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Abstract. In 2002, Biss investigated on a kind of fibration which is called rigid
covering fibration (we rename it by rigid fibration) with properties similar to covering
spaces. In this paper, we obtain a relation between arbitrary topological spaces and
its rigid fibrations. Using this relation we obtain a commutative diagram of homotopy
groups and quasi-topological homotopy groups and deduce some results in this field.

Keywords: fibration, rigid covering fibration, topological homotopy group, exact
sequence.

1. Introduction and motivation

The quasi-topological nth homotopy group of the pointed space (X,x), denoted
by πqtopn (X,x), is a quasi-topological group of the familiar homotopy group
πn(X,x) which is endowed with the quotient topology induced by the natu-
ral surjective map q : Ωn(X,x) → πn(X,x), where Ωn(X,x) is the nth loop
space of (X,x) with the compact-open topology (see [1, 2, 4]).

In 2002, Biss [1] investigated on a kind of fibration which is called rigid
covering fibration (we rename it by rigid fibration) with properties similar to
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covering spaces. He proved that there is a universal rigid fibration for a space
if and only if its topological fundamental group is totally path disconnected
[1, Theorem 4.3]. The rigid fibrations generalize classical covering spaces, the
hypothesis being that the topological fundamental group is totally disconnected
rather than discrete as in the classical theory. Since rigid fibrations have unique
path lifting, one can apply standard arguments to extend a number of classical
theorems about covering spaces to the rigid fibration setting. For instance, every
morphism in the category of rigid fibrations over X is itself a rigid fibration
[1, Lemma 4.5]. Also, Biss proved that the coset space of any subgroup π ≤
πqtop1 (HE) has no nonconstant paths, where HE is the Hawaiian earring space.
Therefore, for any subgroup π, there is a rigid fibration p : E −→ HE with
p∗π1(E) = π. On the other hand Brazas [3] introduced the C-covering map
for a space X which has a unique lifting property with respect to maps on
the objects of C, where C is the category of path-connected spaces having the
unit disk as an object, and then he defined the category of C-covering maps
for a space X denoted by CovC(X). The C-covering maps generalize classical
covering maps. In this paper, we consider the category of rigid fibration maps
of a space X, RF (X), and show that it is a subcategory of wCovC(X). Then we
obtain some results in rigid fibrations. Also, we consider rigid fibrations of two
topological spaces X and Y and obtain a relation between these spaces and its
rigid fibrations. More precisely, if p : EH −→ X and q : EG −→ Y are two rigid
fibrations of X and Y , respectively, such that p∗π1(EH) = H and q∗π1(EG) = G
and g : X −→ Y is a continuous map such that g∗(H) ⊆ G, then there is a map
f̃ : EH −→ EG such that q ◦ f = g ◦ p and vise versa. Then with the above
conditions, we obtain the following commutative diagram in Set∗ with exact
rows:

· · · −−−−→ πn(F1)
i∗−−−−→ πn(EH)

p∗−−−−→ πn(X)
d−−−−→ πn−1(F1) −−−−→ · · ·y(f |F1

)∗ f∗

y g∗

y (f |F1
)∗

y
· · · −−−−→ πn(F2)

j∗−−−−→ πn(EG)
q∗−−−−→ πn(Y )

d′−−−−→ πn−1(F2) −−−−→ · · · .

In follow, by using this diagram, we deduce some results about homotopy
groups and quasi-topological homotopy groups.

2. Preliminaries

In this section, we recall some of the main notion and results of rigid fibrations.

Definition 2.1 ([1, Definition 2.1]). Let X be a topological space. A fibration
p : E −→ X is said to be a covering fibration if p∗ : πi(E) −→ πi(X) is an
isomorphism, for i ≥ 2, and an injection for i = 1.

We recall that a fibration p : E −→ X has unique path lifting property if
for any path γ : I −→ X in X and e ∈ E with p(e) = γ(0), there is a unique
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lift γ̃ : I −→ E with γ = p ◦ γ̃ and γ̃(0) = e. One can show that a fibration has
unique path lifting property if and only if all of the fibers have no nonconstant
paths [6, Theorem 2.2.5].

Definition 2.2 ([1, Definition 4.1]). Let X be a topological space. A fibration
p : E −→ X is called a rigid covering fibration if it is a covering fibration and
if, in addition, each fiber has no nonconstant paths.

If we use the homotopy sequence of fibrations for rigid covering fibrations, we
see that the condition “covering fibration” in Definition 2.2 can be replaced with
“fibration”. Therefore we can say that A fibration p : E −→ X is called a rigid
covering fibration (rename it to rigid fibration) if each fiber has no nonconstant
paths.

Theorem 2.3 ([1, Theorem 4.3]). Let X be a space, and let π < π1(X) be a
subgroup of the fundamental group of X. If the left coset space πqtop1 (X)/π has
no nonconstant paths, then there is a rigid covering fibration p : E −→ X with
p∗π1(E) = π.

For a pointed map f : (X,x0) −→ (Y, y0), the mapping fiber is the pointed
space Mf = {(x, ω) ∈ X × Y I : ω(0) = y0 and ω(1) = f(x)}, the base point
of this space is (x0, ω0), where ω0 is the constant path at y0. Also, there are
an injection k : Ω(Y, y0) −→ Mf given by k(ω) = (x0, ω) and an obvious map
λ : X −→Mf by λ(x) = (x, ω0) (see [5]).

3. Main results

In this section, we obtain some results in rigid fibrations and intend then to ob-
tain a relation between arbitrary topological spaces and its rigid fibrations. Then
we obtain a commutative diagram of homotopy groups and quasi-topological ho-
motopy groups and deduce some results in this field.

Theorem 3.1. Let p : E −→ X be a rigid fibration. If A is any path component
of E, then p|A : A −→ p(A) is a rigid fibration.

Proof. It follows from [6, Lemma 2.3.1] and Definition 2.2.

Theorem 3.2. Let p : E −→ X be a map. If E is locally path connected, then
p is a rigid fibration if and only if for each path component A of E, p(A) is a
path component of X and p|A : A −→ p(A) is a rigid fibration.

Proof. It follows from [6, Theorem 2.3.2] and Definition 2.2.

The following theorems imply that if C is the category of connected locally
path connected spaces, then every rigid fibration is a weak C-covering map in
the sense of [3].
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Theorem 3.3 ([6, Lemma 2.2.4]). A map with unique path lifting has the unique
lifting property for path connected spaces.

Theorem 3.4 ([6, Theorem 2.4.5]). Let p : (X̃, x̃0) −→ (X,x0) be a fibration
with unique path lifting property. Let Y be a connected locally path connected
space. A necessary and sufficient condition that a map f : (Y, y0) −→ (X,x0)
has a lifting (Y, y0) −→ (X̃, x̃0) is that, in π1(X,x0),

f∗π1(Y, y0) ⊆ p∗π1(X̃, x̃0).

Remark 3.5. It follows easily from homotopy lifting property that for a fi-
bration with unique path lifting property p : E −→ X, if E is a nonempty
path connected space and X is connected and locally path connected, then p
is a homeomorphism if and only if p∗ : π1(E) −→ π1(X) is an isomorphism [6,
Corollary 2.4.6].

We know that every fibration with unique path lifting property whose base
space is locally path connected and semilocally simply connected and whose
total space is locally path connected is a covering map [6, Theorem 2.4.10]. In
follow, we exhibit two examples of rigid fibration which are not covering map.

Example 3.6. It is known that πqtop1 (HE) has no nonconstant paths, where HE
is the Hawaiian earring space [1]. Therefore there is a universal rigid fibration
p : E −→ HE. p is not a covering map, becaouse HE is not semilocally simply
connected and so it has not any universal covering map, by [5, Corollary 10.37].

Example 3.7. Let p : R −→ S1 be a map with p(t) = exp(t). Since p is a
covering map, so it is a rigid fibration, therefore h =

∏
n∈N p :

∏
n∈NR −→∏

n∈N S
1 is a rigid fibration by [6, Theorem 2.2.7]. Also the map q : R× ({ 1n) |

n ∈ N} ∪ {0}) −→ S1 by q(t, s) = p(t) is a rigid fibration. Note that every fiber
of the maps h and q is totally path disconnected which is not discrete. Hence
the rigid fibrations h and q are not covering.

We are inspired by the results of [3] and obtain the following results.

Definition 3.8. A subgroup H ≤ π1(X,x0) is a rigid fibration subgroup (for
simpricity, RF subgroup) if there is a rigid fibration p : (E, e0) −→ (X,x0) with
p∗π1(E, e0) = H.

Remark 3.9. Let H be a subgroup of π1(X). If the left coset space πqtop1 (X)/H
has no nonconstant paths, then H is a RF subgroup of π1(X), by Theorem
2.3. As an example, every subgroup of fundamental group of Hawaiian earring,
π1(HE), is a RF subgroup. Because the left coset space πqtop1 (HE)/H has no
nonconstant paths for every subgroup H of π1(HE)[1].

Example 3.10. Let HA be the harmonic archipelago space. Any proper sub-
group of π1(HA) is not a RF subgroup. Indeed, πqtop1 (HA) is indiscrete and
therefore, for any subgroup H ≤ π1(HA), the left coset space πqtop1 (HA)/H is
not totally path disconnected.
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Theorem 3.11. If {Hi}i∈I is any set of RF subgroup of π1(X,x0), then:

(i)
∏
iHi is a rigid fibration subgroup.

(ii)
∩
iHi is a rigid fibration subgroup.

Proof. (i) If Hi is a RF subgroup of π1(X,x0), then there is a rigid fibration
pi : (Ei, ei) −→ (X,x0) with p∗π1(Ei, ei) = Hi for all i ∈ I. By putting
(E, e) = (

∏
iEi, (ei)), the product p =

∏
pi : (E, e) −→ (

∏
iX,x0) is a rigid

fibration by [6, Theorem 2.2.7] and

p∗π1(E, e) = p∗π1(
∏
i

Ei, (ei)) =
∏
i

pi∗π1(Ei, ei) =
∏
i

Hi.

Thus
∏
iHi is a RF subgroup.

(ii) It follows from a similar argument of [3, Theorem 2.36] by applying [6,
Theorem 2.2.7].

For a given space X, let RF (X) denote the category of rigid fibrations over
X which is the category whose objects are rigid fibrations p : E −→ X and
morphisms are commutative triangles of the form

E1

f //

p1   A
AA

AA
AA

E2

p2~~}}
}}
}}
}

.

X

Let DCov(X) denote the category of disk-coverings over X and GSet denote
the category of G-Sets and G-equivariant functions. One can see that for a topo-
logical space X, RF (X) ⊆ DCov(X). Recall that the functor µ : DCov(X) −→
π1(X,x0)Set was defined as follows: On objects, µ is defined as the fiber
µ(p) = p−1(x0). If q : E0 −→ X is a disk-covering and f : E −→ E0 is a map
such that q ◦ f = p, then µ(f) is the restriction of f to a π1(X,x0)-equivariant
function p−1(x0) −→ q−1(x0). µ is a faithful functor [3, Lemma 2.5], and so the
restriction on RF (X) is also faithful. With the same argument of [3, Theorem
2.11], we have the following theorem.

Theorem 3.12. The functor µ : RF (X) −→ π1(X,x0)Set is fully faithful.

The functor µ in Theorem 3.12 is not necessarily an equivalence of cate-
gories. Because subgroups H ≤ π1(X,x0) exist which are not RF subgroups(see
Example 3.10).

Every morphism in RF (X) is itself a rigid fibration [1, lemma 4.5]. By this
fact and [6, Theorem 2.2.6] we have the following result.

Proposition 3.13. Suppose that p : E −→ X and q : X −→ Y are maps:

(i) If p and q are rigid fibrations, then so is q ◦ p,
(ii) If q and q ◦ p are rigid fibrations, then so is p.
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Remark 3.14. Let g : X −→ Y be a rigid fibrations of Y ; then there is a
functor G : RF (X) −→ RF (Y ) that is defined identity on morphisms and on
objects as follows. If p : E −→ X is a rigid fibration of X, we define G(p) = g◦p.

The following theorem is one of the main results of this paper.

Theorem 3.15. Let p : EH −→ X and q : EG −→ Y be two rigid fibrations of
X and Y , respectively, such that p∗π1(EH) = H and q∗π1(EG) = G.

(i) If g : X −→ Y is a continuous map such that g∗(H) ≤ G, then there is
a map f : EH −→ EG such that q ◦ f = g ◦ p.

(ii) If g : X −→ Y is a rigid fibration such that g∗(H) ≤ G, then f : EH −→
EG defined in part (i) is a rigid fibration.

(iii) If g : X −→ Y is a continuous map and there is a map f : EH −→ EG
such that q ◦ f = g ◦ p, then g∗(H) ≤ G.

Proof. (i) Consider the map g ◦ p : EH −→ Y . Since q is a rigid fibration, it
has lifting property for path connected spaces. Since

(f ◦ p)∗(π1(H)) = g∗(H) ≤ G = q∗π1(EG),

there exist a map f : EH −→ EG such that q ◦ f = g ◦ p.
(ii) Since g ◦ p and q are two rigid fibrations of Y , f is a rigid fibration of

EH by Proposition 3.13.
(iii) Since q ◦f = g ◦p, by applying the functor π1, q∗ ◦f∗ = g∗ ◦p∗ and then

g∗(H) = g∗ ◦ p∗(π1(EH)) = q∗ ◦ f∗(π1(EH)) ≤ q∗(π1(EG)) = G.

Theorem 3.16. Let H and G be two RF subgroups of π1(X) and π1(Y ), re-
spectively. If g : X −→ Y is a rigid fibration such that g∗(H) ≤ G, then g∗(H)
is a RF subgroup of π1(Y ).

Proof. By hypothises, there exist two rigid fibrations p : EH −→ X and q :
EG −→ Y of X and Y , respectively, such that p∗π1(EH) = H and q∗π1(EG) =
G. Using Theorem 3.15 part (ii), there is a rigid fibration f : EH −→ EG with
q ◦ f = g ◦ p. The composition q ◦ f : EH −→ Y is a rigid fibration of Y such
that

(q ◦ f)∗(π1(EH)) = (g ◦ p)∗(π1(EH)) = g∗(H).

The following result can be concluded from part (i) of Theorem 3.15.

Theorem 3.17. Let p : EH −→ X and q : EG −→ Y be two rigid fibrations
of X and Y with fibers F1 and F2, respectively, such that p∗π1(EH) = H and
q∗π1(EG) = G. Let g : X −→ Y be a continuous map such that g∗(H) ≤ G;
then



ON EXACT SEQUENCES OF THE RIGID FIBRATIONS 161

(i) there is a commutative diagram in Set∗ with exact rows:
(1)

· · · −−−−→ πn(F1)
i∗−−−−→ πn(EH)

p∗−−−−→ πn(X)
d−−−−→ πn−1(F1) −−−−→ · · ·y(f |F1

)∗ f∗

y g∗

y (f |F1
)∗

y
· · · −−−−→ πn(F2)

j∗−−−−→ πn(EG)
q∗−−−−→ πn(Y )

d′−−−−→ πn−1(F2) −−−−→ · · · ,

where the existence of the map f : EH −→ EG follows from Theorem 3.15.
(ii) there is a commutative diagram in Top∗ with exact rows:

(2)

· · · −−−−→ πqtopn (F1)
i∗−−−−→ πqtopn (EH)

p∗−−−−→ πqtopn (X)
d−−−−→ πqtopn−1(F1) −−−−→ · · ·y(f |F1

)∗ f∗

y g∗

y (f |F1
)∗

y
· · · −−−−→ πqtopn (F2)

j∗−−−−→ πqtopn (EG)
q∗−−−−→ πqtopn (Y )

d′−−−−→ πqtopn−1(F2) −−−−→ · · · .

(iii) there is a long exact sequence of homotopy groups.

(3) · · · −→ πn(EH) −→ πn(EG)⊕ πn(X) −→ πn(Y ) −→ πn−1(EH) −→ · · · .

(iv) there is a long exact sequence of topological homotopy groups.

(4)

· · · −→ πqtopn (EH) −→ πqtopn (EG)⊕πqtopn (X) −→ πqtopn (Y ) −→ πqtopn−1(EH) −→ · · · .

Proof. (i) Since g∗(H) ≤ G, there is a map f : EH −→ EG such that q◦f = g◦p,
by Theorem 3.15. Since f ◦ i = j ◦ f |F1 , q ◦ f = g ◦ p and πn is a functor, the
first two squares commute. To see commutativity of the last squares, consider
the following diagram:

(5)

ΩX
k−−−−→ Mp

λ←−−−− F1yg♯ l

y f |F1

y
ΩY

k′−−−−→ Mq
λ′←−−−− F2,

where the maps g♯ and l are induced maps. It is easy to see that Diagram (5)
is commutative. Therefore the induced diagram by the functor πn, that is the
last square in Diagram (2), is commutative.

(ii) It follows from a similar argument of part (i) by applying the functor
πqtopn .

(iii) The result holds from [5, Lemma 6.2] and part (i).
(iv) The result holds from [5, Lemma 6.2] and part (ii).

Remark 3.18. Let H < π1(X), let G < π1(Y ), and let the left coset spaces
πqtop1 (X)/H and πqtop1 (Y )/G have no nonconstant paths. By Theorem 2.3,
Diagrams (1) and (2) are commutative in Set∗ and Top∗, respecively, where
g : X −→ Y is a continuous map with g∗(H) ≤ G.
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The following result follows from using Diagrams (3), (4) and Theorem 2.3.

Corollary 3.19. Let πqtop1 (X) and πqtop1 (Y )/G have no nonconstant paths,
where G < π1(Y ). If there is a continuous map g : X −→ Y , then

πn(EG)⊕ πn(X) ∼= πn(Y )

and
πqtopn (EG)⊕ πqtopn (X) ∼= πqtopn (Y ).
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