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Abstract. In 2002, Biss investigated on a kind of fibration which is called rigid
covering fibration (we rename it by rigid fibration) with properties similar to covering
spaces. In this paper, we obtain a relation between arbitrary topological spaces and
its rigid fibrations. Using this relation we obtain a commutative diagram of homotopy
groups and quasi-topological homotopy groups and deduce some results in this field.
Keywords: fibration, rigid covering fibration, topological homotopy group, exact
sequence.

1. Introduction and motivation

The quasi-topological nth homotopy group of the pointed space (X, x), denoted
by mdP(X,x), is a quasi-topological group of the familiar homotopy group
(X, z) which is endowed with the quotient topology induced by the natu-
ral surjective map ¢ : Q"(X,z) — m,(X,z), where Q"(X,z) is the nth loop
space of (X, z) with the compact-open topology (see [1, 2, 4]).

In 2002, Biss [1] investigated on a kind of fibration which is called rigid
covering fibration (we rename it by rigid fibration) with properties similar to
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covering spaces. He proved that there is a universal rigid fibration for a space
if and only if its topological fundamental group is totally path disconnected
[1, Theorem 4.3]. The rigid fibrations generalize classical covering spaces, the
hypothesis being that the topological fundamental group is totally disconnected
rather than discrete as in the classical theory. Since rigid fibrations have unique
path lifting, one can apply standard arguments to extend a number of classical
theorems about covering spaces to the rigid fibration setting. For instance, every
morphism in the category of rigid fibrations over X is itself a rigid fibration
[1, Lemma 4.5]. Also, Biss proved that the coset space of any subgroup = <
71P(HE) has no nonconstant paths, where HE is the Hawaiian earring space.
Therefore, for any subgroup m, there is a rigid fibration p : E — HE with
ps«m1(E) = m. On the other hand Brazas [3] introduced the C-covering map
for a space X which has a unique lifting property with respect to maps on
the objects of C, where C is the category of path-connected spaces having the
unit disk as an object, and then he defined the category of C-covering maps
for a space X denoted by Cove(X). The C-covering maps generalize classical
covering maps. In this paper, we consider the category of rigid fibration maps
of a space X, RF(X), and show that it is a subcategory of wCov¢(X). Then we
obtain some results in rigid fibrations. Also, we consider rigid fibrations of two
topological spaces X and Y and obtain a relation between these spaces and its
rigid fibrations. More precisely, if p: Egy — X and ¢ : E¢ — Y are two rigid
fibrations of X and Y, respectively, such that p,m (Ey) = H and ¢.m (Eg) =G
and g : X — Y is a continuous map such that g.(H) C G, then there is a map
f : Fg — FEg such that go f = g o p and vise versa. Then with the above
conditions, we obtain the following commutative diagram in Set, with exact
TOWS:

s (P =2 m(Eg) —2 m(X) —4 m i (F) ——
l(fm)* f*l g*l (f‘Fl)*l
D (B s ma(Be) —E s (V) —L s m i (Fy) —— -

In follow, by using this diagram, we deduce some results about homotopy
groups and quasi-topological homotopy groups.

2. Preliminaries

In this section, we recall some of the main notion and results of rigid fibrations.

Definition 2.1 ([1, Definition 2.1]). Let X be a topological space. A fibration
p: E — X is said to be a covering fibration if p, : mi(E) — mi(X) is an
isomorphism, for i > 2, and an injection for i = 1.

We recall that a fibration p : E — X has unique path lifting property if
for any path v : I — X in X and e € E with p(e) = 7(0), there is a unique
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lift 4 : I — E with v = po 4 and 4(0) = e. One can show that a fibration has
unique path lifting property if and only if all of the fibers have no nonconstant
paths [6, Theorem 2.2.5].

Definition 2.2 ([1, Definition 4.1]). Let X be a topological space. A fibration
p: E — X is called a rigid covering fibration if it is a covering fibration and
if, in addition, each fiber has no nonconstant paths.

If we use the homotopy sequence of fibrations for rigid covering fibrations, we
see that the condition “covering fibration” in Definition 2.2 can be replaced with
“fibration”. Therefore we can say that A fibration p : E — X is called a rigid
covering fibration (rename it to rigid fibration) if each fiber has no nonconstant
paths.

Theorem 2.3 ([1, Theorem 4.3]). Let X be a space, and let 7 < m(X) be a
subgroup of the fundamental group of X. If the left coset space w‘lltOp(X)/W has
no nonconstant paths, then there is a rigid covering fibration p : E — X with
pami(F) = .

For a pointed map f : (X,z9) — (Y, y0), the mapping fiber is the pointed
space Mf = {(z,w) € X x YT : w(0) = yp and w(1) = f(x)}, the base point
of this space is (zg,wq), where wg is the constant path at yg. Also, there are
an injection k : Q(Y,yo) — M f given by k(w) = (x0,w) and an obvious map
A: X — Mf by AMz) = (z,wo) (see [5]).

3. Main results

In this section, we obtain some results in rigid fibrations and intend then to ob-
tain a relation between arbitrary topological spaces and its rigid fibrations. Then
we obtain a commutative diagram of homotopy groups and quasi-topological ho-
motopy groups and deduce some results in this field.

Theorem 3.1. Letp: E — X be a rigid fibration. If A is any path component
of E, then p|a: A — p(A) is a rigid fibration.

Proof. It follows from [6, Lemma 2.3.1] and Definition 2.2. O

Theorem 3.2. Let p: E — X be a map. If E is locally path connected, then
p is a rigid fibration if and only if for each path component A of E, p(A) is a
path component of X and p|a : A — p(A) is a rigid fibration.

Proof. It follows from [6, Theorem 2.3.2] and Definition 2.2. O

The following theorems imply that if C is the category of connected locally
path connected spaces, then every rigid fibration is a weak C-covering map in
the sense of [3].
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Theorem 3.3 ([6, Lemma 2.2.4]). A map with unique path lifting has the unique
lifting property for path connected spaces.

Theorem 3.4 ([6, Theorem 2.4.5]). Let p : (X, %) — (X,x0) be a fibration
with unique path lifting property. Let Y be a connected locally path connected
space. A necessary and sufficient condition that a map f : (Y,yo) — (X, x0)
has a lifting (Y, yo) — (X,.f(]) is that, in m (X, xo),

fxm1 (Y7 yO) C psmi (X, ‘fo)'

Remark 3.5. It follows easily from homotopy lifting property that for a fi-
bration with unique path lifting property p : £ — X, if E is a nonempty
path connected space and X is connected and locally path connected, then p
is a homeomorphism if and only if p, : 71 (E) — m1(X) is an isomorphism [6,
Corollary 2.4.6].

We know that every fibration with unique path lifting property whose base
space is locally path connected and semilocally simply connected and whose
total space is locally path connected is a covering map [6, Theorem 2.4.10]. In
follow, we exhibit two examples of rigid fibration which are not covering map.

Example 3.6. It is known that 7%'°”(H E) has no nonconstant paths, where HE
is the Hawaiian earring space [1]. Therefore there is a universal rigid fibration
p: E — HE. pis not a covering map, becaouse H FE is not semilocally simply
connected and so it has not any universal covering map, by [5, Corollary 10.37].

Example 3.7. Let p : R — S! be a map with p(t) = exp(t). Since p is a
covering map, so it is a rigid fibration, therefore h = [[, .yp @ [[,enR —
[T,en St is a rigid fibration by [6, Theorem 2.2.7]. Also the map ¢ : R x ({2) |
n € N}U{0}) — S! by q(t,s) = p(t) is a rigid fibration. Note that every fiber
of the maps h and ¢ is totally path disconnected which is not discrete. Hence
the rigid fibrations h and g are not covering.

We are inspired by the results of [3] and obtain the following results.

Definition 3.8. A subgroup H < m1(X,x0) is a rigid fibration subgroup (for
simpricity, RF subgroup) if there is a rigid fibration p : (E,ey) — (X, z¢) with
yZ2oU! (E7 60) =H.

Remark 3.9. Let H be a subgroup of 71 (X). If the left coset space 7" (X)/H
has no nonconstant paths, then H is a RF subgroup of 71(X), by Theorem
2.3. As an example, every subgroup of fundamental group of Hawaiian earring,
m(HE), is a RF subgroup. Because the left coset space 7¥*P(HE)/H has no
nonconstant paths for every subgroup H of m(HE)[1].

Example 3.10. Let HA be the harmonic archipelago space. Any proper sub-
group of 71 (HA) is not a RF subgroup. Indeed, w(llmp (HA) is indiscrete and
therefore, for any subgroup H < m(HA), the left coset space 71'P(HA)/H is
not totally path disconnected.
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Theorem 3.11. If {H;}ier is any set of RE subgroup of m1 (X, zo), then:
(¢) IL; Hi is a rigid fibration subgroup.
(i1) (", Hi is a rigid fibration subgroup.

Proof. (i) If H; is a RF subgroup of m (X, o), then there is a rigid fibration
pi : (Eie;) — (X, x0) with pumi(Fy,e;) = H; for all @ € I. By putting
(E,e) = (I1; Ei, (i), the product p = [[p; : (E,e) — ([[; X, z0) is a rigid
fibration by [6, Theorem 2.2.7] and

p«m1(E,e) = P*Wl(H E;, (e;)) = HPiﬂl(Ei,ei) = HHZ

Thus [ [, H; is a RF subgroup.
(1) Tt follows from a similar argument of [3, Theorem 2.36] by applying [6,
Theorem 2.2.7]. O

For a given space X, let RF(X) denote the category of rigid fibrations over
X which is the category whose objects are rigid fibrations p : ¥ — X and
morphisms are commutative triangles of the form

Eq

!
Es
X

Let DCov(X) denote the category of disk-coverings over X and GSet denote
the category of G-Sets and G-equivariant functions. One can see that for a topo-
logical space X, RF(X) C DCov(X). Recall that the functor u : DCov(X) —
m1 (X, xo)Set was defined as follows: On objects, u is defined as the fiber
w(p) = p~Hxo). If ¢ : By — X is a disk-covering and f : E — FEj is a map
such that go f = p, then u(f) is the restriction of f to a (X, xg)-equivariant
function p~1(zo) — ¢ (x0). p is a faithful functor [3, Lemma 2.5], and so the
restriction on RF(X) is also faithful. With the same argument of [3, Theorem
2.11], we have the following theorem.

Theorem 3.12. The functor p: RF(X) — m (X, x0)Set is fully faithful.

The functor p in Theorem 3.12 is not necessarily an equivalence of cate-
gories. Because subgroups H < (X, xg) exist which are not RF subgroups(see
Example 3.10).

Every morphism in RF(X) is itself a rigid fibration [1, lemma 4.5]. By this
fact and [6, Theorem 2.2.6] we have the following result.

Proposition 3.13. Suppose thatp: E — X and q: X — Y are maps:
(i) If p and q are rigid fibrations, then so is q o p,
(ii) If ¢ and q o p are rigid fibrations, then so is p.
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Remark 3.14. Let g : X — Y be a rigid fibrations of Y; then there is a
functor G : RF(X) — RF(Y) that is defined identity on morphisms and on
objects as follows. If p : E — X is a rigid fibration of X, we define G(p) = gop.

The following theorem is one of the main results of this paper.

Theorem 3.15. Let p: Eg — X and q: Eq — Y be two rigid fibrations of
X and Y, respectively, such that p,m(Ey) = H and ¢.m(Eg) = G.

(i) If g : X — Y is a continuous map such that g.(H) < G, then there is
a map f: Eg — Eg such that go f = gop.

(13) If g: X — Y is a rigid fibration such that g.(H) < G, then f : Eg —
E¢ defined in part (i) is a rigid fibration.

(#i7) If g : X — Y is a continuous map and there is a map f : Ey — Eg
such that qo f = gop, then g.(H) < G.

Proof. (i) Consider the map gop: Fy — Y. Since q is a rigid fibration, it
has lifting property for path connected spaces. Since

(fop)s(m(H)) = g:(H) < G = ¢=m(Eg),

there exist a map f : Fgy — E¢g such that go f = gop.

(7i) Since g o p and ¢ are two rigid fibrations of Y, f is a rigid fibration of
Eyx by Proposition 3.13.

(7i7) Since qo f = gop, by applying the functor 7, g« o fx = g« op. and then

9«(H) = g« 0 pu(m1(En)) = gu © fu(mi(Ep)) < ¢2(m1(Eq)) = G.
O

Theorem 3.16. Let H and G be two RF subgroups of m1(X) and m(Y), re-
spectively. If g : X — Y is a rigid fibration such that g.(H) < G, then g.(H)
is a RF subgroup of m1(Y).

Proof. By hypothises, there exist two rigid fibrations p : Egy — X and ¢ :
E¢ — Y of X and Y, respectively, such that p,mi(Fy) = H and ¢.71(Eg) =
G. Using Theorem 3.15 part (i), there is a rigid fibration f : Ey — Eg with
go f = gop. The composition go f : Eyg — Y is a rigid fibration of Y such
that

(go f)«(m(En)) = (g op)«(m1(En)) = g«(H).

The following result can be concluded from part (i) of Theorem 3.15.

Theorem 3.17. Let p : Eff — X and q : Eq¢ — Y be two rigid fibrations
of X and Y with fibers Fy and Fj, respectively, such that p,m1(Eg) = H and
¢:m(Eg) = G. Let g : X — Y be a continuous map such that g.(H) < G;
then
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(i) there is a commutative diagram in Set, with exact rows:
(D)

D (R~ mu(By) 2 ma(X) —% 11 (F) ——

l(fm)* f*l g*l (f\Fl)*l

. ) v
I — 7Tn(F2) ]—> Wn(EG) q—) Wn(Y) _ anl(F2) —_—

where the existence of the map f : Eg — Eg follows from Theorem 3.15.
(13) there is a commutative diagram in Top, with exact rows:

(2)
D qlP(Fy) s qlP(Ry) D plP(x) Ly PRy

l(fm)* f{ g*l <f|F1)*l

y !
) W%top (FQ) Jx ﬂ;]ttop (EG) qx W%t()p (Y) d 7rqtop (FZ) o

n—1

(#i7) there is a long exact sequence of homotopy groups.

3) - — m(Ey) — m(Eg) @mn(X) — (YY) — mpo1(Eg) — - -+

(iv) there is a long exact sequence of topological homotopy groups.

(4)

o wP(Byy) — mllP(Eg)emi(X) — (V) — ) (Eg) — -

Proof. (i) Since g.(H) < G, thereisamap f : Ey — Eg such that gof = gop,
by Theorem 3.15. Since foi = jo f|p, go f = gop and 7, is a functor, the
first two squares commute. To see commutativity of the last squares, consider
the following diagram:

QXL>Mp<L F

(5) lgn ll flpll

v s Mg N By,

where the maps gy and [ are induced maps. It is easy to see that Diagram (5)
is commutative. Therefore the induced diagram by the functor m,, that is the
last square in Diagram (2), is commutative.
t (73) It follows from a similar argument of part (i) by applying the functor
P
(737) The result holds from [5, Lemma 6.2] and part (7).
(7v) The result holds from [5, Lemma 6.2] and part (7). O

Remark 3.18. Let H < m(X), let G < m1(Y), and let the left coset spaces
71P(X)/H and 7%"°’(Y)/G have no nonconstant paths. By Theorem 2.3,
Diagrams (1) and (2) are commutative in Set, and Tops, respecively, where
g: X — Y is a continuous map with g.(H) < G.
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The following result follows from using Diagrams (3), (4) and Theorem 2.3.

Corollary 3.19. Let 7%"?(X) and n%’(Y)/G have no nonconstant paths,
where G < m(Y'). If there is a continuous map g : X — 'Y, then

71'n(-EG) @ Wn(X) = ﬂ-n(y)
and

T (Ee) & mi (X)) = allP(Y).
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