3)
µ3...µn−1]

+ H̄[µ1µ2µ3 c̄
(n−4)
µ4...µn−1]

≡ FW (n−1)
µ1...µn−1

F (n)
µ1...µn = F̄ (n)

µ1...µn + (−1)(n−2) V[µ1µ2 c̄
(n−2)
µ3...µn]

+ H̄[µ1µ2µ3 c̄
(n−3)
µ4...µn]

≡ F V (n)
µ1...µn

∇yF (n)
µ1...µn−1y =

1

2
eϕ
[
F V

(n)
µ1...µn−1µ ∇

µϕ− FW (n−1)
[µµ2...µn−1

Vµ1]
µ

]
∇yF (n)

µ1...µn =−1

2

[
(−1)(n−1)FW

(n−1)
[µ2...µn

∇µ1]ϕ+ eϕ F V
(n)
[µµ2...µn

Vµ1]
µ

]
∇νF (n)

µ1...µn =
1

2

[
2∇νF V

(n)
µ1...µn − (−1)(n−1)FW

(n−1)
[µ2...µn

Vµ1]ν

]
∇νF (n)

µ1...µn−1y =
1

2

[
2∇νFW

(n−1)
µ1...µn−1

+ eϕF V
(n)
µ1...µn−1µ V

µ
ν − FW

(n−1)
µ1...µn−1

∇νϕ
]

(3.11)

where the covariant derivatives on the right-hand side are 9-dimensional and F̄ = dc̄. One

can check that the reduction of ∇H found in [15] can be found from the above reduction

when one uses HW (2) = W and HV (3) = H̄. Obviously, the U(1) × U(1) gauge invariant

part of the reduction of the R-R potential C is

C
(n)
µ1···µn = c̄

(n)
µ1···µn

C
(n)
µ1···µn−1y = c̄

(n−1)
µ1···µn−1 (3.12)

Using the above U(1)×U(1) gauge invariant part of the reductions, one can calculate the

reduction of any 10-dimensional gauge invariant coupling. The result would be the same

as writing the coupling in terms of ordinary derivatives of metric, B-field, dilaton and R-R

potential and then using the reductions (3.2). For example, using the above reduction for

the R-R field strength, one finds the following reduction for the gauge invariant coupling F 2:

1

n!
F (n) · F (n) =

1

n!
F V (n) · F V (n) +

e−ϕ

(n− 1)!
FW (n−1) · FW (n−1) (3.13)
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which is the correct reduction that has been found in [17] by writing the R-R field strength

in terms of R-R potential and using the reductions (3.2). It is obvious that the left-hand

side is invariant under the 10-dimensional R-R gauge transformations, hence, the right-

hand side should be also invariant under the 9-dimensional R-R gauge transformations.

This might be used to define the gauge transformation of the base space R-R potential c̄(n)

in which we are not interested in this paper.

As another example, the Op-plane world-volume reduction of the CS terms in (1.5) are

εa0...ap
1

(p− 3)!
C(p−3)
a4...ap Ra0a1ij Ra2a3

ij = (3.14)

εa0...ap−1 e2ϕ

[
1

4(p− 4)!
c̄(p−4)a4...ap−1

Va0a1 Va2a3 Vij V
ij

− 1

(p− 3)!
c̄(p−3)a3...ap−1

(
∇a0ϕVa1a2VijV ij +∇a0VijVa1a2V ij

)]
εa0...ap

1

(p− 3)!
C(p−3)
a4...ap Ra0a1abRa2a3

ab =

εa0...ap−1eϕ

[
1

(p− 3)!
c̄(p−3)a3...ap−1

(
eϕ∇a0VabV a

a1V
b
a2 − e

ϕ∇a0VcdV cdVa1a2 − eϕ∇aVa0a1V a
b V

b
a2

−eϕ Vcd V cd Va1a2 ∇a0ϕ− 2 eϕ Vab V
a
a1 V

b
a2 ∇a0ϕ−∇aVa1a2 ∇aϕ∇a0ϕ

−2Va1a2 ∇a∇a0ϕ+ 2V a
a2 ∇a∇a1ϕ∇a0ϕ− 2Va1a2 ∇a∇a0ϕ∇aϕ

−Va1a2 ∇aϕ∇aϕ∇a0ϕ
)

+
1

(p− 4)!
c̄(p−4)a4...ap−1

(
1

4
eϕ Vab V

ab Va0a1 Va2a3

+
1

2
eϕ Vab V

a
a0 V

b
a1 Va2a3 +

1

2
∇aVa2a3 ∇aVa0a1 +∇aVa1a2 V a

a3∇a0ϕ

+∇aVa0a1 Va2a3 ∇ϕa + V a
a1 Va2a3 ∇aϕ∇a0ϕ+

1

2
Va0a1 Va2a3 ∇aϕ∇aϕ

)]
In finding the above result we have separated the world-volume indices to y and the world

indices which do not include the y-index, then we have used the reduction for each tensors.

We have assumed the 9-dimensional base space is flat, and removed the terms that are

projected out by the orientifold projection, e.g., we have removed Vai because gi is related

to Giy and y is world-volume index, hence, it is projected out. Note that the world-volume

indices on the right-hand side do not include the y-index.

The Op−1-plane transverse reduction of the CS terms are

εa0...ap−1
1

(p− 4)!
C(p−4)
a4...ap−1

Ra0a1ij Ra2a3
ij =

εa0...ap−1
eϕ

(p− 4)!
c̄(p−4)a4...ap−1

[
1

2
∇iVa0a1∇iVa2a3 −∇iVa1a2 Va3 i∇a0ϕ

]
εa0...ap−1

1

(p− 4)!
C(p−4)
a4...ap−1

Ra0a1abRa2a3
ab = 0 (3.15)

In finding the above result we have separated the transverse indices to y and the transverse

indices which do not include the y-index, then we have used the reduction for each tensors.
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Here, we have also removed the terms that are projected out for O-plane, e.g., we have

removed Vab because ga is related to Gay and y is transverse index, hence, it is projected

out. Note that the transverse indices on the right-hand side do not include the y-index.

Similar calculations as above can be done for all couplings in the previous section. Writing

the reduced couplings in terms of the base fields c̄, V, · · · , one can easily transform them

under the T-duality transformations (3.4).

4 T-duality constraint on the couplings

It has been observed in [14, 15] that the T-duality constraints on the couplings in the

bosonic string theory at order α′ and α′2 are the same whether or not the base space is

flat. In fact, the constraints that one finds between the coefficients of effective action when

base space is flat are exactly the same constraints as one finds for the curved base space.

So it is convenient to consider the reduction of the couplings in section 2 on the flat base

space, and then impose the T-duality constraint on them to find the unknown coefficients

of the couplings.

The T-duality constraint is

∆− J = 0 (4.1)

where ∆ =O(p−1)-plane-(Op-plane)′. The first term in ∆ is transverse reduction of O(p−1)-

plane and the second term is T-duality of world-volume reduction of Op-plane. The J in

above equation represents some total derivative terms in the flat base space, i.e.,

J n =

∫
dp ḡab∂aInb (4.2)

where the vector Ina is made of εa0···ap−1 and the base space fields, c̄(n), V,W, H̄, ∂ϕ, ∂φ̄ and

their derivatives at three derivative orders. Moreover, to produce the the same structures

that appear in ∆, one should multiply each WW or its derivatives by factor e−ϕ, each V V

by factor eϕ, each extra W by factor e−ϕ and each extra V or VW with no such factor.

These factors are traced to the parametrisation we have used in the reductions (3.2).

The T-duality constraint (4.1) is similar to the equation (2.6). Hence, to solve it one

should use the following Bianchi identities for the field strengths V,W, H̄:

dW = 0 ; dV = 0 ; dH̄ = −3

2
W ∧ V (4.3)

and should use the ε-tensor identities. Here also we find that it is easy to impose the above

Bianchi identities by writing the field strengths W,V or H̄, in terms of the potentials

bµ, gµ, b̄µν . Moreover, to impose the ε-tensor identities, we write the resulting non-gauge

invariant couplings explicitly in terms of the values that each world-volume index can take,

e.g., a0 = 0, 1, 2, · · · , p − 1. Performing these steps, one rewrites the equation (4.1) in

terms of independent structures. Solving them then one finds the parameters of the gauge

invariant couplings found in section 2. This is the strategy that we follow in this section.

To impose the constraint (4.1), we note that the reduction of F (n), involves the base

space fields c̄(n−1), c̄(n−2), c̄(n−3) and c̄(n−4). So the world-volume reduction of Op-plane
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and the transverse reduction of Op−1-plane produces the following 9-dimensional R-R po-

tentials:

F (p+6) →

{
Op : c̄(p+5) , c̄(p+4) , c̄(p+3) , c̄(p+2)

Op−1 : c̄(p+4) , c̄(p+3) , c̄(p+2) , c̄(p+1)

F (p+4) →

{
Op : c̄(p+3) , c̄(p+2) , c̄(p+1) , c̄(p)

Op−1 : c̄(p+2) , c̄(p+1) , c̄(p) , c̄(p−1)

F (p+2) →

{
Op : c̄(p+1) , c̄(p) , c̄(p−1) , c̄(p−2)

Op−1 : c̄(p) , c̄(p−1) , c̄(p−2) , c̄(p−3)

F (p) →

{
Op : c̄(p−1) , c̄(p−2) , c̄(p−3) , c̄(p−4)

Op−1 : c̄(p−2) , c̄(p−3) , c̄(p−4) , c̄(p−5)

F (p−2) →

{
Op : c̄(p−3) , c̄(p−4) , c̄(p−5) , c̄(p−6)

Op−1 : c̄(p−4) , c̄(p−5) , c̄(p−6) , c̄(p−7)

F (p−4) →

{
Op : c̄(p−5) , c̄(p−6) , c̄(p−7) , c̄(p−8)

Op−1 : c̄(p−6) , c̄(p−7) , c̄(p−8) , c̄(p−9)
(4.4)

We have to impose the T-duality constraint (4.1) for each potential c̄(n).

Let us begin with the most simple case. It can easily be observed that the T-duality

constraint fixes the coefficient of the coupling F (p−4) to be zero. We look at the term in

the reduction which produces c̄(p−9). This term is produced only by the reduction of the

coupling (2.4) when one of the transverse indices of the R-R field strength carries the y-

index. The reduction of this term, however, is zero after imposing the O-plane conditions.

So this can not constraint the coefficient of the coupling (2.4). We consider instead the

reductions which produce c̄(p−8). When the Op-plane is along the circle, it produces the

following reduction:

εa0···ap−1

[
a

(p− 4)!
H̄[ia6a7 c̄

(p−8)
a8···ap−1]

H̄ i
a0a1H̄ja2a3H̄

j
a4a5

]
+ · · · (4.5)

where dots represent some other terms which do not include c̄(p−8). On the other hand,

when Op−1-plane is orthogonal to the circle, the reduction of the coupling (2.4) produces

the following terms:

εa0···ap−1

[
a

(p− 4)!
H̄[ia6a7 c̄

(p−8)
a8···ap−1]

H̄ i
a0a1

(
H̄ja2a3H̄

j
a4a5 +Wa2a3Wa4a5

)]
+ · · · (4.6)

where dots represent some terms with other structures. The difference between this term

and the T-duality transformation of (4.5) produces the following term which involves c̄(p−8):

∆p−8 = εa0···ap−1

[
a

(p− 4)!
H̄[ia6a7 c̄

(p−8)
a8···ap−1]

H̄ i
a0a1Wa2a3Wa4a5

]
(4.7)

This term can not be cancelled by total derivative terms, so the T-duality constraint

predicts the coefficient of the coupling (2.4) to be zero, i.e.,

a = 0 (4.8)
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Hence, the T-duality constraint force the coupling (2.4) to be zero. It is a nontrivial result

which would be very difficult to confirm with the S-matrix element of one R-R and three

NS-NS vertex operators.

It can be also easily observed that the T-duality constraint fixes the coefficients of

the F (p+6)- couplings to be zero. In this case we look at the term in the reduction which

produces c̄(p+5). This term is produced only by the world-volume reduction of the couplings

in (2.17). The T-duality transformation of this term produces the following term for c̄(p+5):

∆p+5 = εa0···ap−1
(−1)peϕ

2p!
(3f1 − f2)F̄ (p+6)

ijklmna0···ap−1
W i

oH̄
ojkH̄ lmn (4.9)

which can not be cancelled by a gauge invariant total derivative term. Hence, the T-duality

constraint forces the above term to be zero, i.e., 3f1 − f2 = 0. To fix these coefficients

completely, we look also at the terms in the reduction which produce c̄(p+4). The difference

between the Op−1-plane and the T-duality of Op-plane produces many terms involving

c̄(p+4). Here we focus on the terms involving c̄(p+4) and ∇ϕ. One can easily find that

only the reduction of the second term in (2.17) produces such term. The T-duality of

the reduction of Op-plane produces F̄ p+5∇ϕH̄H̄, whereas, the reduction of Op−1-plane

produces F̄ p+5∇ϕWW . They can not cancel each other unless the coefficient of the second

term in (2.17) to be zero, i.e., f2 = 0. Combining with the previous constraint, one finds

f1 = 0, f2 = 0 (4.10)

This is the result that the S-matrix calculation produces [42].

Since the coefficient of the F (p−4)-coupling is zero, the next simple case to look at is

the terms involving c̄(p−7). One finds c̄(p−7) is produced only by the transverse reduction of

the couplings F (p−2) in (2.7) which have R-R field strength with transverse indices. Since

only the couplings with coefficients b1, b7 in (2.7) involves the R-R field strength with the

transverse indices, and the transverse reduction of these terms produces non-zero results

which are not total derivative terms, one finds that the T-duality constraint (4.1) fixes

these coefficients to be zero, i.e.,

b1 = 0, b7 = 0 (4.11)

The above result can also be found by looking at the terms involving c̄(p−6). One finds that

only the reductions of the terms with coefficients b1, b7 survived the O-plane conditions.

The T-duality constraint then forces these coefficients to be zero. This result is consistent

with the S-matrix calculation (2.8).

The surviving terms in (2.7) have R-R field strength with only world-volume indices.

One finds that the reduction of these terms produce terms involving c̄(p−5). However,

they are removed by the O-plane conditions. Having no c̄(p−5)-term from the reduction

of F (p−2)-couplings, one concludes that the transverse reduction of F (p)-couplings on the

Op−1-plane which also produces c̄(p−5), must be zero. So one has to consider the R-R field

strengths F (p), ∇F (p) in (2.10) which have transverse indices because only those terms

produce c̄(p−5). In fact all terms in (2.10) have such structure. However, the transverse
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reduction of those terms that have only one transverse index, produce H̄ ∧ c̄(p−5) with only

world-volume indices which is removed by the O-plane condition. Therefore, they produce

no non-zero term after reduction. The terms in (2.10) which have more than one transverse

indices, i.e., c21, c23, c34, c40, however, produce non-zero result after imposing the O-plane

conditions. The T-duality constraint (4.1) then requires these terms to be zero, i.e.,

c21 = 0, c23 = 0, c34 = 0, c40 = 0 (4.12)

Since the reduced couplings involve only c̄(p−5) there is no total derivative terms connecting

the reduced couplings. Moreover, since they involve no derivative of field strength H̄, there

is no Bianchi identity relation between the reduced couplings. Hence, the coefficients of all

terms must be zero, as we have set in above equation.

Since the coefficients of the couplings involving F (p+6) are zero, i.e., (4.10), the next

simple case to consider is to look at the terms involving c̄(p+3). One finds c̄(p+3) is produced

only by the world-volume reduction of the couplings in (2.15) which have R-R field strength

with no y index. So all terms in (2.15), except the terms in which the R-R field strength

carries the world-volume indices a0, · · · , ap, produce c̄(p+3). The T-duality constraint (4.1)

makes the coefficients of all these terms to be zero, i.e.,

e13 = 0, e26 = 0, e32 = 0, e44 = 0 (4.13)

In finding the above result, we have added all possible total derivative terms and imposed

the Bianchi identities and the ε-tensor identities. We find that there is no total derivative

term involved here.

There are still further T-duality constraint on the non-zero couplings involving F (p+4).

The T-duality constraint (4.1) produces the following relations for the other coefficients:

e17 = 0, e31 = 0, e33 = 0, e35 = 0, e47 = 0, e6 = 0, e9 = 0,

e3 = e1, e37 = −3e1, e42 = −6e1, e8 = −3e1, e12 = −1

2
e1, e20 =

3

2
e1, e28 =

1

2
e1

(4.14)

In this case we find that there is some total derivative term involved in which we are not

interested in this paper. Up to an overall coefficient e1, then all terms in (2.15) are fixed

by the T-duality constraint that we have considered so far.

It is interesting that the coefficients e8, e37 are identical which is in accord with the

proposal that the second derivative of dilaton appears in the world-volume action as the

dilaton-Riemann curvature (2.14). Moreover, the first derivative of dilaton appears only in

the term with coefficient e3. Using an integration by part on the first term in (2.15), and

the relation e3 = e1, one finds that the first derivative of dilaton appears in the following

extension of ∇a∇aHABC :

∇a∇aHABC → Da∇aHABC ; Da ≡ ∇a −∇aΦ (4.15)

We will see that this structure appears in all couplings that the T-duality produces. Note

that the transverse contraction of two derivatives, i.e., ∇i∇i has been removed at the onset

by imposing the equations of motion.
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Imposing the constraints that we have found so far, i.e., (4.8), (4.10), (4.12), (4.13),

and (4.14), the remaining reductions in (4.4) are

F (p+4) →

{
Op : c̄(p+1) , c̄(p)

Op−1 : c̄(p+1) , c̄(p) , c̄(p−1)

F (p+2) →

{
Op : c̄(p+1) , c̄(p) , c̄(p−1) , c̄(p−2)

Op−1 : c̄(p) , c̄(p−1) , c̄(p−2) , c̄(p−3)

F (p) →

{
Op : c̄(p−1) , c̄(p−2) , c̄(p−3) , c̄(p−4)

Op−1 : c̄(p−2) , c̄(p−3) , c̄(p−4)

F (p−2) →

{
Op : c̄(p−3) , c̄(p−4)

Op−1 : c̄(p−4)
(4.16)

The next case that we are going to consider in the reductions (4.16), is c̄(p+1). Since

one part of the reduction involve the F (p+2)-couplings, the T-duality constraint should

relate the remaining constant e1 in F (p+4)-couplings to the d-parameters in (2.12). The

T-duality constraint (4.1) in this case remarkably fixes e1 and all d’s in terms of one overall

parameter, i.e.,

d9 =0, d10 =0, d22 =0, d36 =0, d41 =0, d42 =0, d43 =0, d47 =0,

e1 =
1

12
d11, d12 =d11, d15 =−d11, d16 =−d11, d2 =

1

8
d11, d21 =−1

4
d11,

d26 =−1

4
d11, d27 =−1

8
d11, d29 =−1

2
d11, d3 =−3

8
d11, d30 =−1

8
d11, d48 =

1

4
d11 (4.17)

In this case also, the T-duality constraint requires some total derivative terms in which we

are not interested.

The coefficients d12, d15 in (4.17) are consistent with the S-matrix result (2.13). More-

over, the relation between e1 and d11 is also consistent with the S-matrix results (2.13)

and (2.16). As pointed out before, since d11 = d12 the second derivative of dilaton appears

as the dilaton-Riemann curvature (2.14). The first derivative of dilaton also appears as

dilaton-derivative extension of world-volume derivative contraction with Riemann curva-

ture and with H, i.e.,

∇aRaABC → DaRaABC

∇aHaAB → DaHaAB (4.18)

Note that the transverse derivative contraction with the Riemann curvature and with H

have been removed by the equations of motion. We will see that this extension appears in

other couplings that the T-duality produces.

Since all e-parameters and d-parameters are fixed up to the overall factor d11, one

does not need to consider c̄(p) because this term is produced only by F (p+4)- and F (p+2)-

couplings. In fact, we have checked that the T-duality constraint on c̄(p) reproduces only
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the relations in (4.14) and (4.17). Hence, for the next case we consider c̄(p−1) in the

reductions (4.16). The T-duality constraint on this term should give some relations between

F (p+4)-, F (p+2)- and F (p)-couplings. Since the parameters in the first two set of couplings

are fixed, this constraint should fix the c-parameters in (2.10). The T-duality constraint

(4.1) in this case fixes d11 and all c’s in terms of one overall parameter c12, i.e.,

c17 =0, c32 =0, c37 =0, c10 =0, c14 =0, c16 =0, c28 =0, c43 =0, c7 =0,

d11 =2c12, c13 =
1

2
c12, c2 =−2c12, c3 =

1

2
c12, c33 =−1

2
c12, c38 =

1

2
c12, c39 =−c12, c44 =2c12,

c46 =−c12, c5 =−2c12, c8 =
1

2
c12, c24 =

1

4
c12, c30 =− 1

32
c12, c31 =

1

8
c12, c35 =−c12 (4.19)

In this case also there are some total derivative terms in which we are not interested in

this paper because we assumed the spacetime manifold has no boundary.

The coefficients c2, c3 in (4.19) are consistent with the S-matrix result (2.11). Moreover,

the relation between d11 and c2 is also consistent with the S-matrix results (2.11) and (2.13).

The coefficients c12, c46 are not identical, so one may conclude that the corresponding

couplings in (2.10) are not in accord with the proposal that the second derivative of dilaton

appears in the world-volume action as the dilaton-Riemann curvature (2.14). However,

using the R-R Bianchi identity (2.2), one can write

∇iF (p)
a1···ap = p∇a1F

(p)
ia2···ap −

p(p− 1)

2
Hia1a2F

(p−2)
a3···ap (4.20)

where we have used the O-plane conditions on H and the fact that there is an overall

tensor εa0···ap . Then up to a total derivative term, one can write the term in (2.10) with

coefficient c5 as

1

p!
∇iF (p)

a1···apH
ia
a0∇aΦ =

1

(p− 1)!
F

(p)
ia2···apH

ia
a1∇a∇a0Φ +

1

(p− 1)!
F

(p)
ia2···ap∇a0H

ia
a1∇aΦ

− 1

2(p− 2)!
Hia1a2F

(p−2)
a3···apH

ia
a0∇aΦ (4.21)

The first term on the right hand side then has the same structure as the term with coefficient

c12. Since c12+c5 = c46, one can write the corresponding couplings in (2.10) as the dilaton-

Riemann curvature (2.14). The second term on the right hand side can be combined with

the first term in (2.10) to write them as dilaton-derivative combination (4.15). The last

term should be added to the b9-coupling in (2.7).

The coefficients c3, c8 are identical, hence, the corresponding couplings can be combined

as the dilaton-derivative (4.15). It seems, however, that the second derivative of dilaton

in the coupling with coefficient c13 in (2.10) can not be combined with any coupling with

structure FHR to be written as the dilaton-Riemann curvature. This steams from the fact

that when we have written the independent couplings in (2.10), we had not paid attention

on the proposal (2.14). Now that we have found the couplings we may use appropriate

ε-tensor identities to write the couplings as the dilaton-Riemann curvature. In fact, writing

– 22 –



J
H
E
P
0
6
(
2
0
2
0
)
1
7
1

the world-volume indices explicitly as 0, 1, · · · , p, one can find the following identity:

1

2(p− 2)!
Fjaa3...ap Hia0a1R

iaj
a2 −

1

(p− 1)!
Fja2...ap Hiaa0 R

iaj
a1

=
1

2(p− 1)!
Fja2...ap Hia0a1R

iaj
a

Using this ε-tensor identity, one finds that the couplings in (2.10) with coefficients c13, c38,

c39 can be written as the dilaton-Riemann curvature (2.14).

The T-duality constraint (4.1) for c̄(p−2) should reproduce only the relations in (4.19).

We have checked it explicitly.

Finally, to relate the constant c12 to the b-parameters in (2.7) and α-parameters

in (2.9), one can consider the T-duality constraint on c̄(p−3) or c̄(p−4). We consider c̄(p−3)

in the reductions (4.16). The T-duality constraint on this term should give some relations

between F (p+2)-, F (p)- and F (p−2)-couplings and the couplings in (2.9). Since the parame-

ters in the first two sets of couplings are fixed, this constraint should fix the b-parameters

in (2.7), α-parameters in (2.9) and c12 in terms of one overall parameter. The T-duality

constraint in this case produces the following relations:

α2 = −α1, b2 = −2α1, b4 = 2α1, b5 = −2α1, b9 = −2α1, c12 = 4α1 (4.22)

In this case also there are some total derivative terms in which we are not interested in

this paper. The first relation above is consistent with CS coupling (1.5). The coefficients

b2, b4, b5 are consistent with the S-matrix result (2.8). The coefficient b9 is consistent

with the proposal that the first derivative of dilaton appears in the dilaton-derivative

combination. To see this we note that the last term in (4.21) has the same structure as

b9-coupling. Hence, this structure has coefficient b9 − c5/2 = 2α1 which is minus of b2. As

a result they can be combined into the dilaton-derivative combination (4.15). This ends

our illustrations that the T-duality constraint (4.1) can fix all parameters of the minimal

gauge invariant couplings that we have found in section 2 up to an overall factor.

5 Discussion

In this paper, imposing only the gauge symmetry and the T-duality symmetry on the

effective action of Op-plane, we have found the following couplings at order α′2:

S = −α1Tpπ
2α′2

24

∫
dp+1x

[
L(p−3)CS + L(p−2) + L(p) + L(p+2) + L(p+4)

]
(5.1)

where α1 is an overall constant that can not be fixed by the T-duality constraint. The

gauge invariant Lagrangians are the following:

L(p−3)CS = εa0···ap
[

1

(p− 3)!
C

(p−3)
a4···apRa0a1

ijRa2a3 ij −
1

(p− 3)!
C

(p−3)
a4···apRa0a1

abRa2a3 ab

]
L(p−2) = 2εa0...ap

[
− 1

(p− 2)!
Fa3...ap DaHiaa0 H

i
a1a2

+
1

(p− 2)!
Fa3...ap ∇a0Hiaa1 H

ia
a2 −

1

(p− 2)!
Fa3...ap ∇aHia0a1 H

ia
a2

]
(5.2)
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L(p) = 4εa0...ap
[

2

(p− 1)!
Fia2...ap Da∇a0H ia

a1 −
1

2(p− 1)!
Fia2...ap Da∇aH i

a0a1

− 1

(p− 1)!
Fia2...ap H

i
aa1 Raa0 +

1

2(p− 1)!
Fja2...ap Hia0a1Rij

+
1

4(p− 1)!
Fka2...ap Hiaa0 H

ijkHj
a
a1 −

1

32(p− 3)!
Fiaba4...ap H

iabHj
a0a1 Hja2a3

+
1

8(p− 1)!
Fla2...ap Hia0a1 H

i
jkH

jkl − 1

2(p− 1)!
Fia2...ap H

iabHj
aa0Hjba1

− 1

(p− 1)!
Fka2...ap H

ijk Ria0ja1 +
2

(p− 1)!
Fia2...ap H

iabRaa0ba1

]
L(p+2) = 8εa0...ap

[
1

8(p+ 1)!
∇kFla0...ap H ijkHij

l − 3

8(p+ 1)!
∇iFja0...ap H iacHj

ac

+
1

p!
Fija1...ap DaRiaj a0 −

1

4p!
Fjka1...ap DaHiaa0 H

ijk

+
1

(p+ 1)!
∇iFja0...ap Rij −

1

4p!
Fjka1...ap∇aH ijkHiaa0 −

1

8p!
Fkla1...ap∇a0H ijkHij

l

− 1

2p!
Fija1...ap ∇aH i

ba0 H
jab − 1

8p!
Fija1...ap∇a0H i

abH
jab

]
L(p+4) =

2

3
εa0...ap

[
− 1

(p+ 1)!
Fijka0...ap Da∇aH ijk − 3

(p+ 1)!
Fjkla0...ap H

iklRj i

− 1

2(p+ 1)!
Fkmna0...apH

ijkHi
lmHjl

n +
3

2(p+ 1)!
Fjkla0...ap HiabH

iklHjab

+
1

2(p+ 1)!
Fijka0...ap H

iabHj
acH

k
b
c − 6

(p+ 1)!
Fijka0...ap H

i
abR

jakb

]
(5.3)

The second derivative of dilaton appears in the dilaton-Riemann curvature (2.14) and the

first derivative of dilaton appears in the dilaton-derivative (4.15). Most of the couplings

in (5.1) are new couplings which have not been found by any other method in string theory.

This action is fully consistent with the partial couplings that have been already found in

the literature by the S-matrix method, i.e., the couplings of one arbitrary R-R field strength

and one NS-NS, and also the couplings of one R-R field strength F (p−2) and two B-fields.

We have seen that the O-plane couplings at order α′, found by the T-duality constraint,

are the same as the orientifold projection of the partial couplings that have been found in the

literature from the disk-level S-matrix elements. However, the world-sheet corresponding to

the tree-level S-matrix elements of O-plane is RP 2. This may indicate that the orientifold

projection of disk-level S-matrix elements and the RP 2-level S-matrix elements should

have the same low energy expansion at order α′2. In other worlds, up to overall factors,

the orientifold projection of Dp-brane couplings at order α′2 should produce the Op-plane

couplings at order α′2. This is not, however, the case for higher orders of α′ which can be

seen from the curvature expansion of the anomalous CS couplings, i.e.,√
L(π2α′R) = 1 +

(4π2α′)2

96
p1(R)− (4π2α′)4

(
1

10240
p21(R)− 7

23040
p2(R)

)
+ · · ·

√
A(4π2α′R) = 1− (4π2α′)2

48
p1(R) + (4π2α′)4

(
1

2560
p21(R)− 1

2880
p2(R)

)
+ · · · (5.4)
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where the first one is for O-plane and the second one is for D-brane [36]. The reason that

the couplings are proportional at order α′2 but not at the higher orders, may be rooted to

the fact that the T-duality transformation at order α′2 has no higher derivative correction

whereas one expects corrections to the Buscher rules at higher orders of α′. If the T-duality

transformations are the Buscher rules (3.4) which are linear, then the T-duality constraint

would satisfy at each order of α′ separately. The resulting couplings at a given order of

α′ then can be divided to two parts by the orientifold projection. One part would be the

O-plane couplings. However, the corrections to the Buscher rules which are not linear, mix

the constraints at different orders of α′. That is, the constraints at a given order of α′ has

contribution from the couplings at that order as well as couplings at lower orders of α′.

Then the orientifold projection of the resulting T-duality invariant couplings at the given

order of α′ would not be the same as the couplings that one would find by imposing the

orientifold projection at all orders of α′. Hence, the orientifold projection of the D-brane

couplings at order α′3 hand higher would not produce the corresponding O-plane couplings.

The disk-level S-matrix elements of one arbitrary R-R and two NS-NS vertex operators

have been calculated in [48, 51]. The low energy expansion of them should produce D-brane

couplings at order α′2. The orientifold projection of those couplings should then be the

same as the couplings that we have found in (5.1). It would be interesting to perform this

calculation.

We have seen that the derivatives of dilaton appears only through the dilaton-Riemann

curvature (2.14) and the dilaton-derivative (4.15). It has been shown in [44] that the

dilaton-Riemann curvature is invariant under linear T-duality. The dilaton-derivative is

also invariant under the linear T-duality. In fact one can write the contraction of the

dilaton-derivative with an arbitrary vector at the linear order of metric perturbation as

DaAa = ∂aA
a +

1

2
Aaηbc∂ahbc − ∂aΦAa (5.5)

where GAB = ηAB + hAB. Separating the world-volume indices to y-index and other

world-volume indices, and using the linear T-duality transformations hyy → −hyy and

Φ → Φ − hyy/2, then one finds the above expression is invariant under the linear T-

duality. Similar analysis has been done in [44] to show that the dilaton-Riemann curvature

is invariant under the linear T-duality. The invariance of the world-volume action under

linear T-duality requires the derivatives of dilaton appear in the dilaton-Riemann and

dilaton-derivative combinations. However, the invariance of the effective action under full

nonlinear T-duality requires that the couplings of one R-R and an arbitrary number of

NS-NS fields appear only through the combination (5.1).

The action (5.1) is complete action of Op-plane at order α′2 for α1 = −1/4. This

action however has only one R-R field. The Op-plane action for zero R-R field have been

found in [30, 31]. This action should have couplings involving two, three and four R-R

fields as well. Each set of couplings may be found by the T-duality constraint up to an

overall factor. Then the S-duality may be used to relate the overall factor of three R-R

couplings to the couplings (5.1), and the two and four R-R couplings to the couplings found

in [30, 31]. It would be interesting to perform this calculation to find a gauge invariant

action which is also invariant under the T-duality and the S-duality.
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It would be also interesting to extend the calculation in this paper to find the Dp-brane

couplings at order α′2. A difficulty in this calculation is that each coupling in the effective

action at order α′2 may have an arbitrary number of Bab. They may also have world-volume

derivative of this field, i.e., ∂aBbc which does not appear in the field strength Habc. They are

consistent with the gauge symmetry because the D-brane has also open string gauge field

strength fab and the combination Bab + fab is invariant under the gauge transformation.

The T-duality does not relate the massless closed string fields to the massless open string

fields. Hence, in the T-duality constraint for the massless closed string fields, one may have

couplings that are not gauge invariant. The reduction of those couplings then would not

be invariant under the U(1) × U(1) gauge transformations. That makes problem in using

the trick used in section 3 to keep only the U(1) × U(1) gauge invariant part of reduction

of the Riemann curvature and other field strengths.

In finding the parameters in section 4, we have ignored some total derivative terms

in the base space. If O-plane are at the fixed point of closed spacetime, then there would

be no boundary in the base space and the total derivative terms become zero by using

the Stokes’s theorem. However, if the spacetime has boundary, then the base space has

boundary as well. In this case, the O-plane may end to the boundary. Hence, the total

derivative terms in the base space can not be ignored. They produce some boundary terms

in the boundary of the base space [16]. In that case, one should consider some couplings at

the boundary of O-plane. The boundary terms in the boundary of the base space should

be cancelled by the T-duality of the couplings on the boundary of O-plane. This constraint

may fix the couplings at the boundary of the O-plane. It would be interesting to find the

boundary terms in the effective action of O-plane.
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