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Abstract— In this study, a novel maximum torque per 

ampere (MTPA) strategy based on backstepping controller is 

introduced for induction motor (IM) drives considering both 

iron loss and saturation effect. To achieve a perfect model for 

IM drives, inductances are accurately chosen in terms of 

magnetizing current by interpolating magnetizing flux curve. In 

addition, the MTPA strategy is performed with incorporating 

iron loss and saturation as major factors of current angle 

variations. In order to prove the stability of the control scheme, 

the Lyapunov control theory is used. By choosing both the 

MTPA realization criterion and rotor speed of IM as outputs, 

the proposed backstepping control converges the error signals 

to a small vicinity of zero. The simulation results are finally 

demonstrated to validate the proposed control structure. 

Keywords— Induction motor (IM), backstepping control, 

maximum torque per ampere (MTPA), saturation effect, iron loss, 

field oriented control (FOC). 

NOMENCLATURE 

, ,i v   Current, Voltage, flux  space vectors 

,m mri i  
Magnetizing and rotor magnetizing 

currents

eT Electromagnetic torque 

,s rR R  Stator and rotor resistances 

cR Iron loss resistance 

,ls lrL L  Stator and rotor Leakage inductance 

,s rL L  Self-inductance of the stator and rotor 

mL Magnetizing inductance 

sT Stator constant time 

sT   Stator transient constant time 

p Number of pole pairs 

r Electrical rotor speed 

s
Angular synchronous speed of the rotor 

flux 

  Leakage factor ))./(1( 2
rsm LLL  

Subscripts 
r,s Stator and rotor 
QD, Stationary reference frame  
q,d Synchronously Rotating reference frame 

I. INTRODUCTION 

The induction motor (IM) has been widely utilized in 
various industrial applications due to its benefits such as long 
lifetime, low cost and high efficiency. Generally, the linear 

magnetic models are adapted for analyzing the IMs. However, 
in some applications such as traction and field weakening, the 
IM usually needs to operate under the saturated conditions [1]. 
Likewise, the vector control performance is detuned with 
neglecting the iron loss and the saturation effects [2]. Thus, it 
is important to take their effects in the IM model and control 
schemes. There are two approaches to consider the saturation 
effects in the IM model. In first which is known as simplified 
model, the saturation effect is taken into account by 
substituting a non-linear function of magnetizing inductance 
into the voltage equations of the linear model [3]. The second 
approach is a full non-linear model in which the time variation 
of magnetizing inductance leads to different  voltage 
equations in the full model and linear model. Therefore, the 
new terms arise as dynamic cross-saturation effects in the full 
model which is neglected in the simplified form [4]. Since, the 
full model is more accurate [5] and has faster response [6] in 
comparison to the simplified one, the full model of IMs is 
preferred in this paper. Regarding the nonlinear nature of  the 
IMs and the wide range of their operation, a linear controller 
such as proportional-integral (PI) cannot perform properly [7]. 
Therefore, non-linear controllers such as sliding mode control 
[8], input-output feedback linearization (IOFL) [9,10] and 
backstepping control [11,12] have been presented to improve 
the performance of  IM drives in the last decades. The 
feedback linearization (FL) often causes nonlinearities 
cancellation that can be useful for tracking. In contrast to FL, 
the backstepping control not only doesn’t eliminate useful 
nonlinearities, but also defines extra nonlinear terms to have 
better transient performance. In the backstepping control 
design, the main purpose is to control the non-linear system in 
a recursive manner by choosing the state variables as “virtual 
controls” [13].  

In this research work, a backstepping control is presented 
for IM drive which satisfies the maximum torque per ampere 
(MTPA) strategy. In this regard, the affine model of IM is 
modified to consider the iron loss and saturation effects. 
Moreover, the proposed MTPA developed according to 
Lagrange’s Theorem determines optimal stator current angle.  

Later in this paper, detailed description of the control 
system is introduced. In section II, the saturated model of IM 
is derived incorporating the iron loss. In section III, the 
principle of MTPA control strategy is proposed. In section IV, 
the backstepping controller is derived taking into 
consideration the magnetic saturation and iron loss. In this 
section the control laws are also obtained for IM drive. 
Finally, the simulation results and the concluding remarks are 
presented in sections V and VI, respectively.   
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II. IM MODEL INCLUDING IRON LOSS AND SATURATION 

EFFECTS 

    In the linear model of 3-phase IM, saturation effects are 

neglected and the all parameters such as stator and rotor self-

inductances, as well as magnetizing inductance are 

considered constant. Tacking the magnetic saturation into 

account, the voltage equations differ from the equations 

obtained in their linear forms.  

    In the saturation condition, a dynamic inductance is 

introduced in addition to the static inductance which is equal 

to the derivative of flux-linkage space phasor with respect to 

the magnetizing-current space phasor. These inductances are 

calculated as follows: 

,
mm

m

m m

d
L L

di i


   (1) 

where 𝐿  and 𝐿𝑚  are dynamic and static inductances, 

respectively. Since, these inductances are varied by time and 

the first-time derivative of magnetizing flux exists in the 

voltage equations, derivative of 𝜆𝑚  can be achieved in the 

stationary frame as follows: 

mQmD mD
MD DQ

did di
L L

dt dt dt


   (2) 

mQ mQ mD
MQ DQ

d di di
L L

dt dt dt


   (3) 

    In (2) and (3), 𝐿𝑀𝐷 and 𝐿𝑀𝑄 are the direct and quadrature 

axis components of magnetizing inductance and 𝐿𝐷𝑄  is the 

cross-coupling inductance which describes the magnetic 

influence of one axis on the other. These inductances are 

determined as follows: 
2 2cos sinMD mL L L    (4) 
2 2sin cosMQ mL L L    (5) 

 sin cosDQ mL L L     (6) 

where 𝜇  is the angle of magnetizing current space vector 

defined as 𝑖𝑚 = |𝑖𝑚|𝑒𝑗𝜇. Under the linear magnetic condition, 

the dynamic inductance is equal to static inductance, because 

of the fact that the ratio of 𝜆𝑚 𝑖𝑚⁄  is constant. As a result, it 

can be concluded 𝐿𝐷𝑄 = 0 . 𝐿𝑚𝐷 = 𝐿𝑚𝑄 . According to above 

equations, two axis model of IM in the stationary reference 

frame with considering the iron loss and magnetic saturation 

is obtained in the form: 

   


 
  

 

c sD rD
sD s c sD SD MD

c s

r QsQ

DQ

R di di
V R R i L L

R R dt dt

didi
L

dt dt

 (7) 

   


 
  

 

sQ rQc
sQ s c sQ SQ MQ

c s

sD rD
DQ

di diR
V R R i L L

R R dt dt

di di
L

dt dt

 

 

(8) 

 

 

0



 
     

 

 

sQ rQrD sD
r rD rD MD DQ

r r rQ m sQ

di didi di
R i L L L

dt dt dt dt

L i L i

 

 

(9) 

 

0



 
     

 

 

rQ sQ sD rD
r rQ rQ MQ DQ

r r rD m sD

di di di di
R i L L L

dt dt dt dt

L i L i

 

 

(10) 

 
Fig.1. Measured Iron loss resistance in different frequencies for IM 

 
Fig.2. Equivalent circuit of an IM in the stationary reference frame 

including the iron loss and saturation effects 

where 𝐿𝑠𝐷.𝑄 = 𝐿𝑙𝑠 + 𝐿𝑀𝐷.𝑄 and 𝐿𝑟𝐷.𝑄 = 𝐿𝑙𝑟 + 𝐿𝑀𝐷.𝑄 are self-

inductances of stator and rotor windings, respectively. As 

shown in Fig. 1, the iron loss resistance is varied by power 

supply frequency. The equivalent circuit of IM with 

incorporating iron loss and saturation effects is also shown in 

Fig. 2. It can be observed from (7)-(10), the stator and rotor 

are coupled owing to cross-saturation and all inductances are 

modified in the saturated model. The saturation phenomenon 

doesn’t add any extra term to unsaturated torque expression 

and it is therefore identical in the both saturation and linear 

condition. Consequently, it only effects on parameters such 

as magnetizing, rotor and stator inductances: 

3
( )

2

m
e rD sQ rQ sD

r

p L
T i i

L
    (11) 

    The saturation of main flux path can be defined as a 

function of magnetizing current. In order to find the 

magnetizing curve, the no-load test is performed on a 

prototype IM [10]. The results are used to fit the magnetizing 

curve model as follows:   
84665.1381275.0

.55214.054365.0 mi
m e


  (12) 

 
Fig. 3. Magnetizing curve 

               
Fig.4. Static and dynamic inductances   
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     Figures 3 and 4 show the magnetizing curve and the 

variations of L and Lm in terms of the magnetizing current, 

respectively. According to characteristic curve, the chord 

slop is equal to Lm and tangent slop in the operating point is 

equal to L . Considering (1), the static and dynamic 

inductances are obtained as follows: 

m
i

m ieL m 






 
 84665.1381275.0

.55214.054365.0  (13) 

84665.1381275.084665.0 .38875.0 mi
m eiL


  (14) 

    In order to consider the saturation effect in controller 

design, the magnetizing inductance is defined as a function of 

the rotor magnetizing current (imr). In the rotor flux reference 

frame, the rotor magnetizing current is equal to the ratio of 

modulus of rotor flux-linkage space phasor to magnetizing 

inductance. Furthermore, the rotor magnetizing current only 

aligns with d-axis of the rotor flux-oriented reference frame. 

As a result, the voltage equations are simpler than those 

obtained from previous state. Due to the saturation, the extra 

terms Δisd  and Δisq  are added to equations under linear 

magnetic condition, as follows [14]:  

 
 


        

mrsd sd
s sd s s sq s s sd

s c

d idi V
T i T i T T i

dt dtR R
 (15) 

 
  


        

sq sq

s sq s s sd s s s mr sq

s c

di V
T i T i T T i i

dt R R
 (16) 

    where 𝑇𝑠
′ = 𝜎𝐿𝑠 (𝑅𝑠‖𝑅𝑐)⁄ . As the rotor leakage inductance 

is negligible, Δisd and Δisq are derived as follows: 

 
, 0


   

mrm
sd sq

s c

d iL L
i i

dtR R
 (17) 

    In contrast to the direct axis stator winding, there is not any 

additional induced electromotive force (emf) in quadrature 

axis stator winding. The rotor flux-oriented reference frame 

is achieved as: 

, 0   rd r rq  (18) 

    Due to the rotor flux-oriented reference frame, the 

equations of the IM taking into account the saturation effects 

and iron loss are written in the form of affine as follows: 

1 2( ) ( ) ( )   ds qsX f x g x v g x v  (19) 

where 

 

2

1 2 1 3

2

2 1 3

1 3

4

1 2

( )
( )( )

( )

( )

1 0

1

( ) 0 , ( )

0 0

0 0


 

 
 





  
     

 
 
  
 

  
 
 
 
  
  

   
   
   
    
   
   
   
   

s c r m m
s m

s s r r

s c m
s s

s s r

r m

r

e L

s

s

R R R L L
x x L L x x

L L L L L

R R L
x x x

L L L
f x

R L
x x

L L

T T B
x

j j j

L

Lg x g x

 

with 

, ,        

c c
sd sq mr r sd sd sq sq

c s c s

R R
x i i i V V V V

R R R R
 

III. PROPOSED MTPA STRATEGY 

Minimization of IM stator current is considered as one of the 

control objectives. According to Lagrange's theorem, the 

proposed MTPA will realize when the stator current curve 

and the torque curve are tangent at a point if and only if their 

gradient vectors are parallel, so that: 
2( , ) ( , ) sin 0e sd sq s sd sqT i i I i i     (20) 

The magnitude of cross-product of ∇𝑇𝑒(𝑖𝑠𝑑 , 𝑖𝑠𝑞)  and 

∇𝐼𝑠
2(𝑖𝑠𝑑 , 𝑖𝑠𝑞) and rotor speed are chosen as control outputs, and 

output vector 𝑌 = [𝑦1 𝑦2]𝑇 is introduced as (21) and (22) to 

attain the control objectives [15]:  

e e

sd sq

e sd sq s sd sq

s s

sd sq

T T

i i
y T i i I i i

I I

i i

2
1 2 2

( , ) ( , ) sin det

  
  
    
  
 
   

 (21) 

  sqi l
e l sq sd

iR T
y T T i i

j j j

22

2 2

1 1 1
.

1



  

    
              

 (22) 

where c c

s lr s m

R R

L L


 
  . If 𝑦1  keeps at zero, the proposed 

MTPA will realize obviously. By accomplishing some 

calculations on 𝑦1, we have: 

sq sdi i    (23) 

where 𝜉 = ((√𝛽2 + 1 − 1) 𝛽⁄ ) . The variation of 𝜉  versus 

frequency has been plotted in Fig. 5. 

 
Fig.5. variation of 𝜉 versus frequency  

IV. BACKSTEPPING CONTROL FOR IM 

In the non-linear control design, the control objectives are 

realization of MTPA strategy and the rotor speed tracking. In 

this way, the tracking errors are defined as follows: 

1 1 1

2 2 2

 

 

ref

ref

e y y

e y y
 (24) 

    where y1 = x2 − ξx1  and 𝑦2 = 𝑥4  depend on the MTPA 

strategy and the rotor speed respectively. According to 

MTPA realization criterion y2ref = 0, the error dynamics are 

obtained as: 

1 2 1

2 4 4

 

  ref

e x x

e x x
 (25) 

    The error dynamics can be rewritten by lie derivatives: 

1 1 1 1 2 1

41 2 2 22 2

0       
                  

dsf

qs reff

ve L e Lg e Lg e

v xLg e Lg ee L e
 (26) 

where Lfyi(i = 1, 2, … )  are defined as the lie derivative of  

output function  y(x): Rn  R  along a vector field f(x) =

(f1(x), … , fn(x)): 

   
1







n

f i

i i

y
L y x f x

x
 (27) 
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    The lie derivative functions of the first tracking error are 

computed as: 
2

1 1 2 1 3

2

2 1 3

( )
( ).( )

( )

 
 

 
 

  
       

 

  
   
 

s c r m m
f s m

s s r r

s c m
s s

s s r

R R R L L
L e x x L L x x

L L L L L

R R L
x x x

L L L

 

(28) 

1 1 2 1

1 1
,g g

s s

L e L e
L L


 

   
     

   
 (29) 

    The electromagnetic torque in the rotor flux-oriented 

control is expressed as: 

 
2

3 2

3

2

m
e

r

P L
T x x

L
  (30) 

    By substituting (30) into the speed mechanical equation, 

the lie derivative functions of the second tracking error are 

computed as: 

2

2 3 2

3

2

m L
f r

r

P L T B
L e x x

j L j j
    (31) 

1 2 2 20 , 0 g gL e L e  (32) 

     Since, the input voltages (V′
sd, V′

sq) don’t appear in the 

second dynamic, x3x2  is chosen as the virtual control to 

converge e2 to zero. Now, we introduce the Lyapunov 

function as 𝑉1 = 1 2(e1
2 + e2

2⁄ ) , hence the first time derivative 

of V1 is: 

2 2

1 1 2   V e e  (33) 

where  and  are positive design gains. According to (33), 

the stabilization virtual function and first input control law 

are constructed as: 

   3 2 22

2

3
     r

l r rrefref

m

L
x x T B j j e

PL
 (34) 

 1 1 2 2 1 1    g ds g qs fref
L e V L e V L e e  (35) 

   The next step tries to make x3x2 equal to as desired value 

obtained in (34). Thus, the third error signal is defined as e3 =

x3x2 − (x3x2)ref . According to the equations (24)-(35), the 

error dynamics can be rewritten as follows:  
1 1 e e  (36) 

2

2 2 3

3

2
   m

r

P L
e e je

L
  

(37) 

 3 2

3 3 1 1 2 2
     ref

f g ds g qs

d x x
e L e L e V L e V

dt
 

 

(38) 

 where  

 

2

3 3 1 2 1 3

2 1 3

( )
( ).( )

 

  
      

 

 
  

 

s c r m m
f s m

s s r r

r m

r

R R R L L
L e x x x L L x x

L L L L L

R L
x x x

L L

 

(39) 

1 3 2 3 3

1
0 ,


 g g

s

L e L e x
L

 (40) 

 
 3 2

22

2

3
     ref r

l r rref

m

d x x L
T B j j e

dt PL
 (41) 

    As the actual control input V′qs is observed in new dynamic 

ė3, a new Lyapunov function is selected as V2 = 1 2⁄ (e1
2 +

e2
2 + e3

2) to design the final control law. Taking the first time 

derivative of this function V̇2  and replacing the error 

dynamics (36)-(38), V̇2 can be computed as follows: 

 

 

2

2 1 1 2 2 3

3 2

3 3 2 3 3

3

2
 



 
      

 

 
    

 

m

r

ref
f g qs

P L
V e e e e je

L

d x x
e L e L e V e

dt

 

(42) 

     The time derivative 𝑉2  can be also obtained as V̇2 =

−αe1
2 − βe2

2 − γe3
2  if  the control laws are determined as 

follows:  

 2
3 2

2 3 3

2 3

1 3

2


 
       

 

m ref
qs f

g r

d x xP L
V je L e e

L e L dt
 (43) 

 1 1 2 1
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g

V L e e L e V
L e

 (44) 

    The MTPA realization criterion and the tracking of the 

rotor speed reference are satisfied for α,β and γ > 0,  

V. SIMULATION RESULTS 

     In order to assess the performance of proposed control 
technique, simulations are fulfilled in 
MATLAB/SIMULINK® environment. The specifications of 
the simulated motor are given in Table I. The overall structure 
of IM drives is shown in Fig. 6. Also, the simulation results 
for rotor speed control and realization of MTPA strategy are 
illustrated in Figs 7-14 with considering iron loss and 
saturation effects. Fig. 7 shows the rotor speed response of the 
proposed drive and its reference. The speed reference is 
stepped up at time intervals 0-2s and 4-6s. Then it is stepped 
down to 40 rad/sec at t=10s. As can be obviously seen, the 
rotor speed follows its reference smoothly in both transient 
and steady state condition. According to speed transient 
periods, the electromagnetic torque increases and decreases as 
a step change, which is presented in Fig. 8. The static and the 
dynamic inductances are shown in Fig. 9. As observed, these 
inductances are achieved from the magnetizing curve, and are 
modified with operating points. 
    Figure 10 shows variations of MTPA factor with respect to 

frequency, which is computed by (23). So, as illustrated in 

Fig. 5, the MTPA factor is continuously changed by varying 

rotor speed command. Although, in ideal condition this factor 

is equal to one, it is smaller than one when the iron loss and 

saturation effects are taken into account. Considering the 

MTPA factor, d-axis component isn’t identical to q-axis 

component of the stator current in the rotor flux-oriented 

reference frame (Fig. 11).  According to Fig. 12, the MTPA 

realization criterion tracks its reference value, which is zero, 

and the MTPA strategy is, therefore, satisfied. The d and q-

axis components of rotor flux and the d-axis stator current 

component in both saturation and linear models are illustrated 

in Figs 13 and 14, respectively. As depicted in Fig. 14, since 

the static and dynamic inductances are time varying in the 

saturated model, the amplitude of D-axis stator current 

component is different from the linear one, during open-loop 

test. In this test, the voltage of power supply is 180 Vrms.  
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Fig. 6. The block diagram of MTPA strategy for backstepping control based IM drive 

 

TABLE I: THE IM PARAMETERS [10] 
Parameter Value Parameter Value 

Pole-Pair 2 rR ( Ω) 1.1237 

Rated torque (N.m) 10 lsL (H)  0.047 

Rated voltage (v) 180 (L-L) lrL (H) 0.0206 

sR (Ω) 1.3012 mL (H) 0.1863 

 
Fig. 7. Rotor speed response of the non-linear controller 

       
Fig. 8. Electromagnetic and load torques 

  
Fig. 9. static and Dynamic inductances 

 
Fig. 10. Variation of MTPA factor by changing rotor speed reference 

 
Fig. 11. d-q axis stator currents  

  
Fig. 12. MTPA realization criterion 

 
Fig. 13. d-q axis rotor flux components 

  
Fig. 14. D-axis component of stator current for open-loop condition 

VI. CONCLUSION 

    In this paper, a direct field-oriented control method based 

on backstepping controller is introduced for three-phase IM 

drives incorporating iron loss and magnetic saturation. In this 

regard the affine IM model is derived and the reference 

voltages are determined according to the control laws. It is 

noteworthy that the state variables in the saturated IM model 

is increased due to the iron loss consideration. This makes the 

derivation of the nonlinear controller more complex.  
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Therefore, there has not been much effort to take the effects 

of the iron loss in the backstepping-based FOC into account.    

In order to achieve the maximum torque per stator current, a 

realization criterion is also derived based on Lagrange's 

Theorem. The simulation results verified the effectiveness 

and capability of the proposed method.   
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