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Abstract: Cube attack, a simplified type of algebraic attack, is widely utilised to cryptanalyse ciphers. However, since the cube
attack works without considering the cipher structure, it is highly complex. In 2017, division property, a successful approach to
finding integral distinguishers, was used to extract cube distinguishers in a non-blackbox manner for stream ciphers, which led
to a significant improvement of the previous results. This is the first paper employing division property for cube distinguisher
extraction in block ciphers. To do this, first, an approach relying on Boolean satisfiability problem (SAT) is presented to evaluate
the propagation of division property. Indeed, extraction of zero-sum distinguisher is mapped on a SAT problem and SAT solvers
are used to finding division trails efficiently and automatically. Then, this approach is extended and adapted to extract cube
distinguishers in block ciphers. However, there are similarities between our contribution and others but the different structure of
block and stream ciphers lead to disparity in applying division property to extract cube distinguisher for block ciphers. To prove
the efficiency of the presented approach, it is applied to the lightweight block cipher KATAN and the cube distinguishers are
extended to a higher round in comparison with previous results.

1 Introduction
In algebraic view, the cryptanalysis of symmetric ciphers can be
reduced to the problem of solving a large non-linear multivariate
polynomial system, which represents an nondeterministic
polynomial-complete problem [1]. There are several approaches to
solve the non-linear polynomial system [2–7], but they have high
memory consumption and time complexity beyond the power of
current computers, which make them infeasible in practical
problems. In 2009, cube attack [8], a simplified type of algebraic
attacks, was proposed. Later its efficiency was improved in its
successors, cube tester [9] and dynamic cube attack [10]. The idea
behind cube attack is very similar to algebraic IV differential attack
[11].

Cube attacks use the algebraic normal form (ANF)
representation of each ciphertext bit as a function of plaintext and
key bits in a blackbox manner where inputs comprise plaintext bits
as public variables and key bits as secret variables. The main idea
is to find information about the secret variables of the cipher by
applying all values for a well-chosen subset of the public variables
and summing up all the corresponding outputs. By evaluating this
sum, some linear equations of key bits are extracted. Then the
extracted equations are solved and key bits are recovered. Cube
attack family has been used extensively in cryptanalysis of stream
ciphers, but unlike its remarkable results in cryptanalysis of stream
ciphers, it rarely has been applied to block ciphers [12–15].

As discussed in [8], cube attacks are similar to integral attacks
[16] as a type of high-order differential attack [17] over the binary
field F2. In all of these attacks, the attacker attempts to sum the
output of ciphers in different but related input values.

Division property [18], a method to find high-order differential
distinguishers, specifically integral distinguisher, was proposed in
2015. In brief, for a set of chosen plaintexts, the division property
is deduced from the propagation rules over several rounds and at
the end, the presence of a balanced bit is determined as a zero-sum
integral distinguisher. However, the division property proposed in
[18] was only useful for S-box-based ciphers, and it was used to
break the full MISTY1 block cipher, but it could not be applied to
non-S-box-based ciphers effectively. To fill this gap, in [19], the
bit-based variant was introduced, which focused on an automatic
search of integral distinguishers at the bit level.

Evaluating the propagation of division property is not as easy as
the size of the problem increases extremely. In 2016, Xiang et al.
[20] showed that the propagation was efficiently evaluated using
mixed integer linear programming (MILP) with the aim of
applying propagation rules and extract zero-sum integral
distinguishers. Some instances of applying this tool to find integral
distinguishers are presented in [21, 22]. Recently, in [23],
automatic tools were proposed to apply the division property
method at the bit level over Add-Rotate-XOR (ARX) ciphers,
which relied on Boolean satisfiability problem (SAT) instead of
MILP. In addition, for word-based ciphers, they developed the
automatic search tool based on the satisfiability modulo theories
(SMTs), which was a generalisation of SAT. Using this tool, they
found improved distinguishers as well as some optimised
distinguishers with lower data complexity for some ARX and
word-based ciphers.

Considering the structural similarities between the cube and
integral attacks and the success of division property in finding
integral distinguishers, in 2017, division property was used to
extract cube distinguishers for stream ciphers [24]. As claimed by
the authors, the main property of this new technique was that the
cipher structure was never regarded as a blackbox and it could be
analysed in detail. This approach used the division property to
analyse the ANF of cipher output based on the evaluation of
propagations from an initial division property in a cube. Given that
the propagation of the division property could determine key bits
involved in the superpoly, it diminishes the complexity of its
recovery. The new cube attack was applied to TRIVIUM, GRAIN128,
ACORN, and KREYVIUM. Therefore, these attacks are considered as
the best key-recovery attack against these ciphers.

In [25], more accurate MILP models were designed in
comparison with [24] due to the consideration of the algebraic
construction of the superpoly, which led to decreased complexity
of superpoly recovery. Hence, they mounted the attack in more
rounds, and in some cases, they applied the attack to larger cube
sizes. In [26], the lightweight stream cipher WG-5 was analysed
using cube attacks based on division property. This cube attack was
automated by MILP models to confine the complexity of the
superpoly recovery theoretically. As a result, division property
significantly decreased data complexity compared to other
algebraic attacks on WG-5.
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1.1 Our contributions

In this study, considering the importance of the automated tool for
evaluation of division property, we show how the bit-based
division property could be mapped to a SAT problem. Indeed, to
find a division trail for a cipher, we construct a Boolean formula,
which is satisfiable, if and only if it forms a valid division trail.

Then this approach is extended and adapted to find a cube
distinguisher for block ciphers in a non-blackbox manner using the
division property. To do this, in addition to issues raised in [24], the
differences between block and stream ciphers should be
considered. As far as we know, it is the first application of the cube
extraction to block ciphers using division property.

1.2 Results

To prove the efficiency of division property in cube distinguisher
extraction of block ciphers, it was applied to a lightweight block
cipher called KATAN [27], which is an ARX block cipher. The
results showed that it outperformed the results of the best cube
distinguishers on KATAN. These improvements were as follows:

• Linear equation extraction for 72-round and 90-round KATAN32
and 50-round KATAN48, which was an extension of the 60-round
KATAN32 and 40-round KATAN48 results reported in [12],
respectively.

• Constant cube distinguisher extraction for KATAN32, which
extended the previous results [14] from 74-round to 91-round
and 83-round to 101-round in cube sizes 30 and 31, respectively.

1.2.1 Outline of the paper: The remainder of this paper is
organised as follows. In Section 2, we briefly review preliminaries
such as cube attack details, division property concept, and KATAN
cipher description. In Section 3, we focus on our contribution and
description of its details. Section 4 presents the results and draws a
comparison with the previous studies. Conclusions are drawn in
Section 5. Some details of the results are provided in the Appendix.

2 Preliminaries
In this section, we describe the basic concepts of this study. First, a
brief overview of the cube attack is given, and then the concepts of
division property are discussed. Finally, while presenting the
results over KATAN block cipher family, the specifications of the
cipher are described.

2.1 Cube attacks

In 2009, cube attack [8] was proposed as a type of algebraic attack,
which considered the cipher as a blackbox and used the ANF
representation of the ciphertext bit as a polynomial function of
plaintext and key bits. In the cube attack, by evaluating this
function for all possible values of some plaintext bits, the attacker
attempts to extract some linear equations of key bits, i.e. consider
each ciphertext bit as a polynomial function of plaintext bits,
V = {v0, v1, …}, and key bits, K = {k0, k1, …}. Assume x = V ⋃K,
so one can write any of the ciphertext bits as a polynomial p(x)
over GF(2) in ANF representation. Let I be a subset of the plaintext
bits and tI be the product of all variables whose indexes are in I.
The ciphertext bit can be considered as a polynomial function of V
and K variables

p(x) = F(V , K) = tI ⋅ Ps(I) + q(x) (1)

Here, tI and Ps(I) are called cube and superpoly, respectively. Ps(I)
is a polynomial of the key bits and remaining plaintext bits. q(x) is
the sum of all terms that do not contain at least one term of I.
According to the theorem proved in [8], Ps(I) can be calculated by
applying a higher-order derivative

Ps(I) ≡ ∑
v ∈ CI

p(x)( mod 2) ≡ ∑
v ∈ CI

F(V , K)( mod 2) ≡ F(W , K)

(2)

where CI is the set of all possible values for variables in tI and
other bits not included in I are zero. Since the terms in q(x) are
added an even number of times, they are cancelled out in modulo
2. Therefore all the terms except those are contained in the
superpoly Ps(I) are eliminated. By defining W = {i ∈ V i ∉ I} as
all other public variables that are not included in subset I, the
superpoly Ps(I) is a polynomial function of W and K. Since in cube
attack scenario, the bits in W have zero value, if Ps(I) constitutes a
linear polynomial of K, it can be utilised in an attack scenario.

There are two phases in the attack scenario, an offline
preprocessing phase and an online phase. The goal of the offline
preprocessing phase is to find some cubes that cause linear
superpoly. The linear superpoly can be determined with some
linearity tests [28]. In a cube with linear superpoly, tI is called a
maxterm. The primary challenge of the cube attack is to find
proper maxterms. In the offline phase, in some heuristics such as
the random walk manner [8], a subset I is selected as the cube.
When the subset I is too small, the corresponding coefficient is
likely to be a non-linear function of the key variables. To have a
lower degree coefficient, some plaintext variables should be added
to the subset. When I is too large, the sum will be a constant
function, which in this case does not depend on the key bits. In this
scenario, some plaintext variables should be eliminated from the
subset.

Once sufficient maxterms are obtained, the online phase starts.
In the online phase, with a fixed but unknown key, by evaluating
the function for all possible values of maxterm variables, a system
of linear equations is obtained, which can be solved efficiently by
using Gaussian elimination. By doing so, we can finally recover
the values of the key bits. This attack was made to reduced
versions of the stream cipher TRIVIUM and a major improvement
compared to previous studies was achieved.

The most important extensions of cube attack are cube testers
[9] and dynamic cube attacks [10]. Cube testers introduced in [9]
represent a family of distinguishers to detect non-random
behaviour. Both cube attacks and cube testers sum up the output of
a cipher for a subset of plaintext bit values. In the cube testers,
however, instead of finding linear equations, as is the case with
cube attack, which increases the complexity of the preprocessing
phase, the attacker seeks to find statistical distinguishers for the
cipher and utilises it to distinguish the cipher from a random
function.

In 2011, dynamic cube attack [10] was proposed, utilising cube
testers. This attack uses the internal structure of the cipher and
simplifies its output ANF representation by nullifying some state
bits by means of dynamic variables. In the simplified output, the
cube tester properties such as constantness could be mounted to
higher round. The preprocessing phase of this attack is based on
cube testers and it is less complex than the cube attack. Finding a
distinguisher for the cipher, this is utilised for the recovery of
secret key bits. In [10], the dynamic cube attack was presented on
GRAIN128.

2.2 Division property

Division property, which was proposed in 2015 [18], is an
improved technique to find integral distinguisher for iterated
ciphers. In brief, for a set of chosen plaintexts based on the initial
division property, the division property for one round is deduced
from the propagation rules in accordance with the round function.
Therefore, the division property can be exploited in several rounds
and the existence of integral distinguishers in r-round output can be
determined. In [19], the bit-based variant was introduced to apply
division property to non-S-box-based ciphers. This approach is
studied in detail here.

2.2.1 Bit-based division property: In the following, a brief
review of the definition of bit-based division property [19] and
propagation rules for basic operations involved in the encryption
process is presented.
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Definition 1: (bit-based division property): Let X be a multiset
whose elements take a value of F2

n. Let K be a set whose elements
take an n-dimensional bit vector. When the multiset X has the
division property DK

1n
, it meets the following conditions:

⊕
x ∈ X

xu =
unknown if there exist k ∈ K s . t . u ⪰ k
0 otherwise

(3)

To find the integral distinguisher using division property, the
attacker chooses the initial value for the division property and then
based on the round function of the cipher, the initial division
property is propagated through the rounds. The propagation rules
for the bit-based operation involved in the round function of
ciphers, as proven in [18, 19], are as follows:

Rule (copy [18]). Let F be a copy function, where the input x takes
value from F 2

n and the output is calculated as (y0, y1) = (x, x). Let X
and Y  be the input and output multisets, respectively. Assuming
that X has the division property D{k}

n , the division property of Y  is
DK′

n, n, where

K′ = {(k − i, i) 0 ≤ i ≤ k} (4)
Rule (XOR [18]). Let F be an XOR function, where the input (x0, x1)
takes value from F 2

n × F 2
n and the output is calculated as y = x0 ⊕ x1.

Let X and Y  be the input and output multisets, respectively.
Assuming that X has the division property DK

n, n, the division
property of Y  is D{k′}

n , where

k′ = min {k0 + k1 (k0, k1) ∈ K} (5)

Here, if k′ is larger than n, the propagation characteristic of the
division property is aborted, i.e. the value of ⊕y ∈ Y πv(y) is 0 for all
v ∈ F 2

n.
Rule (AND [19]). Let F be an AND function, where the input (x0, x1)
takes value from F 2 × F 2 and the output is calculated as y = x0 ∧ x1.
Let X and Y  be the input and output multisets, respectively.
Assuming that X has the division property DK

1, 1, the division
property of Y  is D{k′}

1 , where

K′ = {⌈(k0 + k1)/2⌉ k = (k0, k1) ∈ K} (6)

As discussed earlier, to find integral distinguisher, the attacker
determines indexes I = {i1, i2, …, i I }, where I is a subset of
plaintext indexes and variables indexed by I are taking all possible
combinations of values. The division property of these chosen
plaintexts is Dk

1n
, where ki = 1 if i ∈ I and ki = 0 otherwise. Then,

the propagation of division property from Dk
1n

 is evaluated as

{k} = K0 → K1 → K2 → ⋯Kr, (7)

where DKi is the division property after i-round propagation. If the
division property Kr contains all vectors ei with only ith element is
1, then there is no balance bit. Otherwise if Kr does not have a unit
vector ei, then the ith bit of r-round ciphertext is balanced. This
propagation is considered as a division trail.

2.2.2 Evaluating division property: As mentioned earlier, given
the high-growth rate of size Ki, it is difficult to evaluate the
propagation of division property manually. In 2016, Xiang et al.
[20] showed that the propagation could be efficiently evaluated
using MILP. These tools, which work at the bit-based level, model
the division property propagations of the operations as linear
inequalities and constructs a linear inequality system that describes
the division property propagations of a block cipher based on
initial division property. Then, by selecting a proper objective
function, the search for an integral distinguisher is converted into a
MILP problem. Some studies based on MILP and constraint
programming can be found in [21, 22, 29].

In [23], an automatic tool to evaluate division property was
proposed. This tool is underlined by Boolean satisfiability problem
(SAT) rather than MILP to evaluate the bit-based division property
in ARX ciphers. For the word-based division property, the
automatic search is performed based on SMTs, which is a
generalisation of SAT. In their work, the propagation of division
property is translated into a system of logical equations in
conjunctive normal form (CNF). As noted in their work, in
addition to these logical equations that correspond to r-round
propagations, some logical equations based on initial division
properties and stopping rule are also adapted. Using their tool,
some new distinguishers and distinguishers with more rounds were
found for a number of ARX and word-based ciphers.

2.3 KATAN block cipher

KATAN is a family of lightweight block ciphers with three variants
of 32-, 48- or 64-bit block size. All versions have 254 rounds and
use an 80-bit main key. KATAN consists of two linear feedback shift
registers, called L1 and L2, which are loaded with the plaintext.
They are then transformed by two non-linear Boolean functions as
follows:

f a(L1) = L1[x1] ⊕ L1[x2] ⊕ L1[x3] ⋅ L1[x4] ⊕ L1[x5] ⋅ IR ⊕ ka

f b(L2) = L2[y1] ⊕ L2[y2] ⊕ L2[y3] ⋅ L2[y4] ⊕ L2[y5] ⋅ L2[y6] ⊕ kb
(8)

The infrared used in the first function represents the irregular
update rule, which consists of the output of an linear feedback shift
register (LFSR). The output of each function is loaded on the least
significant bits of the other LFSR after being left-shifted. This
operation is invertible. The parameters of the above function are
presented in Table 1. 

For the ith round, only two key bits (ka = k2i and kb = k2i + 1) are
used. For KATAN48, these functions are applied twice in one round
of the cipher. First, a pair of functions is applied, and then after the
update of registers, they have applied again, using the same
subkeys. For KATAN64, each Boolean function is applied three
times for each round, with the same pair of key bits.

The key schedule algorithm of all KATAN ciphers is a linear
mapping that expands an 80-bit key K into 2 × 254 = 508 sub-key
bits, as described below

ki =
Ki for 0 ≤ i ≤ 79
ki − 80 + ki − 61 + ki − 50 + ki − 13 otherwise (9)

See [27] for more details.

Table 1 Parameters used in non-linear functions
Cipher L1 L2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9
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3 Utilising division property to extract cube
distinguishers
As discussed earlier, finding an integral distinguisher is difficult on
account of the extreme growth of the problem size. Particularly for
bit-based designs, the analysis often requires extensive manual
work, which may be prone to errors. Thus, automatic tools can be
useful to simplify the analysis of cryptographic primitives. Here,
considering the importance of automated evaluation of division
property, we argue that the issue of finding the integral
distinguishers can be efficiently automated using SAT solvers. To
do this, the bit-based division property is mapped into the
conditions on state variables and consequently, the search for
division trail is converted into a SAT problem.

Then, the above approach is extended and adapted to extract
cube distinguishers for block ciphers in a non-blackbox setting
based on the division property. As far as we know, it is the first
application of the division property in the cube distinguisher
extraction for block ciphers. There are some similarities between
our contribution and that of Todo et al. [24], but the different
structure of block and stream ciphers produces disparities in
applying division property to the cube distinguisher extraction in
block ciphers.

3.1 Automated findings of integral distinguisher with SAT

The Boolean satisfiability problem (SAT) is a well-known problem
in computer science. The problem is to decide whether there exists
an assignment of variables in a Boolean formula in CNF such that
the evaluation of the formula is true. In the following, an
automated approach is presented, which simplifies the problem of
finding a division trail to a Boolean satisfiability problem. Indeed,
to find a division trail for a cipher, a Boolean formula is
constructed, which is satisfiable if and only if it develops a valid
division trail.

In the first step, we introduce a variable for each bit of the
cipher state at round i, Si = (s0, …, sn − 1), where n is the size of the
state. After choosing a proper initial division property value for the
S0, the next step is to propagate the initial value through rounds
based on the propagation rules for operations used in the round
function. The main operation has been studied in [18, 19], so we
focused on how a Boolean formula in CNF could be constructed
for valid transitions of each operation.

3.1.1 Division property propagation: Here, for the main
operations discussed in Section 2.2.1, we generated the valid
clauses in the CNF form. For each occurrence of these operations
in the round function of the cipher, the corresponding clauses are
appended to the SAT problem clause set. Further details about the
rules to define the valid transitions and how the Boolean formulas
in CNF format were constructed, can be found in [30].

Copy: This operation copies an input bit a on an output bit b. The
valid transitions are given by

copy(aold, bold) → {(anew, bnew)}
copy(0, 0) ↦ {(0, 0)}
copy(1, 0) ↦ {(1, 0), (0, 1)} .

The set of clauses Ccopy which form a Boolean formula are given
by

Ccopy = {(¬bold), (¬aold ∨ bnew ∨ anew), (aold ∨ ¬bnew),
(aold ∨ ¬anew), (¬anew ∨ ¬bnew)} . (10)

XOR: This operation corresponds to a ⊕ b → b. The valid
transitions are given by

XOR(aold, bold) → {(anew, bnew)}
XOR(0, 0) ↦ {(0, 0)}
XOR(0, 1) ↦ {(0, 1)}
XOR(1, 0) ↦ {((0, 1), (1, 0)}
XOR(1, 1) ↦ {((1, 1)} .

and the corresponding clauses are as follows:

CXOR = {(aold ∨ ¬anew), (¬bold ∨ bnew),
(¬bold ∨ ¬bnew ∨ ¬anew), (¬aold ∨ anew ∨ bnew),
(bold ∨ aold ∨ ¬bnew), (¬bold ∨ ¬aold ∨ anew)} .

(11)

AND: This operation corresponds to a ∧ b → b. The valid
transitions are given by

AND(aold, bold) → {(anew, bnew)}
AND(0, 0) ↦ {(0, 0)}
AND(0, 1) ↦ {(0, 1)}
AND(1, 0) ↦ {(1, 0), (0, 1)}
AND(1, 1) ↦ {(0, 1)} .

As for other operations, its translation to a SAT sentence is given
by

CAND = {(aold ∨ ¬anew), (¬bold ∨ bnew), (¬bnew ∨ ¬anew),
(¬aold ∨ bnew ∨ anew), (aold ∨ ¬bold ∨ ¬bnew)} . (12)

3.1.2 Finding integral distinguishers: To identify an integral
distinguisher for a cipher, an initial value of S0 was chosen and it
was propagated in r round. Then Sr was checked after r rounds to
find whether it reached a certain output or not. Indeed, if we show
that an output vector of Sr, which is all zero except for a single 1 in
one bit, is unreachable, we will know that this bit is balanced.

In particular, we are interested in knowing whether any bit at
the output will be balanced, which is equal to show that at least one
of the vectors in the set

Sr + 1 ∈ {w ∈ F2
n ∥ hw(w) = 1} (13)

is unreachable, where hw is the Hamming weight of the vector.
After generating the clause set of the problem as described

above, the problem is solved with a SAT solver. This solution
indicates the existence or non-existence of the balance bits at the
output of the cipher based on (13). It means that if the model is
infeasible, there will be one w that is unreachable, and therefore
there is a balanced bit in the output of the cipher. Otherwise, if the
model is feasible, it means that all w exist in the Sr + 1 and the cipher
output is non-balanced.

In our previous work [30], as described above, we presented a
framework to automatically find integral distinguishers by reducing
the problem to a SAT problem. It was implemented by providing a
simple way to describe primitives, allowing both designers and
cryptanalysts to evaluate cryptographic primitives against this
attack. Using this tool, we managed to find several new or
improved bit-based division property distinguishers for ciphers in
comparison with [20, 23]. It should be noted that compared to [23],
our proposed tool covers a larger class of cryptographic primitives
with various design strategies. It is notable that using our
framework, we obtained the integral distinguisher presented at [21]
for KATAN cipher, which was extracted by the MILP approach.

3.2 Adapting division property to extract cube distinguishers

Based on the non-blackbox manner of division property
propagation through the rounds, which leads to the advancement of
the cube extraction for stream ciphers, here we used division
property to extract cube distinguishers in block ciphers and as we
expect, it improved the results of the existing cube attack. All
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papers on extracting cube distinguishers using division property
[24–26] have studied stream ciphers. In this study, considering the
differences between block and stream ciphers, we use the division
property approach to cube distinguisher extraction for block
ciphers.

There are slight differences between integral and cube attacks.
With the exception of some minor differences, there seems to be a
similarity between zero-sum integral distinguisher, where the sum
of output over the cube is 0 for any secret key, and constant
property of cube tester, which means a constant superpoly without
any involved key bits.

In the division property approach, the attacker chooses some
plaintext bits to have all possible values, which we call subset I,
and others are set to a constant value at the initial state. Then,
based on the round function operations of the cipher, the initial
value of the division property is propagated to the next round.
After some rounds, the cipher output is evaluated to see whether
cipher output bits are balanced or not.

Recall the definition of W from Section 2.1, W represents the set
of all public variables not included in set I. Whereas the bits in W
have constant values in the division property approach, the
existence or non-existence of the term tI for any value of key bits
can be determined. For a non-balance bit, given that the sum value
in (2) is non-zero, Ps(I) represents a non-zero function F(W , K).
For a balanced bit, however, since the sum is zero, it means that the
coefficient of tI is zero in (1), suggesting that it is equal to the
constant cube distinguisher.

Unlike the integral attack, which only considers the existence or
non-existence of the term tI in the output of a cipher, cube attacks
move forward and analyse the coefficient of tI as a function of key
bits. To do so, in cube attacks, secret bits are considered as part of
the primitive, so that coefficients could be evaluated as a function
of the secret input bits. To adapt the division property approach to
the scenario of cube attacks, the variables for the secret bits need to
be included in the analysis of the round function, as we progress
through the rounds.

It should be emphasised that in stream ciphers, key bits load
into the initial state of the cipher and the values of these states are
updated every round. Thus, by defining new variables for the key
states, as in [24], the propagation rules are applied to these states
and the values are propagated to the next round similar to other
public variables. In block cipher, nonetheless, the main key is
loaded into a state and the key schedule function is applied to this
state to generate subkeys for each round. Thus, in addition to
defining new variables for key bits, the key schedule should be

considered in propagation of block ciphers so that key variables are
propagated to the next round for the final evaluation of the output
function based on the key schedule function.

To analyse the output function, variables k and v are considered
for secret and public variables, respectively. Then, to represent the
initial division property, S0 = (v0, …, vn − 1, k0, …, km − 1), where
vi = 1 for i ∈ I and vi = 0 for i ∉ I. To check the existence or non-
existence of a key bit, one element of the secret variables k, j is
additionally initiated to 1 in our cube attack. Therefore, we have
k j = 1 and ki = 0 for i ∈ {0, …, m − 1}, i ≠ j.

According to (2), here we have

Ps(I) ≡ ∑
v ∈ CI′

p(x)( mod 2) ≡ ∑
v ∈ CI′

F(V , K)( mod 2) ≡ F(K) (14)

where CI′ represents the set of all possible values for variables in I
and all other bits having zero values. As discussed earlier, since all
bits in subset W are zero, Ps(I) is a polynomial function of only
key bits. Sum up this function for all possible values of the key bit
in index j with all other bits in K having constant values, it exhibits
the coefficient of this specific key bit in the superpoly which might
be one or zero.

It is worth noting that in the cube attack, to eliminate the
maximum possible number of non-linear terms, the constant value
is set to zero [8]. In [24], to apply zero value, they added some
constraints to the MILP model to manage its propagation. Here, we
adopted the same strategy. Since the propagation rules of division
property hold for every constant, they are also true for the zero-
constant value, and therefore, the propagation rules can be used for
the cube attack. The only difference between an arbitrary constant
value and the zero value is in non-linear operation such as the
AND operation or S-boxes. Hence, when at least one operand of
AND operation is zero, the output equals zero. As such, we
eliminate this specific AND from the propagation and propagate a
zero constant in this case. Also, about S-boxes, these non-linear
components can be represented as polynomial functions using the
copy, AND, XOR operation with respect to the division property.
Thus, the above-mentioned approach to propagate zero value is
also applicable to them. In Section 8.1, to study the propagation of
division property values through the operations, a toy example was
presented. In the example, the different propagation manner of
integral and cube attack facing zero values was shown.

By considering these points, in Algorithm 1 (see Fig. 1), we
present the steps to find a cube distinguisher using division
property specifically. For a determined cube Maxterm, the division

Fig. 1  Algorithm 1: find a linear equation
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property values of public variables are initialised, as shown in line
4. To check the existence of a specific key bit in the superpoly, as
seen in lines 5 and 6, the initial values of secret bits are set. Then
these initial values are propagated through rounds by considering
both round and key schedule functions and the generated clauses
are appended to the clause set of the problem, as shown in line 7.
In the next step, to examine the specific ciphertext bit to find cube
distinguisher, the corresponding clauses are appended based on
(13).

In the end, the problem is solved using a SAT solver. If the
model is infeasible, it means that the coefficient of this term is zero
and there is no secret variable involved in the superpoly Ps(I) and
if the model is feasible, it means that the mentioned key bit exists
in superpoly.

To extract cube distinguishers such as linearity and neutrality,
we need to determine the subset of key bits that are present or
absent in the superpoly. To do this, the above procedure is repeated
for all key bits. After determining all the key bits involved in the
superpoly, to extract equations, we perform linearity or quadratic
test [28, 31] to determine the degree of superpoly and then we can
extract its equation. It is notable that as a trivial outcome, the key
bits not-involved in the superpoly are considered as neutral key
bits.

4 Results
To demonstrate the effectiveness of division property in the cube
distinguisher extraction of block ciphers, we applied our approach
to the lightweight block ciphers KATAN32 and KATAN48 [27]. In
this section, we first applied cube attack to KATAN32 and KATAN48
and some linear equations were extracted for higher-round numbers
in comparison with the existing cube attack results [12]. Then,
extracted cube distinguishers for KATAN32 were presented, which
mounted to higher rounds in the same cube size compared to [14].
The results showed that although the highest number of rounds
attacked by non-algebraic techniques [32] could not be reached,
considering that our emphasis in this study is on cube
distinguishers, the proposed approach outperformed the best
existing results for the cube distinguishers on KATAN.

4.1 Linear equation extraction

In [27], the algebraic attack and also cube attack were applied to
KATAN family. More specifically, cube attack broke 60-round
KATAN32, 40-round KATAN48, and 30-round KATAN64 by
extracting 41, 31 and 25 linear equations, respectively. Here, we
applied cube attack to KATAN32 and KATAN48 using division
property and found cube distinguishers for 72-round KATAN32 and
50-round KATAN48 that outperformed existing cube attacks. The
results are summarised in Table 2. 

Using the division property, we were able to extract 44 cubes
for 72-round KATAN32, as presented in Table 6 (see Section 8.2),
including 23 cubes of degree 29 and 21 cubes of degree 31. Some
of the ciphertext bits reveal more information about key bits, and
we can extract different equations for various ciphertext bits using
the same maxterm. This means that the data and computational
complexity can be reduced during the online phase.

Thus, the data complexity is

20 ⋅ 229 + 15 ⋅ 231 ≃ 235.3 (15)

which constitute 232 chosen plaintexts to determine 44 key bits. The
computational complexity is 235.3 + 280 − 44 ≃ 236, which is
dominated by the exhaustive search for the remaining 36 key bits.

For readers interested in details, we upload the code at https://
github.com/zraestgithub/CubeAttack_DP.

Furthermore, three linear equations were extracted for 90-round
KATAN32 as presented in Table 7. We can determine three key bits
by solving these equations and mount 90-round attack with
complexity 277. Additionally, the extracted equations are the
weakness of the cipher and could be utilised besides other attacks
to reduce the complexity [12].

The extracted linear equations for 50-round KATAN48 are
presented in Table 8 (see Section 8.2). We extracted 24 cubes of
varying degrees. Based on the extracted equations, the data
complexity is

1 ⋅ 227 + 4 ⋅ 228 + 3 ⋅ 229 + 9 ⋅ 230 + 4 ⋅ 231 ≃ 234.3 (16)

chosen plaintexts to determine 24 key bits. The computational
complexity is computed by 234.3 + 280 − 24 ≃ 256, which is dominated
by the exhaustive search for the remaining 56 bits of the secret key.

In all of our results, we ran 500 linearity tests and then tested
the equations for more than 210 distinct random keys to ensure their
correctness. To do this, the cube attack was simulated in the
compute unified device architecture (CUDA) framework which is
used for programming in Nvidia GPUs [33] and a high
performance computer equipped with GeForce GTX 1080 with 8 
GB RAM memory and 2560 CUDA cores was used.

4.2 Constant cube distinguisher

To have cube distinguishers in higher round numbers, the
maximum value for the cube size should be selected. It means that
the maximum numbers of active bits were selected and other bits
have zero value. As discussed earlier, the selection of zero value in
the cube attack led to maximum elimination of non-linear terms.
Thus, it should be noted that the positions of these zero bits
affected this elimination in initial rounds, which underscores the
importance of the meticulous selection of these zero bit positions.

In the dynamic cube attack [10], considering the above points,
the attacker analyses the cipher structure in a backward manner and
selects the dynamic variables with maximum possible
simplification in inner states of the cipher to identify the longer
distinguisher. In a recent study [34], the authors considered more
precise nullification technique for inner state bits as well as the
frequency of public variables in inner states terms, selecting public
variables with high frequency as zero candidates. By applying
these techniques, they improved the time complexity of the
previous attack on GRAIN 128. Thus, it can be concluded that
identifying cube distinguisher in higher round number require
precise selection of the zero bits.

It should be mentioned that since the most significant bit of the
L2 had the lowest degree compared to other state bits in the same
round, it will be further analysed to find a constant cube
distinguisher in the higher round. Based on the nullifying
techniques discussed in [10, 34], we tried different scenarios for the
same cube size and different zero positions such as bits which
participated in non-linear terms with lower or upper indexes or bits
in the least significant indexes. The results of these experiments are
presented in Table 9 (see Section 8.3).

Hence, by zeroing the least significant bit, the longer
distinguisher in comparison with other positions was achieved.
Owing to the shift operation in the round function of the KATAN
family, the zero values in the least significant bits appeared in more
terms and were mounted to higher rounds, leading to the

Table 2 Overview of the results obtained for cube attacks on KATAN32 and KATAN48
Cipher Rounds Number of equations Time complexity Data complexity Ref
KATAN32 60 41 239 230.28 [12]

72 44 236 232 section 4.1
KATAN48 40 31 249 224.95 [12]

50 24 256 234.3 section 4.1
 

6 IET Inf. Secur.
© The Institution of Engineering and Technology 2019



elimination of more non-linear terms. Thus, this selection provided
distinguishers in higher round number.

In Table 3, the results for the longest distinguisher are
presented, which were found in the maximum allowable cube size
and compared to other distinguishers. Compared to [14], as
described earlier, the accurate selection of the zero bit position
mount the distinguisher to a higher round. It is notable that as
described in Section 2.3, because of LFSR being left-shifted in
KATAN, the 83-round distinguisher in [14] and 101-round
distinguisher found here, are the same. So, we can conclude that
our findings verify the previous results. In comparison with
integral distinguishers, because of zero values in the cube attack,
this attack mounts the distinguisher to more rounds as compared to
the case in which non-cube bits take random values. Hence, the
cube attack generates distinguishers of higher rounds in
comparison with [21] for the same input values as active bits.

It is worth noting that unlike the stream cipher in which a zero-
sum integral distinguisher is non-trivial to recover secret variables,
in the block cipher, it allows using it as a distinguisher and extend
this intermediate round to the final round of the cipher under some
key guess. Then, in the online phase, the distinguisher is not
achieved in wrong key guess, but in the correct key guess, after
some backward partial decryption, the distinguisher is obtained and
the key guess is considered as a key candidate.

As discussed in [24], the division property puts an upper bound
on the key bits involved in the superpoly. Thus, by determining the
existence and non-existence of the key bits in the superpoly, as
noted in Section 3.2, the neutrality property of the cube tester can
be extracted [9]. In this property, the presence of key bits in at least
one monomial of the superpoly was analysed and the key bits not
involved in the superpoly were considered as neutral key bits.
Accordingly, superpoly was independent of these key bits, which
was one of its weak points.

In [35], it has been shown that determining key bits without
significant influence on the value of coefficients in the ANF
representation of a polynomial function can be utilised to derive
information about the key in a way that is faster than exhaustive
key search in approximation approaches. In Table 4, the key bits
that are not involved in the superpoly are presented as neutral key
bits for the cube sizes 30 and 31 under best results derived from
Table 9. 

5 Conclusion and future work
In this study, the division property in the cube distinguisher
extraction was employed for block ciphers. Automatic tools for
identifying integral distinguishers simplified the procedure of
finding the division trail. Hence, we focused on presenting an
automated and efficient tool for finding division property trail
using SAT solvers. We converted the problem of finding a division
trail to a SAT problem by defining initial division property,
propagation rules in the CNF form and other conditions to

determine the existence of balanced bits based on the feasibility or
infeasibility of the SAT problem.

This approach was then extended and adapted to find cube
distinguishers for block ciphers in a non-blackbox manner. To do
this, the tool was adapted considering the differences between
integral and cube attacks. Compared to the utilisation of division
property in the cube distinguisher extraction for stream ciphers,
here we considered the differences between the stream and block
cipher structures in the propagation of division property through
rounds to find the cube distinguisher. In conclusion, we proved the
correctness and efficiency of the proposed approach by applying it
to block cipher KATAN. The proposed approach improved the
results of the best existing cube attack on the block cipher KATAN.
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8 Appendix
 
8.1 Toy example

Let us consider an initial state of three bits (x0, x1, x2). We are
interested to check the existence or non-existence of term x0x2 in
the output. So, the initial division property is (1, 0, 1). In Table 5,
in each row, the states were updated under the application of the
operation in the first column. The new values for division property
were calculated based on the propagation rules mentioned in
Section 3.1.1.

As seen in the last row of the second column, the two vectors
{(1, 0, 1), (0, 0, 1)} have hamming weight 1. Based on description
in Section 3.1.2, it means that the term x0x2 exists at the second and
the last bits of the output, respectively. We can verify the obtained
result from the division property propagation with the ANF
representation in the last row of the first column.

As we described in Section 3.2, in cube attacks, we have
I = {x0, x2} and other inputs, x1 has zero value. As discussed in
division propagation for cube attacks, if one operand of the AND
operation was zero, the propagation is ignored. So, the second row
of the third column has a different value. In the end, as seen in the
last row of the third column, the only {(0, 0, 1)} vector has
hamming weight 1, so the term x0 ⋅ x1 ⋅ x2 at the second bit of the
output is ignored because of x1 = 0 and the term x0x2 exists only at
the last bit of the output.

8.2 Extracted linear equations

Here the details of linear equations extracted for 72-round and 90-
round KATAN32 and 50-round KATAN48, as discussed in Section
4.1, are presented (see Tables 6–8). 

8.3 Extracted distinguishers

As discussed in Section 4.2, different scenarios were tried for the
same cube size and different zero positions to achieve constant
distinguishers in higher round numbers. The details of these
experiments are presented here (see Table 9). 

Table 5 Example of division property propagation
Operation States Div. Prop. values in integral attack Div. Prop. values in cube attack
— (x0, x1, x2) {(1, 0, 1)} {(1, 0, 1)}
x1 = x1 . x2 (x0, x1 ⋅ x2, x2) {(1, 0, 1), (1, 1, 0)} {(1, 0, 1)}
x2 = x1 ⊕ x2 (x0, x1 ⋅ x2, x1 ⋅ x2 ⊕ x2) {(1, 0, 1), (1, 1, 0)} {(1, 0, 1), (1, 1, 0)}
x1 = x0 . x1 (x0, x0 ⋅ x1 ⋅ x2, x1 ⋅ x2 ⊕ x2) {(1, 0, 1), (0, 1, 1), (0, 1, 0)} {(1, 0, 1), (0, 0, 1)}
x2 = x0 . x2 (x0, x0 ⋅ x1 ⋅ x2, x0 ⋅ x1 ⋅ x2 ⊕ x0 ⋅ x2) {(0, 0, 1), (0, 1, 1), (0, 1, 0)} {(0, 0, 1), (0, 1, 1)}
⊕ and ⋅ stand for XOR and AND operation, respectively.
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Table 6 Extracted linear equations for 72-round KATAN32
Maxterm Degree Equation Cipher bit
FFFFEFFA 29 k1 + k20 + k31 + k68 + k72 c7
FFFFFFD5 29 k67 + k78 c4
FFFFFFBA 29 k6 + k25 + k36 + k73 + 1 c23
FFFFFF75 29 k1 + k3 + k16 + k20 + k22 + k31 + k33 + k35 + k46 + k68 + k70 c5

k4 + k23 + k34 + k71 + 1 c24
FFFFFEFA 29 k74 + k78 c4

k4 + k23 + k34 + k71 + 1 c24
FFFFFDF5 29 k2 + k21 + k32 + k69 + 1 c25
FFFFFBFA 29 k74 + k78 + 1 c24
FFFFF7F5 29 k72 + k76 c25
FFFBFFFA 29 k56 + k57 + k58 + k68 + k72 c30
FEFFFFFA 29 k42 + k44 + k52 c30
F7FFFFFA 29 k2 + k21 + k32 + k45 + k46 + k48 + k58 + k62 + k69 + k75 + 1 c12
FFFFFFE5 29 k65 + k75 + k77 c25
FFFDFFFA 29 k45 + k54 + k55 + k56 + k66 + 1 c12
FFFFBFFA 29 k0 + k19 + k30 + k61 + k67 + k76 c8
FFFFDFFA 29 k57 + k67 + k69 c29
FFFFFFF1 29 k57 c5
FFFFEFF5 29 k47 + k68 + k69 + k72 + k77 + 1 c9
F7FFFFF5 29 k36 c13
FDFFFFF5 29 k40 + k44 + 1 c12

k40 + k42 + k50 + k70 + 1 c31
FFBFFFF5 29 k62 + k66 c30
FBFFFFFF 31 k0 + k2 + k6 + k19 + k21 + k25 + k30 + k32 + k36 + k60 + k67 + k69 + k73 + k74 c21

k76 c22
7FFFFFFF 31 k0 + k19 + k30 + k50 + k64 + k67 + k70 + k72 + k76 + 1 c26

k66 c27
BFFFFFFF 31 k52 + k66 + k72 + k74 + k78 + 1 c25
DFFFFFFF 31 k0 + k19 + k30 + k54 + k67 + k68 + k74 + k76 + 1 c24
F7FFFFFF 31 k74 + 1 c23
FEFFFFFF 31 k4 + k6 + k10 + k23 + k25 + k29 + k34 + k36 + k40 + k64 + k71 + k73 + k77 + k78 c19
FFFBFFFF 31 k3 + k10 + k22 + k29 + k33 + k40 + k70 + k75 + k77 c8

k78 c27
FFFDFFFF 31 k5 + k12 + k24 + k31 + k35 + k42 + k72 + k77 + k79 + 1 c7

k0 + k19 + k30 + k67 c26
FFFEFFFF 31 k1 + k14 + k20 + k31 + k33 + k44 + k68 + k79 c6

k2 + k21 + k32 + k69 + 1 c25
FFFF7FFF 31 k1 + k3 + k16 + k20 + k22 + k31 + k33 + k35 + k46 + k68 + k70 c5

k4 + k23 + k34 + k71 + 1 c24
FFFFBFFF 31 k6 + k25 + k36 + k73 + 1 c23
FFFFDFFF 31 k8 + k27 + k38 + k75 + 1 c22
FFFFEFFF 31 k10 + k29 + k40 + k77 c21
FFFFF7FF 31 k12 + k31 + k42 + k79 c20
FFFFFBFF 31 k1 + k14 + k20 + k31 + k33 + k44 + k68 + 1 c19
 

Table 7 Extracted linear equations for 90-round KATAN32
Maxterm Degree Equation Cipher bit
FFFFFFFB 31 k4 + k17 + k23 + k30 + k34 + k36 + k47 + k49 + k60 + k71 + 1 C29
FFFFFFF7 31 k2 + k15 + k21 + k28 + k32 + k34 + k45 + k47 + k58 + k69 C30
FFFFFFEF 31 k0 + k13 + k19 + k26 + k30 + k32 + k43 + k45 + k56 + k67 + 1 C31
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Table 8 Extracted linear equations for 50-round KATAN48
Maxterm Degree Equation Cipher bit
01248FEDBFE7 27 k8 + 1 c27
FEFFF8B1D001 28 k3 c20

k9 c21
FFF381000FFF 28 k1 c28
5E266F3E9A37 28 k8 + k13 + k19 + 1 c27
5E646F3E9A37 28 k5 + k12 + 1 c25

k4 + k10 + k13 + k19 c27
1F666F3E9A37 29 k7 + k24 c27
FFF0032E5A7F 29 k12 c27
1F40377C1FFF 29 k2 c27
FFF3C0003FFF 30 K14 + k31 + 1 c28
FC051EE31FFF 30 k6 + k16 c27

k6 c28
FFFF08B1D347 30 k9 + k15 + 1 c23
5F666F6E9A37 30 k4 + k5 + k12 + 1 c25
FFFF08B1E347 30 k11 + 1 c25
5F666FAE9A37 30 k8 + k12 + k14 c26
42BF16AFFFF0 30 k18 + k24 c28
CF04377C1FFF 30 k2 c27
FFE456460FFF 31 k5 + k24 c28
FFF5C0B6637E 31 k7 c27
FFFC03B6637E 31 k7 + k15 + k22 c25
2D6D9DB9BF3D 31 k0 + k20 c24
 

Table 9 Extracted distinguishers at cipher bit C18 of KATAN32
Cube size Zero bits positions Rounds Ref.
30 17,18 74  [14]

0,1 90  [21]
3,10 84
8,12 82
0,1 91
3,24 81 section 4.2
8,24 80
10,27 76
12,27 76

31 18 83  [14]
0 99  [21]
0 101
1 100
3 98
8 93 section 4.2
10 91
12 89
24 90
27 88

The bold rows present the best results for the same cube size but in different zero bits positions.
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