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Abstract Monthly forecasting of streamflow is of particular importance in water resources
management especially in the provision of rule curves for dams. In this paper, the performance
of four data-driven models with different structures including Artificial Neural Network
(ANN), Generalized Regression Neural Network (GRNN), Least Square-Support Vector
Regression (LS-SVR), and K-Nearest Neighbor Regression (KNN) are evaluated in order to
forecast monthly inflow to Karkheh dam, Iran, in linear and non-linear conditions while the
optimized values of the model parameters are determined in the same condition via the Leave-
One-Out Cross Validation (LOOCV) method. Results show that the performance of the models
is different in linear and nonlinear conditions; the cumulative ranking of the models according
to the three assessment criteria including NSE, RMSE and R2 indicates that ANN performs
best in linear conditions while LS-SVR, GRNN and KNN are in the next ranks, respectively.
But in nonlinear conditions, the best performance belongs to LS-SVR, followed by KNN,
ANN, and GRNN models.
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1 Introduction

One of the essential issues in water resources planning and management is the awareness of the
inflow to the reservoir of dams. Therefore, the forecast of inflow to a dam is of particular
importance in the operating decisions. Since rule curves of dams are usually in monthly time
scales, the monthly forecasting of inflows to dams is essential.

In order to forecast monthly streamflows, several data-driven methods are proposed
including: supervised training methods like various Neural Networks (NN) and Support Vector
Machines (SVM), fuzzy methods, and nonparametric methods such as K- Nearest Neighbor
(KNN) Regression. Among all these methods, the fuzzy method depends on the user expertise,
while the efficiency of other methods depends on the ability of the model to discover the
relationship between predictor and predicted variables. Moreover, each of the above mentioned
models enjoys a special structure different from the others. However, the main concern is to
select the most reliable and confident method via the comparative researches.

Some researches revealed that Generalized Regression Neural Network (GRNN) model
excelled the types of Feed Forward Back Propagation (FFBP) and Multi Layer Perceptron
(MLP) of Neural Network models, in order to monthly streamflow and drought forecasting
(Hosseini and Araghinejad, 2015; Cigizoglu, 2005; Kişi, 2008). However, Fallah Haghgoo
and Sharifi (2011) suggested that the performance of MLP is better than GRNN in monthly
streamflow forecasting.

Moreover in several studies about annual and monthly streamflow forecasting, it was
reported that Support Vector Machine (SVM) produced the most accurate results in compar-
ison of models like Artificial Neural Network (ANN), Auto Regressive Moving Average
(ARMA), and Multiple Linear Regression (MLR) (Lin et al., 2006; Wang et al., 2009; Kalra
and Ahmad, 2012; Kalra et al., 2013, Callegari et al., 2015). On the other hand, Shrestha
(2014) suggested that the patterns of annual forecasted streamflow by ANN and SVM, in four
hydrological stations all over the Utah State, are similar. Besides, Bharti et al. (2017) indicated
that ANN model outperforms the Least Square- Support Vector Regression (LS-SVR) model
for prediction of monthly runoff while LS-SVR model surpasses ANN models for monthly
sediment prediction.

The KNN model has been applied in fewer studies as compared to ANN and SVR models
in order to forecast process; however, Wu and Chau (2010) revealed that the performance of
KNN model is superior to ARMA and ANN model for monthly streamflow forecasting,
whereas in the researches done by Wu et al. (2010) and Mekanik et al. (2013), it was
concluded that the preference of ANN model was over KNN and MLR models, in monthly
and seasonal rainfall forecasting.

As can be seen from the previous researches reported in the literature, the results obtained
from these studies are inconsistent which can be because of the differences between study
areas, data sets, and the selected structures for each of the models. On the other hand, the type
of relationships between predictor and predicted variables, which can be linear or nonlinear,
essentially affect the results of the models because of their various structures; yet, in the
previous studies, the evaluation of the model performance has been done regardless of this
point. Moreover, in the previous researches, the efficiency of the GRNN, KNN, and SVR
models has been compared only with ANN model or ANN and MLR models, and in any of
them, a comparative assessment of the performance of all the above models has not been done.

Therefore, in this paper, the efficiencies of the best forecasting models identified in the
previous researches including two neural network models, i.e. ANN and GRNN models, as
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well as, LS-SVR and KNN models are compared in the equal conditions in terms of the study
area, data sets, and the methods of determining the best structure of the models while they are
assessed based on various linear and nonlinear patterns of forecasting between predictor and
predicted variables. The models are evaluated in order to forecast the monthly inflow to the
Karkheh reservoir, Iran, whilst all of them are applied with their best structure where the
absolute optimum values of the effective parameters are determined with the same manner
involving Leave-One-Out Cross Validation (LOOCV) method.

2 Case Study and Data

In this paper, the forecast of monthly inflow to Karkheh reservoir is investigated, as the case
study. Karkheh dam is located on the Karkheh River in the southwest of Iran (Fig. 1). Karkheh
River originates from two branches, namely, Gamasiab in the northeast and Gharesu in the
northwest. The confluence of these two rivers forms Seimareh River at the end of Kermanshah
plain. The joint of the two rivers, i.e. Seimareh and Kashkan, which originates from the east
part of the basin, forms Karkheh River. The location of the branches of Karkheh River is
showed in Fig. 1. Karkheh dam is one of the largest multi- purpose earthen embankment dams
in the world, which was exploited on 2003 for agricultural water supply, flood control, and
Hydropower protection. Therefore, the forecast of its inflow is of importance.

The upper basin of the Karkheh dam has different weather conditions such that its northern
and eastern regions are mountainous area with cold winters and mild summers while the
western and southern regions are plains and foothills with mild winters and long and warm
summers. However, the climate of this basin is Mediterranean with the average annual
precipitation of 300–800 mm. The pattern of 32-year average of monthly precipitation at the
upper basin of Karkheh dam (from 1982 to 2013) together with the 32-year average of

Fig. 1 The location of the Karkheh dam on the Karkheh River, Iran
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monthly inflow to Karkheh reservoir in the same period of precipitation is illustrated in Fig. 2.
As can be seen from Fig. 2, the main precipitation in the basin occurs From December to April
while the main volume of inflow to Karkheh reservoir is from November to June which is
greater than 100 MCM. Moreover, the patterns of the upper basin rainfall and the inflow to the
reservoir are not completely consistent which is because of water harvesting along the river for
agricultural purposes before the reservoir. It is noted that the data of inflow to Karkheh dam
before 2003 (the year of Karkheh dam exploitation) have been derived from the information of
the hydrometric station at the upstream of Karkheh dam.

The data applied in this study include: monthly inflow to Karkheh reservoir, monthly
rainfall and monthly Snow Area Extent (SAE) at the upper basin of Karkheh dam over 32
water years (from October 1982 to September 2013). Snow area extent data are obtained from
the images of MODIS/ TERRA satellites (MOD 10.A2). Based on the Pearson Correlation
Coefficient (R) and Modified Mutual Information (MMI) indices, as presented in Modaresi
et al. (2016), with the threshold of 0.5 and Forward Selection method (FS) (Chen et al., 1989),
the best predictors for each month have been determined and presented in Table 1. With
respect to Table 1, it can be said that due to the type of weather conditions in this basin, the
type of predictors for some of months are different from other months; such that the
streamflow of March and April can be forecasted in a better way by the use of the SAE of
February because the main snowfalls occur in this basin in February. Further, since the autumn
rainfalls in this basin begin in late October, the streamflow of November has the most
dependency on the precipitation of October. The streamflows of April and June also depend
on the rainfall of their previous month, while the streamflows of other months can be
forecasted by the streamflow of their previous month.

3 Methodology

As mentioned before, in the current paper, the performances of four data-driven models
including: two different neural networks, i.e. Artificial Neural Network (ANN) and General-
ized Regression Neural Network (GRNN), as well as, Least Square- Support Vector Regres-
sion (LS-SVR), and a nonparametric regression method (K- Nearest Neighbor (KNN)) are
evaluated in order to forecast monthly streamflow in linear and nonlinear conditions of
relationship between predictor and predicted variables. Since the numbers of predictors are
more than one in most of months, considering the amount of Pearson Correlation Coefficient

Fig. 2 The 32-year average of monthly precipitation of Karkheh basin (a) and monthly inflow to Karkheh dam
(b) from 1982 to 2013
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(R) alone can not specify the linear conditions between predictors and predicted variable. But
in linear conditions with several predictors, Multiple Linear Regression model (MLR) per-
forms best; therefore, in this study, the performance of MLR model is considered as the basis
of determining linear and nonlinear conditions.

Also, to determine the absolute optimum amount of all parameters of the models, the leave-
one-out cross validation method (LOOCV) has been applied. The brief descriptions of the
mentioned methods are as follows: It is noted that in all models the matrix/vector of input and
the vector of target data are including the observed data of predictors and predicted variables
for each month which are Xt = {x1,t, x2,t, …, xm,t} and Tt, t = 1,2,…,n, respectively, where n is
the number of data and m is the number of predictors.

3.1 Artificial Neural Network (ANN)

In this paper, a neural network with the structure of Multi Layer Perceptron (MLP) is applied
where one middle layer is considered. In this type of neural network, the number of neurons in
the input and output layers are equal to the number of predictors (m) and predicted variable
(streamflow), respectively, while the number of the neurons in the middle layer is variable, the
optimum value of which should be calculated.

The functions used in the neurons of the middle and output layer are of linear and sigmoid
types, respectively, as presented in Eq. 1 and 2 (Araghinejad, 2014):

f xð Þ ¼ x ð1Þ

f xð Þ ¼ 1

1þ e−αx
α > 0 ð2Þ

To calculate the functions in each neuron, a weight (w) and bias (b) is considered for inputs
of the neurons as (wjxj + bj) where j = 1,2,…,m, the optimum values of which should be
determined via calibration of the model.

Table 1 The most appropriate predictors for monthly streamflow forecasting of Karkheh River, Iran

Predictors Forecasted Variable: Monthly streamflow

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Precipitation in October √
Precipitation in March √
Precipitation in May √
streamflow in September √
streamflow in November √
streamflow in December √
streamflow in January √
streamflow in March √
streamflow in April √
streamflow in May √
streamflow in June √
streamflow in July √ √
streamflow in August √
SAE* of February √ √

* SAE: Snow Area Extent

A Comparative Assessment of Artificial Neural Network, Generalized...



In order to train or calibrate the neural network, a Feed Forward Back Propagation (FFBP)
algorithm has been applied, to achieve the best forecasts, where the error function in Eq. 3 is
minimized for each of iterations, known as epochs (Araghinejad, 2014):

E ¼ 1

nc
∑
nc

i¼1
e2i ð3Þ

Where, E is the error function; ei is the error of the model simulation for ith training pair data
and nc is the number of training pairs.

3.2 Generalized Regression Neural Network (GRNN)

GRNN is a type of neural networks based on radial basis function (RBF), where a probabilistic
structure is applied for simulating the dependent variables in a regression function simulation
problem. Because of having probabilistic structure, it does not face the problem of local
minima which other neural networks encounter (Cigizoglu, 2005).

GRNN is a three layer neural network where the number of neurons in the input and output
layers is equal to the dimension of input and output vectors, respectively, just like the artificial
neural network. But, the number of the neurons in the middle layer, unlike the artificial neural
network, is clear and equal to the number of observed data used for the model calibration
(Araghinejad, 2014).

The function implemented in the middle layer of this neural network is a normal (Gaussian)
performance function as follows:

f X r; tð Þ ¼ e− I tð Þ½ �2

I tð Þ ¼ X r−X tk k � 0:8326=h ; t ¼ 1; 2;…; n
ð4Þ

Where, ‖Xr − Xt‖ is Euclidean distance function between real time vector of predictors
(Xr) and the observed vector of predictors related to the tth neuron (Xt), and h is the spread
parameter that presents the spread of radial basis function and adjust the function to
achieve the most appropriate fitness. The typical amount of spread usually equals 1.0
while its larger amounts result in the smoother function approximation and the smaller
ones leads to closely fitness; however, its amount should be determined by the user in the
range of (h > 0).

The output of this model (Yr) (forecasted stremflow) for the vector of (Xr) is calculated
based on a kernel function of the normal performance function outputs [f (Xr,t)] as follows:

Y r ¼ 1

∑
n

t¼1
f X r; tð Þ

∑
n

t¼1
f X r; tð Þ � Tt½ � ð5Þ

3.3 Least Square- Support Vector Regression (LS-SVR)

Least Square-Support Vector Regression (LS-SVR) is a type of SVR model, where the least
square method is used for finding the hyper planes which have the maximum distance from the
nearest observed data or support vectors in both sides.
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The beneficial advantage of LS-SVR model over neural networks is to apply the principle
of the structural risk minimization (SRM) to recognize the pattern between predictor and
predicted variables while the empirical risk minimization (ERM) principle is performed in
neural networks (Modaresi and Araghinejad, 2014).

In LS-SVR method, a nonlinear mapping of ϕ in the trait space for Xt ∈ Rmas the input data
and Y(Xt) ∈ Ras the output data is calculated as follows (Suykens et al., 2002):

Y X tð Þ ¼ wT :ϕ X tð Þ þ b ð6Þ
Where, w and b are the amount of weights and biases of the regression function, respec-

tively, calculated via minimization of the following objective function:

Min
w;b;ei

j w; eð Þ ¼ 1

2
wTwþ γ

2
∑
n

t¼1
e2t S:t : Tt ¼ wTϕ X tð Þ þ bþ et t ¼ 1; 2;…; n ð7Þ

Where, e is the amount of the errors, and Gamma (γ) is the regularization parameter of the
model that controls the flatness of approximation function, the optimum amount of which
should be determined by the user. The small and large values of Gamma indicate the simple
and complicated LS-SVR model (Suykens et al., 2002).

Solving the objective function by the use of Lagrange method based on Karush-Kuhn-
Tucker condition results in the following equation:

Y Xð Þ ¼ ∑
n

t¼1
αtK X ;X tð Þ þ b ð8Þ

Where, K(X,Xt) is kernel function, having three types of linear, polynomial and radial basis
function shown in Table 2, and αt (t = 1,2,…,n) are Lagrange multipliers or support values.

3.4 K-Nearest Neighbor Regression (KNN)

K-nearest neighbor (K-NN) regression is a nonparametric regression method, where the
information derived from the observed data is applied to forecast the amount of predicted
variable in real time without defining a predetermined parametric relation between predictor
and predicted variables.

The basis of this method is on calculating the similarity (neighborhood) of the real time
amount of predictors Xr = {x1r,x2r,x3r,…, xmr} (with unknown forecasted streamflow) with the
amount of predictors for each of historical observations Xt = {x1t,x2t,x3t,…, xmt} via Euclidean
distance function (Drt) as follows (Araghinejad, 2014):

Drt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
wi xir−xitð Þ2

s
; t ¼ 1; 2;…; n ð9Þ

Table 2 The kernel functions of LS-SVR model

Kernel Name Kernel Function

Linear K xi; x j
� � ¼ xTi x j

Polynomial K xi; x j
� � ¼ xTi x j þ τ

� �
d

Radial Basis Function (RBF) K(xi, xj) = exp (−‖xi − xj‖
2/σ2)

A Comparative Assessment of Artificial Neural Network, Generalized...

http://en.wikipedia.org/wiki/Regression_analysis


Where, wi (i = 1,2,…,m) are the weights of the predictors, summation of which is equal to
one. The forecasted (estimated) streamflow (Yr) is calculated using the following probabilistic
function of the observed streamflows (Tj):

Y r ¼ ∑
K

j¼1
f Drj
� �� T j ð10Þ

Where, f(Drj) is the kernel function of the K nearest neighbors (K observed data with the
lowest distance from the real time predictor), calculated based on distance amounts (Drt) as
follows:

f Drj
� � ¼ 1=Drj

∑
K

j¼1
1=Drj

ð11Þ

In K-nearest neighbor algorithm, the amount of predictor weights (w in equation 9) and
number of neighbors (K) affect the final results; therefore, their optimum amounts should be
calculated to achieve the most appropriate results.

3.5 Multiple Linear Regression (MLR)

In order to identify the linear conditions between predictor and predicted variables, multiple
linear regression model, which is a parametric method, is used in this paper, presented as
follows (Araghinejad, 2014):

Yr ¼ β0 þ ∑
m

i¼1
βixir i ¼ 1; 2;…;m ð12Þ

Where, Yr is the estimated (forecasted) variable (streamflow), Xr = (xir,i = 1, 2,…,m) is the
real time vector of predictors and βi(i = 1, 2,…, m) is coefficient of the predictors, the amounts
of which are calculated using the least square error optimization based on observed data.

3.6 Leave-One-Out Cross-Validation method (LOOCV)

The Leave-one-out cross-validation (LOOCV) method is a special case of cross-validation
where the number of folds equals the number of observed data. Thus, the learning algorithm is
applied once for each instance, using all other instances as a training set and using the selected
instance as a single-item test set (Sammut and Webb, 2010).

In this paper, in order to determine the optimum values of all input parameters of the
models, the LOOCV method has been used based on all of the possible values for each
parameter of the models using programming (coding) in MATLAB. In this method, the value
produced the minimum average error in LOOCV process has been selected as the optimized
value of each parameter.

The advantage of this method in comparison with the optimization algorithms, in order to
find the optimum values of the parameters, is to examine all of the possible amount of the
model parameters; Therefore, it can be sure that the optimum value resulted from this method
is the absolute optimum value while those obtained from the optimization algorithms are not
necessarily the best optimum value because they may be the local optimum values.
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In Table 3, the name of all input parameters of each model whose optimum values for each
month have been determined via the LOOCV method is presented.

3.7 Assessment Criteria

The performance criteria used in this study in order to assess the forecasting models are as
follows (Nash and Sutcliff, 1970; Araghinejad, 2014):

& Nash- Sutcliff:

NSE ¼ 1−
∑n

t¼1 Tt−Y tð Þ2

∑n
t¼1 Tt−T

� �2 ð13Þ

& Root Mean Square Error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

t¼1
Tt−Y tð Þ2

n

vuut
ð14Þ

& Coefficient of Determination:

R2 ¼
∑
n

t¼1
Tt−T

� �
Y t−Y

� �� �2

∑
n

t¼1
Tt−T

� �2
: ∑

n

t¼1
Y t−Y

� �2 ð15Þ

Where, Yt and Tt are forecasted (estimated) and observed values of streamflow, respectively

for tth data, Tand Yare the average of observed and forecasted values of streamflow (forecasted
variable) and n is the number of data.

NSE takes on values between -∞ to 1.0 for the worst and best model performance,
respectively. The values between 0.0 and 1.0 indicates the acceptable level of performance
while the values ≤0.0 reveals that the average of observed data is a better estimation than the
forecasted values, which indicates unacceptable performance (Moriasi et al., 2007).

RMSE ranges from 0.0 to +∞ while the range of R2 is between 0 and 1.0. The lower RMSE
and higher R2 indicate the more performable model.

Table 3 The optimized parameters of the forecasting models using LOOCV method

Model Name Optimized Parameter(s)

Artificial Neural Network
(ANN)

Initial weights and biases of neuron connections in different
layers (w & b), Number of hidden layer neurons

Generalized Regression Neural Network (GRNN) Spread parameter (h)
Least Square-Support Vector Regression (LS-SVR) Kernel function type, Kernel Parameters, Regularization

parameter (Gamma)
K-Nearest Neighbor Regression (KNN) Weight of predictors (w), Number of nearest neighbors (K)
Multiple Linear Regression (MLR) Predictor coefficient (β)
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4 Results and Discussion

Based on the optimum value of the model parameters obtained from the LOOCV method for
each month, all of the models have been trained using 22 data and tested (validated) using 10
remaining data.

Since the goal of modeling is to achieve the more accurate forecasts in validation phase the
results of the four forecasting models in comparison with MLR model, as the basis of linearity,
have been illustrated in Fig. 3 according to the three assessment criteria.

It can be seen from Fig. 3 that the relationship between predictor and predicted variables in
January, February, July, and August is almost linear, because the accuracy of the results of
MLR is high based on all three criteria while in other months the non linear relationship is
more than linearity; this is particularly visible in the months of December, April, June, and
September.

A general assessment of all the forecasting models reveals that a specific model could not
produce the most accurate results in all months or conditions. However, comparing the results
of the models in the condition of linearity and non linearity, it can be suggested that in linear
conditions that the accuracy of MLR model is high, the accuracy of the results of KNN and
GRNN models is lower than other models specially MLR. This condition is observable in Jan,
Feb, Jul, Aug, and also Nov. On the contrary, in the conditions of nonlinearity, the accuracy of
the results of KNN and GRNN is higher than MLR model. This is visible in Oct, Dec, March,
Apr, May, Jun, and Sep.

Evaluation of the results of ANN and LS-SVR models indicates that these models have
been produced the most accurate results in both conditions on linearity and nonlinearity in
most of months; however, the accuracy of ANN results in linear conditions is higher while the
efficiency of LS-SVR model in April, and September is obviously better than ANN and also
two other models.

Moreover, comparison of the results of the two neural networks ANN and GRNN indicates
that in most of months when the nonlinearity of relationship between predictor and predicted
variables is more than linearity, like in Apr, May, Jun, and Sep, the performance of GRNN is
better than ANN model; however, in most of linearity condition, like Feb, Mar, Jul, and Aug,
ANN is more efficient than GRNN model.

In order to evaluate the efficiency of the models, their performances are assessed according
to the performance ratings developed by Moriasi et al. (2007) for NSE and RMSE indices
(Table 4), and by Diaz-Ramirez et al. (2011) for coefficient of determination (R2) (Table 5) for
streamflow forecasting in monthly time steps. The Tables 4 and 5 show the number of the
results in each class of performance for each model.

With respect to Table 4, it can be said that the performance of LS-SVR model is better than
other models based on NSE and RMSE, because only in 2 months its results were placed in the
range of BUnsatisfactory ,̂ while the results of ANN and KNN in 5 months and the results of
GRNN in 6 months were placed in this rate of performance. Moreover, the performance of LS-
SVR was BVery good^ and BGood^ in 5 months; in this respect, ANN model is the second
better model with 4 months whereas GRNN and KNN are in the next ranks, respectively.
Besides, the performance of MLR in 3 months, i.e. Jan, Feb, Aug, is in the range of BVery
good^ and in July is in the range of BSatisfactory ,̂ which confirms linear condition in these
months and non linearity in other months.

Nevertheless, as can be seen from Table 5, the performance rating of the models based on
R2 is somewhat different from that of NSE and RMSE; such that the performance of GRNN
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Fig. 3 The results of the forecasting models based on the three assessment criteria including NSE (a), RMSE (b),
and R2 (c)
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and KNN models in 4 months is in the rate of BVery good^ and BGood^ while that of ANN
and LS-SVR in 3 months is in these rates. However, according to this index, the number of
linear and nonlinear conditions corresponding to the results of MLR is similar to two other
criteria. Also, based on this criterion, the efficiency of LS-SVR is better than other models
because of having no results in the rate of BPoor .̂

A comparative assessment of the models’ performance with respect to the optimum values of
their parameters obtained from LOOCV, as shown in Table 6, suggests that the pattern between
predictor and predicted variables in Apr is specifically complicated because the number of
hidden layer neurons of ANN, the value of K parameter for KNN, and the value of Gamma
parameter for LS-SVR is large; however, only LS-SVR has performed in the rate of
BSatisfactory^ while the performance of other models is in the rate of BUnsatisfactory^ in this
month.

Moreover, in Jan, Feb, Jul, and Aug that the pattern between predictor and predicted
variables is linear (based on the performance of MLR), the optimized structures of all models
are simple, other than that of ANN for Jan; nevertheless, the performance of GRNN and KNN
in Feb is in the rate of BUnsatisfactory^ and in other months it is lower than two other models.

A general evaluation of the optimum structure of the models indicates that ANN model has
a relatively complicated structure with the number of hidden layer neurons ≥5 when its
performance is in the rate of BUnsatisfactory^; however, in most of other months with better
performance, its optimum structure is simpler (less number of neurons). But, in LS-SVR,
GRNN, and KNN models, there is not a specific relationship between the performance of the
models and the optimum value of their parameters. For example, the Gamma parameter of LS-
SVR is equal to 0.1 in Jan and Mar while its performance is in the rate of BVery good^ and
BSatisfactory^ in these months, respectively. Also in KNN model, the number of K is 10 in
Dec and Apr while it performs in the rate of BSatisfactory^ and BUnsatisfactory^ in these
months, respectively. Moreover, the optimum value of Spread parameter of GRNN in Mar and

Table 4 The number of the results in each class of performance based on NSE and RMSE criteria

Performance
Rating

Model Efficiency limitation Model

NSE RMSE ANN GRNN tbcolw30ptLS-SVR KNN MLR

Very good 0.75 < NSE ≤ 1 0≤ RMSE≤ 0.5 SD 1 1 2 1 3
Good 0.65 < NSE ≤ 0.75 0.5 SD < RMSE ≤ 0.6 SD 3 2 3 1 0
Satisfactory 0.5 < NSE ≤ 0.65 0.6 SD < RMSE ≤ 0.7 SD 3 3 5 5 1
Unsatisfactory NSE ≤ 0.5 RMSE >0.7 SD 5 6 2 5 8

Table 5 The number the results in each class of performance based on R2 criterion

Performance Rating R2 Model

ANN GRNN LS-SVR KNN MLR

Very good 0.86 < R2 < 1.00 1 3 2 3 1
Good 0.77 < R2 < 0.85 2 1 1 1 2
Fair 0.65 < R2 < 0.76 4 1 7 2 2
Poor R2 < 0.64 5 7 0 6 7
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May is equal to 0.1, which means a closely fitness, whilst its performance is in the rate of
BUnsatisfactory^ and BVery good^ in these two months, respectively.

Since the performances of the models are various in linear and nonlinear conditions in
different months based on three criteria, a cumulative evaluation similar to that suggested by
Ajmal et al. (2015) is applied in order to do a total assessment of them in each of conditions
and total of them. In this method, at first, the models are ranked from 1 to 4 for each month
based on each of three criteria such that the best to worst models receive rank 1 to 4,
respectively (Table 7). Then, the corresponding score of 8 to 2 are assigned to each model
for each month in descending order with 2 score for each rank; such that the best (worst)
models in each month receives rank 1 (4) and score 8 (2) based on each of criteria. Totally, the
models are ranked in two conditions of linearity and nonlinearity based on the summation of
their scores received from each of criteria for the months corresponding to each condition.

Table 6 The optimized value of the model parameters resulted from LOOCV method

Mouth ANN Model LS-SVR Model GRNN Model KNN Model

Type of optimized
Kernel Function

Kernel Parameters* Gamma K Weight of
variables

Initial
Weights

Number of hidden
layer neurons

Param 1 Param 2 Spread w1 w2

Oct 0.5 5 Polynomial 0.2 5.0 5.9 0.2 3 1.0 __
Nov 0.6 6 Polynomial 1.1 1.0 10.3 0.4 5 1.0 __
Dec 0.9 4 Polynomial 0.1 5.0 5.3 1.2 10 1.0 __
Jan 0.1 10 Polynomial 2.0 3.0 0.1 0.3 2 1.0 __
Feb 0.8 5 Polynomial 0.1 5.0 5.0 0.1 2 1.0 __
Mar 0.4 2 Polynomial 0.7 5.0 0.1 0.1 4 1.0 __
Apr 0.1 10 RBF 0.1 ___ 53.9 0.2 10 0.9 0.1
May 0.3 5 Polynomial 0.9 5.0 10.1 0.1 2 0.1 0.9
Jun 0.6 7 Polynomial 2.0 2.0 3.7 0.2 4 0.6 0.4
Jul 0.9 4 Polynomial 0.6 4.0 6.2 0.1 3 1.0 __
Aug 0.4 3 Polynomial 2.0 4.0 1.3 0.2 4 1.0 __
Sep 0.5 10 Polynomial 1.2 5.0 0.6 0.3 2 0.4 0.6

* Param 1 and 2 for the polynomial kernel functions are constant value (τ) and power (d), respectively while in
RBF kernel, param1 is standard deviation (σ)

Table 7 The ranks of the forecasting models in each month based on each of assessment criteria

Model Assessment
Criteria

Month

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

ANN NSE 2 1 1 3 1 1 4 4 4 1 1 4
RMSE 2 1 1 3 1 1 4 4 4 1 1 4
R2 3 1 2 3 1 1 4 4 2 3 1 4

GRNN NSE 4 4 3 2 3 4 3 2 3 4 3 2
RMSE 4 4 3 2 3 4 3 2 3 4 3 2
R2 4 4 4 2 4 4 3 2 3 1 3 2

LS-SVR NSE 1 2 2 1 2 3 1 3 2 2 2 1
RMSE 1 2 2 1 2 3 1 3 2 2 2 1
R2 1 2 3 1 2 2 1 3 4 4 2 1

KNN NSE 3 3 4 4 4 2 2 1 1 3 4 3
RMSE 3 3 4 4 4 2 2 1 1 3 4 3
R2 2 3 1 4 3 3 2 1 1 2 4 3
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Table 8 shows the cumulative scores (ranks) of each model in each of linearity/nonlinearity
conditions based on each of assessment criteria and total of them.

As can be seen from this table, the ranks of the models are different in linear and nonlinear
conditions; in linear conditions ANN model performs best, followed by LS-SVR, GRNN, and
KNN models. But in nonlinear conditions, LS-SVR receives rank 1, while KNN, ANN, and
GRNN are respectively in the next ranks. However, the total ranks of the models are different
from two other conditions; in total conditions, the best performance belongs to LS-SVR,
followed by ANN, KNN, and GRNN respectively.

Based on outcomes of this study, it can be said that the ranks of LS-SVRmodel in nonlinear
and total conditions confirm the results of the researches done by Lin et al. (2006), Wang et al.
(2009), Kalra and Ahmad (2012), Kalra et al. (2013), Callegari et al. (2015) for the excellence
of LS-SVR model than ANN and MLR models. However, the preference of ANN to LS-SVR
model in linear conditions is consistent with the results of Bharti et al. (2017) prediction of
monthly runoff.

Further, in linear, nonlinear and total conditions, ANN model outperforms GRNN model
for monthly streamflow forecasting which is only in agreement with the results of Fallah
Haghgoo and Sharifi (2011). Therefore, the results of this study do not confirm the results of
Hosseini and Araghinejad (2015), Cigizoglu (2005), and Kisi (2008).

Moreover, the results of nonlinear conditions reveal the preference of KNN to ANN model
that is consistent with the results of the research by Wu and Chau (2010) whilst in the linear
conditions of monthly forecasting the performance of ANN is better than KNN which
confirms the results of Wu et al. (2010) and Mekanik et al. (2013).

In the light of the results above, it can be said that some of inconsistent results achieved
from different researches could be due to their different conditions such as linearity, nonlin-
earity or all of them, while it was not considered in most of them.

5 Summary and Conclusion

In this paper, the performance of two neural network models, i.e. ANN and GRNN, as well as,
LS-SVR and KNNmodels, as the best identifies forecasting models in the previous researches,
was evaluated and compared in the equal conditions in terms of the study area, data sets, and
the methods of determining the best structure of the models while they were assessed based on
various linear and nonlinear patterns of forecasting between predictor and predicted variables
in different months. For this purpose, the models were assessed in order to forecast the
monthly inflow to the Karkheh reservoir, Iran, whilst all of them were applied with their best

Table 8 The cumulative scores and ranks of the forecasting models based on each and all of assessment criteria

Model NSE RMSE R2 Total
Linear
Score
(Rank)

Total
Nonlinear
Score (Rank)

Total
Score
(Rank)Linear

Score
(rank)

Nonlinear
Score
(rank)

Linear
Score
(rank)

Nonlinear
Score
(rank)

Linear
Score
(rank)

Nonlinear
Score
(rank)

ANN 28(1) 38(3) 28(1) 38(3) 24(1) 38(3) 80(1) 114(3) 194(2)
GRNN 16(3) 30(4) 16(3) 30(4) 20(3) 28(4) 52(3) 88(4) 140(4)
LS-SVR 26(2) 50(1) 26(2) 50(1) 22(2) 46(2) 74(2) 146(1) 220(1)
KNN 10(4) 42(2) 10(4) 42(2) 14(4) 48(1) 34(4) 132(2) 166(3)
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structure where the absolute optimum values of the effective parameters were determined with
the same manner involving Leave-One-Out Cross Validation (LOOCV) method.

The results showed that the rank of the models’ performances in linear and nonlinear
conditions based on three assessment criteria, i.e. NSE, RMSE, and R2, is different; in linear
conditions, ANN model receives rank 1, followed by LS-SVR, GRNN and KNN models. But
in nonlinear conditions, rank 1 belongs to LS-SVR, while KNN, ANN, and GRNN are in the
next ranks respectively. However, in total conditions of linearity and nonlinearity for forecast-
ing the inflow to Karkheh reservoir, LS-SVR model performed best according to the perfor-
mance ratings of all criteria. In this respect, ANN was the second better model while KNN and
GRNN were in the next, respectively.

Moreover, a comparative assessment of the optimum value of the model parameters and
their performances revealed that ANN model had a relatively complicated structure with the
number of hidden layer neurons ≥5 when its performance was in the rate of BUnsatisfactory^;
while in most of other months with better performance, its optimum structure was simpler (less
number of neurons). But, in LS-SVR, GRNN, and KNN models, there was not a specific
relationship between the performance of the models and the optimum value of their parameters.

A total evaluation of the results of this study as compared to the previous studies suggested
that the inconsistent results of some researches could be because of different conditions such as
linearity, nonlinearity or all of them, while it was not considered in most of them. Therefore, it
can be concluded that with respect to different conditions of linearity and nonlinearity between
predictor and predicted variables, the selection of the models in order to achieve the best
forecasts can be different.
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