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Abstract

Let H be a compact subgroup of a locally compact group G. In this paper we define a convolution on M(G/H) , the space of
all bounded complex Radon measures on the homogeneous space G/H. Then we prove that the measure space M(G/H) with
the newly well-defined convolution is a non-unital Banach algebra that possesses an approximate identity. Finally, it is
shown that this Banach algebra is not involutive and also L!(G/H) with the new convolution is a two-sided ideal of it.
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1 Introduction and Preliminaries

Let G be a locally compact group, and let M(G) be the
space of all bounded complex Radon measures on it. The
convolution of any two measures u; and u, in M(G) is
defined by

i+ a(f) = / / FO)dm @), (¢ € C(6)).
(1.1)

It is well-known that (M(G), *) is a unital Banach algebra, it
is called the measure algebra and plays a key role in har-
monic analysis, (See, e.g., Deitmar and Echterhoof 2009
and Fell and Doran 1988). Now let H be a compact
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subgroup of locally compact group G, and the homogeneous
space G/H is a Hausdorff space on which G acts transitively
by left. We should clear that H is not normal subgroup
necessarily, so G/H does not possess a group structure but it
will be a locally compact Hausdorff space. Let M(G/
H) denote the space of all bounded complex Radon mea-
sures on G/H. Compared with the measure algebra M(G) , it
is worthwhile to investigate the existence of a convolution
on M(G/H) which makes it into a Banach algebra. Farashahi
(2018) studied this problem in the case that H is a closed
subgroup of a compact group G; However, the theory of
homogeneous spaces in which H is a compact subgroup of a
locally compact group G has many applications in physics
and engineering. For example, if the Euclidian group E(2)
acts transitively on R?, then the isotropy subgroup of origin
is the orthogonal group O(2). In that sequel, the homoge-
neous space E(2)/O(2) provides definition of X-ray trans-
form that is used in many areas such as radio astronomy,
positron emission tomography, crystallography, etc (See,
e.g., Deans 1983, Ch. 1 and Helgason 2011). Now, we
review some preliminaries and results in homogeneous
spaces theory. Let dy be the left invariant Haar measure of
locally compact group G. The modular function Ag is a
continuous homomorphism from G into the multiplicative
group R*. Furthermore, for all x € G

/G FO)dy = A6(x) /G Fx)dy

52, €\ Springer
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where f € C.(G), the space of continuous functions on
G with compact support. A locally compact group G is
called unimodular if Ag(x) = 1, for all x € G. A compact
group G is always unimodular. Assume that H is a closed
subgroup of the locally compact group G, it is known that
C.(G/H) consists of all Pyf functions, where f € C.(G)
and

Ppf (xH) = /H fxh)dh  (x € G).

Moreover, Py : C.(G) — C.(G/H) is a bounded linear
operator which is not injective (see, e.g., Folland 1995, Ch.
2, Section. 6). Suppose that p is a Radon measure on G/
H. For all x € G we define the translation of u through x, by
. (E) = p(xE), where E is a Borel subset of G/H. Then p is
said to be G-invariant if u, =y, for all x€ G. If H is
compact, G/H admits a G—invariant Radon measure (See,
e.g., Folland 1995, Corollary 2. 51). u is said to be strongly
quasi-invariant, if there is a continuous function 4: G X
G/H — (0,400) which satisfies

du,(yH) = A(x,yH)du(yH).

If the function A(x,.) is reduced to a constant for each
x € G, then pu is called relatively invariant under G. We
consider a rho-function for the pair (G, H) as a continuous
p:G— (0,+00) for which p(xh) =
Ap(h)ag(h)™" p(x), for each x € G and h € H. It is well
known that (G, H) admits a rho-function and for every rho-

function p there is a strongly quasi-invariant measure g on
G/H such that

function

/ fWdv= [ PufcH)AuGH) (f € C.(G)),
G G/H

where in this case, Pyf(xH) = [, ’; Efcz)) dh and this equation

is called quotient integral formula. This measure u also
satisfies

p(xy)

du,
a0 p(y)

€G).
du ('x7y )

Let u be a strongly quasi invariant measure on G/H which
is associated with the rho-function p for the pair (G, H) .
The mapping Ty : L'(G) — L'(G/H) is defined almost
everywhere by

st — [ 20

p(xh)
is a surjective bounded linear operator with || Ty || <1

(see Reiter and Stegeman 2000, Subsection 3.4) and also
Ty satisfies the generalized Mackey—Bruhat formula,

dh (f € LY(G))
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/G seoac= | TsCeauce) ¢ <2@), (12

which is also known as the quotient integral formula. Two
useful operators left translation and right translation,
denoted by L and R respectively, plays key role in the next
section. The left translation of ¢ € C.(G/H) by x € G is
defined by L.(¢)(yH) = @(x~'yH). In a similar way, the
left translation operator is defined for the integrable func-
tion on a homogeneous space G/H as follows:

L(o)(yH) = o(x"'yH)

where ¢ € I’(G/H), 1 <p < oo. The mapping x—L.(¢) is

(u — almostallyH € G/H),

1/
continuous and also [|L«(¢)]|, = (%) p||(p||p. The right

translation is defined in the same manner [for more details
see Kamyabi-Gol and Tavalaei (2009)]. Now, let H be a
compact subgroup and put

C.(G:H) :={f € C.(G) : Ryf =f,Vh € H},

where R;, denotes the right translation through 4. Let 1 be a
G-invariant Radon measure on G/H. One can prove that

Ce(GH) = {¢n, == @ony: ¢ € C.(G/H)}

and it is a left ideal of the algebra C.(G). Moreover the
operator Py is an algebraic isometric isomorphism between
C.(G:H) and C.(G/H). Furthermore, Py (¢,,) = ¢, for all
¢ € C.(G/H). These results can be extended, by approx-
imation, to Ty : L'(G:H) — L'(G/H), where

LY (G:H) :={f € L'(G) :Rif =f, VheH},

(See, e.g., Reiter and Stegeman 2000, P. 98) and also (see,
e.g., Farashahi 2015, 2013; Kamyabi-Gol and Tavalaei
2009). Therein Ty is an algebraic isometrically isomor-
phism. By using this isomorphism one can define a well-
defined convolution on L' (G/H). Let A be a strongly quasi-
invariant measure on G/H that arises from the rho-function
p, then

(0 l//(XH) :TH(q)nH * lan)(xH)

= [ [ ottt Daasom)
G/HJH p(x)

(See, e.g., Farashahi 2013). Now, let M(G) be the space of
all bounded complex Radon measures on locally compact
group G and H be a compact subgroup of G. Also assume
that u € M(G). One can define o, € M(G/H) by

/ o (xH)do (xH) = / 0., (X)du(x) (9 € C.(G/H)).
G/H G

(1.3)
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In other words ¢,(¢) = u(¢,,), for all ¢ in C.(G/H).
Since ||o,|| < |||, the linear map pu—ao, is continuous and
it can be shown that this map is surjective (see, e.g., Reiter
and Stegeman 2000, P. 233).

2 The Main Results

Let us denote the space of all bounded complex Radon
measures on locally compact Hausdorff space G/H by
M(G/H) . In this section we establish some results to define
a well-defined convolution on M(G/H) which makes it into
a Banach algebra, then we introduce an approximate
identity for it; After that the relationship between two
Banach algebras M(G/H) and L'(G/H) is described, the
last result asserts that L'(G/H) can be regarded as a
Banach subalgebra of M(G/H) . From now on, we consider
H as a compact subgroup of locally compact group G. We
first introduce an important closed left ideal of M(G) in
what follows. Let

M(G:H) ={u € M(G) : u(Rif)

::u(f)vvf € CL(G)7h € H}v

where R;, denotes the right translation through .

Proposition 2.1 Let H be a compact subgroup of a locally
compact group G and u be a left Haar measure on G. Then

M(G:H) = {y; : f € L'(G:H)},
=f(x)du(x).

Proof For any f € L'(G:H), it is clear that u(x)=

f(x)du(x) € M(G) and also for all g € C.(G) and h € H
we have

1 (Rng) = /G Rug (x)dpy (x)
- / S () (x)dp(x)
G
- / S () (eh ) dpu(xh )

- / ¢(¥)dp (x)
G

= lif(g)-

where dyi(x)

Note that since H is compact, Ag|y = 1. Now let K €
M(G:H) for some f € L'(G), so p;(Ryg) = ps(g) for all
§€C(G). In Jo Rug(x)dpy(x) =

J g(x)dp (x)

/ S () (x)du(x) = / 2 (D (x)du(x),
G G

other  words,

. Since

we have

/ S ()f (eh™ ) dp(ch™) = / S () (v )dp(xh ™)
G G

— [ stmrdu(an)
G
- [ stran.
for all ge C.(G). Therefore, [, g(x)(f(xh) —f(x))
du(x) =0forall g € C.(G) and h € H. Then by Urysohn’s
Lemma to take suitable g € C.(G) we get f(xh) = f(x), for
all x € G and h € H. Thus f € L'(G:H). O

Proposition 2.2 Let H be a compact subgroup of a locally
compact group G. Then M(G : H) is a closed left ideal of
M(G) . Moreover,

M(G:H) = {op, =00 Py :0€ M(G/H)}.

Proof Let p, 1, € M(G:H), then for all f € C.(G) and
h € H we have

i+ i (Ref) = / Raf (€)1, * 1) (8)

- /G /G Rif (xy)du, (x)diy (y)

_ / 11 (Ru(Le1f)) () ()
—/ (L) 0)dm ()

//fxy duy (x)dpy (v)

=y * 1 (f)-

Therefore u; * u, € M(G:H). A similar calculation shows
that M(G : H) is a left ideal of M(G) . Furthermore, let u be
limit of the mnet {u,},., in M(G:H), then
U(Ryf) =limp, (Ryf) for all f € C.(G) and h € H. But
U, (Rf) = i, (f) and this implies that p(Ryf) = u(f). It
remains to prove the equality in this Proposition. Let ¢ €
M(G/H) then oo Py is a bounded linear functional on
C.(G), since

|00 Pu(f)] = |o(Pu(f))|

= | Pyf (xH)do (xH)|
G/H

- / " /H £ (eh)d(do|(xH)
< Iflle ol

Thus ||6 o Py|| <||o]] <00 ), so that the mapping ¢ o Py is
a bounded linear functional on C.(G). Furthermore, for all
f € C.(G) and h € H we have

52, €\ Springer
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o o Py(Ryf) :/G/H/HRhf(xn)dnda(xH)

—/G/H/f(xnh)dnda(xH)
/G/H/f xn)dndo(xH)

= oo Py(f).

Thus op, = 60 Py € M(G:H) for all 0 € M(G/H). To
show the reverse inclusion let y be in M(G) such that
U(Ryf) = p(f) for all fin C.(G) and h in H. Then by (1.3)
there exists ¢ € M(G/H) such that for all fin C.(G) we
have

= / Fx)du)

- / Rif (x)d(x)

_ /G ., / Fenh)dndo (xH)

/G/H/f xn)dndo(xH)

—O'OPH

So @ = ¢ o Py and the proof is complete. (]

Now, consider the map Ry : M(G) — M(G/H) given
by

Rup(9) = i@y,
:/Gq)n”(x)du(x), (¢ € C.(G/H)).

Let ¢ =y € C.(G/H) then ¢, =¢@ony=yony=
Y, Hence u(e, )=u(y,,) and this implies that
Ryu(@) = Ryp(y). From the definition we can easily
deduce that Ryu is a positive linear functional on
C.(G/H). So by the Riesz representation theorem there
exists a unique Radon measure o € M(G/H) such that

(2.1)

Ran(o) = [ oat)do(at) = o(0). 22)
G/H

Then Ry = o € M(G/H). Also based on definition (2.1)

it is clear that Ry(y;) = Ry(u,) if puy = p. So Ry is a

well-defined map. To show that the mapping Ry is linear,

consider an arbitrary scalar o and the elements u; and y, in

M(G) . Then for any ¢ in C.(G/H) we have

52, €\ Springer

Ru(py + ma) (@) = (i + 1) (0,
= 1 (@Pr,) + 12(@r,)
= Rut, (@) + Ruin (o)
= (Ruy + Rup) (),

thus Ry is linear. We shall show that Ry is a bounded
operator. To do this, if we consider any ¢ in C.(G/H) then

we have

Rt )] = | [ 00, (0] < [ o(atlalnl(x)
</G||f/)\|ocd|MI(X) < lullllells

So ||Rup|| < |ju||<oo and this implies ||Ry|| < 1. For

surjectivity, let ¢ € M(G/H) and define ¢ on C.(G) by
u(f) = a(Puf) (f € Cc(G)). (2.3)

Suppose ¢ € C.(G/H), using Proposition 2.2, for u €
M(G:H). Then by the definition of Ry, we have

Rup(e) = (o)
= 0(Pu(¢,,))

- / Pu(g,)(H)do(xH)
G/H

= / o(xH)do(xH)
G/H

= O-((/))?
this proves surjectivity.

Remark 2.3 The operator Ry is an extension of the map-
ping Ty :L'(G) — L'(G/H) given by Tyf(xH)=
Ji;f (xh)dh, for all x € G.

The next two Propositions play a central role for making
M(G/H) into a Banach algebra.

Proposition 2.4 Let H be a compact subgroup of a locally
compact group G. Then Ry |y (c.n). the restriction of Ry to
M(G : H), is a bijective mapping and also it is an isometry.

Proof Since Ry is surjective, it is enough to show that it is
injective. Let p € M(G:H) and Ry(u) =0. Then there
exists ¢ € M(G/H) such that u=op, =00 Py and
Ry(p) =0 implies that for all ¢ € C.(G/H),
a(¢) = op,(¢s,) = 0. So that u = 0 and therefore Ry is
injective.

Let gp, be in M(G : H), then for all ¢ in C.(G/H), on
one hand
Ret(ap, )0l = |opy (P, )| < Nlory Il 07, [l oo

s0 ||Ruop,|| < |lop,|| and on the other hand,
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lop, (@x,)| = [Ruop,(¢)|
< |[Ruop, ||l @]
= [[Ruop, ||| Pr(@x,) |l
< |[Ruop, l[|Pulll|@x, |
< |Ruop, |l @, 1I-

s0 ||lop,|| < ||Ruop,||- Hence the proof is complete. [

The remarkable equality Ry(0,) = .y is obtained by
using the following equalities:

Rut(6)(0) = 6,0,
- / 02, (7)46,()
G

= @, (%)
= @(xH)

= / @(yH)doy (yH)
G/H

- 5xH((p)7

for all x € G. Note that for all ¢ in C.(G/H) and x € G we
get

Sust() = /G OO (6H) = glan) = (st

where 7 € H. Now, we are able to define a convolution on
M(G/H) .

Definition 2.5 Let H be a compact subgroup of a locally

compact group G. The mapping x*:M(G/H) x
M(G/H) — M(G/H) given by
1% 02(¢) == Ry(o1,, * 02, )(¢) (¢ € C(G/H)),

(2.4)
is a well-defined convolution on M(G/H) .

To show that = is well defined, let g1,02,0),05 €
M(G/H) and (01, 02) = (0, 0). Using surjectivity of Ry,

. / / .
there exists o1, ,02,,,01, ,03, € M(G:H) such that

Ry(o1,,) = 01,Ru(02,,) = 02,Ru(0}, ) = 01, Ru(0yy,) = ).
Therefore the injectivity of Ry implies that (o4, ,02, )=
(6’1PH , O'/2PH). Thus

o /
02, * 02y, = 0, * 03, ,

since the convolution on M(G) is well-defined. Then
RH(alPH * ‘721»,,) = RH(J’IPH * a’zpﬂ). Finally, by (2.4),
o1 % g, = 0 * g5. Consequently, convolution * is well-
defined. Using Proposition 2.4 and Definition 2.5 we
deduce the following result.

Corollary 2.6 The bijective mapping Ry |y in
Proposition 2.4 is an algebraic isometric isomorphism.

Now some remarks are in orders.
Remark 2.7 With the notations as above, we have:

i) (o1%02)p, = a1,, * 02, , because RH(alPH *

02,,) = Ru((01 * 62)p,) and Ry is one to one on

M(G : H) .
(i) One can simplify (2.4) as follows:

o1 x 02(p) = Ru(o1,, * 02, ) (@)

= O-lp,_, * GZPH ((an)

:/G/G(pnﬁ(xy)dalPH(X)dosz(y>
— /G /G @(xyH)do1,, (x)da, (y),

for all ¢ € C.(G/H).
(iii) Iet u € M(G) and ¢ € M(G/H), if we define p *
0 := Ry(u * ap,) then we have

= Ry(uxop,) (@)

= Ux* O_PH((an

//%H xy)du(x)dap, ()
- / / 02y () dorp, ()R (x)
- / / (Le192) ()d0p, (v)dp(x)

:L/G/HPH(LXI(PnH)(yH)do'(yH)d#(x)

-/ § | Levtn, o))

:/G/G/H @, (xy)do(yH)dpu(x)

/G/H/qu(xyH)dM(x)dU(yH),

for all ¢ € C.(G/H).

px a(e)

By using part (iii) of Remark 2.7 it is deduced that M(G/
H) is a left M(G) module. In the next main theorem, it is
shown that (M(G/H), ) is a Banach algebra and has an
approximate identity.

Theorem 2.8 (M(G/H),*) is a Banach algebra and also
it possesses an approximate identity.

Proof 1t is well known that M(G/H) endowed with the
total variation norm is a Banach space (See, e.g., Reiter
and Stegeman 2000, P. 233). The fact that convolution on
M(G/H) is associative follows by applying (ii) of
Remark 2.7 twice and associativity of M(G). Let o1, 0, be
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in M(G/H). Then by using surjectivity of Ry, there exists
o1, and, gz, in Mpy(G) such that RH(O'IPH) =0 and
RH(UQPH) = 0. Now Definition 2.5 and the fact that
M(G : H) is an normed algebra imply that:

|1 * a2 =[lo1,, * 02, || < |01, [[[|02,, ]

< IR, IR, |

=llo1[lflo2]-

Note that Ry is an isometry. Thus (M(G/H),x) is a
normed Banach algebra. To introduce an approximate
identity, let {¢,},.o be an approximate identity for the
Banach algebra L'(G/H), see Farashahi (2013). Put
Oy = RH(H((p) , for all o € A where p is the left Haar

o TH

measure on G. Then by surjectivity of Ry, for any ¢ in

M(G/H) there exists op, € M(G:H) such that

Ry(op,) = 0. Hence we have

low * 0 — ol =l\Ru(py,), ) * Rulor,) — Ru(ar,)]|
:”:u((px) * 0py _O-PH”?

iy

but by Proposition 2.1 there exists ¥, € C.(G:H) such

that op, =y, and also it can be seen by direct compu-
TH

tation that g * p, — p,

Ce(G), so

= Upyg—p» for all f, g and h in

- ,ux// ||

TH

”O-OC *0 — O-” :||/“t((/)1)ﬂH * :u:an

=81, 1y =ty |-

On the other hand, the embedding of L'(G) into M(G) is
isometric, therefore

lows o~ ol = ||<<px>n,, Wy = |
120 ((92)1 Vi = )|
124 ((0.) wn,,) ()|
- ||PH(<<pa>n,,) # PuWrs,) = Pu(s,)|
= llg, =¥ — vl

Since {¢,},cx is an approximate identity, ||¢, * — ||
tends to 0 as & — oco. Note that in the two last equalities,
Py is an isometry from C.(G:H) onto C.(G/H). This
implies that ||o, * ¢ — ]| goes to 0 when o — oo. O

In the sequel, consider J, as the unit element of the
unital Banach algebra M(G) . If we define the point mass
measure oy = Ry(J,), then for all ¢ in C.(G/H), by the
definition of Ry we have
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51(0) = Ru(6.)(9) = delgn,) = / 0r, (1)d5,(x)

= @, (e) = o(H).

Note that for all ¢ in C.(G/H) we have
Oulo) = [ plut)adn(sth) = o(H)
G/H

Lemma 2.9 Let H be a compact subgroup of a locally
compact group G. Oy is a right multiplicative identity in the
algebra M(G/H) .

Proof Suppose that ¢ is in C.(G/H) and ¢ € M(G/H).
Then we have

0% 0n(p) = Ru(op, * (0n)p, ) (®)

(opy * (0n)p, ) (Pr,)

/ / @, (1), (5)d(3)
/ / (Ly 192, )(1)d(312),, (1)dT (s)

:/G/G/HPH(LS1(PnH)(XH)d(éH)(xH)dGPH(S)

_ /G /G ., /H Ly 1, (xh)dhd(337)(xH ) dap, (s)
= [ [ evn, s, st o, ),

for some n € H. Therefore, because of dh is invariant, we

have
//L -1Q,, (nh)dhdop, (s)

_ /G /H 0., (sh)dhdap, (s)

= [ 0 002,15

_ /G § /H 0., (xh)dhde (xH)

= / o(xH)do(xH)
G/H

= (o).
Thus, for all ¢ in M(G/H) we have ¢ * éy = o. O

o og(ep

Corollary 2.10 Let H be a compact subgroup of a locally
compact group G. If ¢ is a two-sided identity in the algebra
M(G/H) , then ¢ = dy.

Proof Since 0y = 0y * 0 = 0 * Oy = 0, the last equality
is satisfied by considering Lemma 2.9. O
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Generally, oy is not a left identity in the algebra M(G/
H). Hence (M(G/H), ) fails to be a unital Banach algebra.

Corollary 2.11  The Banach algebra (M(G/H),
involutive algebra.

Proof If (M(G/H),

%) is not an

%) is an involutive algebra, then o *
oy=0 for all o€M(G/H). This implies that
(6% (0n)")'=0p*0*=0". Thus dyxc=ga, for all
o € M(G/H). So dy is a left identity too, a contradiction.[]

Proposition 2.12 Let H be a compact subgroup of a
locally compact group G.

(i)  Oum * Oy = Oxyp is satisfied for all x,y € G if and
only if H is normal.

(i) Oy is an identity for the Banach algebra
(M(G/H), ) if and only if H is normal.

Proof (i) Let the equality d.y * dyy = Oy hold for all
x,y € G. If H is not normal subgroup of G. Since nxH and
xH are two disjoint points in locally compact Hausdorff
space G/H. Let K be a compact neighborhood of xH in G/
H, then by Urysohn’s Lemma for LCH Spaces, there exists
Y in C.(G/H) such that |, =1 and absolutely
Y(xH) = 1. Now by lemma 2.47 in Folland (1995) there
exist ¢ := Pf for some f in C.(G), moreover supp¢g is
compact, ¢(xH)=1 and ¢@(nxH) =0. Hence, by the
hypothesis, d,y * o (@) = o (@) = @(xH) = 1. On the
other hand d,x * 0xx (@) = S (@) = @(nxH) =0 and
this is impossible. Thus H is normal. For the converse, let
H be a normal subgroup of G. Considering Lemma 2.9 and
Corollary 2.10, it is enough to show that oy is a left mul-
tiplicative identity in M(G/H) . Let ¢ be in C.(G/H) and o
be an arbitrary element in M(G/H) . Then

(0u * o) () = RH((5H)pH * ap, ) (@)

((Om)p, * 0Py ) (Pr,)

/ / 02 (50)0(31)p, ()0, (1

- / / (Ripn, ) (5)A(31), (s)ddop, (1)
GJG

- / / Pu(Ripr, ) (cH)A(33) (H) o, (1)
G JG/H

/G/G/H/HR,(an(xh)dhd@H)(XH)dUPH(’)
_ / /H Ripr, (n)dd(337) (xH)dop, (1),

for some 1 € H. Since H is normal and dh is invariant, we
have

51.1*0'

/ / Ri¢,,, (h)dhdap, (1)
_ /G /H @y (1) dhd, (1
_ /G /H o (htH)dhdop, (1)
_ /G /H o(hHt)dhdop, (1)
_ /G /H o(tH)dhdop, (1)

- / 92y (040, (1)
G

_ /G /H o(tH)dhdop, (1)

_ / / 0., (th)dhda (tH)dap, (1)
G/HJH

_ / o (xH)do(xH)
G/H

= o(p).

This implies that g * 0 = g, that is dg is an identity for
M(G/H) . (ii) Assume that H is a normal subgroup of G, the
proof to show that M(G/H) has an identity is the same as
the proof of the converse part in (i). Conversely, suppose
that ¢ is the two-sided identity in M(G/H) and assume that
H is not normal. Then there exists some # € H and x € G
such that nxH # xH. Now take a ¢ in C.(G/H) with
¢@(xH) = 1 and ¢(nxH) = 0, this is possible by Urysohn’s
Lemma. By (i) above .y * 0y (@) = duu(@) = @(xH) =
1, and on the other hand d,y * o (®) = dpri(@) =
¢@(nxH) = 0, a contradiction. O

Proposition 2.13 Let H be a compact subgroup of a
locally compact group G and also let A be a strongly quasi-
invariant measure on G/H. Fix ¢ in L'(G/H,J). Then
Y fG/H V(xH)p(xH)dA(xH), ¥ € C.(G/H), defines a
bounded measure on G/H. Denoting this measure by A,
the mapping ¢— A, is an isometric injection on L'(G/H, J.)
into M(G/H) .

Proof Let ¢ be a non zero element of C.(G/H). For all xH

in G/H, set @,(xH) = (|p(xH)|/||¢ll.)"""sgn(¢(xH)) for
all n >

1. Clearly, ¢,¢ >0, ||@,|l, <1, and also ¢, T
|p| as n goes to co. Hence by using the monotone con-
vergence Theorem we have

/ |p|dA(xH) =1im / Pupdi(xH) < / 190l 0 ()
JG/H G/H G/H
<[ paitat) = |12
G/H
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The inverse is obvious. Therefore, ||4,|| = ||¢||, for all
¢ in C.(G/H). The general case then follows by approx-
imation for all ¢ in L'(G/H). O

Remark 2.14 The asserted inclusion in Proposition 2.13 is
reduced to an injection of the algebra L'(G) into M(G) in
the case of H = {e}.

The relation between some of the induced measures on
G/H and G, in Proposition 2.13 and Remark 2.14 respec-
tively, has been proved in the following Lemma.

Lemma 2.15 Let H be a compact subgroup of a locally
compact group G. Fix p as a left Haar measure on G and A
as a strongly quasi-invariant measure on G/H with asso-
ciated rho-function p, then for all ¢ € C.(G/H) we have
RH(“(%H)) = Lo, where dl,(xH) = @(xH)dA(xH) and

dig, 1(x) = @r, ()du(x).
Proof Let y € C.(G/H), then we have
Rit(iig, ) () = i, (1)

/ Vo (X) ,“(tﬂn,, ) (x)
- / Vy (1)05, () (x)

h (xh
/ / Vi (X (p“” a )dhdi(xH)
G/H

- /G/H ol=H) /I—I l//;[EXh)

_ / Py, ) (xH)d 2 (xH)
G/H

= Ao(Pu(¥y,))
= (%) (¥)-

dhd(xH)

Consider the notations as in Proposition 2.13. Put
A:={ly: 9 cL(G/H)}.

Theorem 2.16 Let A be a strongly quasi-invariant measure
on G/H arises from the rho-function p. The Banach algebra
(L'(G/H),
M(G/H) .

A) is a two-sided ideal of the Banach algebra

Proof By Proposition 2.13 there is a one to one corre-
sponding between L'(G/H) and the range of the injection
@— Ay, 50 it is enough to show that A is a two-sided ideal
of M(G/H) . To do this it is enough to show that A, *
o< <Aforall 2, € A and ¢ € M(G/H), since A consists
precisely of those ¢ € M(G/H) such that 0 < < . Now, by
Definition 2.5 we have A,*0 = RH((/lq,)PH*apH), but

(;»¢)PH*O'PH = (Ag = a)PHE M(G:H) and so by

52, €\ Springer

Proposition 2.1 it equals to x, for some ¥ in L'(G/H).

Thus RH(()L([,)PH*JPH) = RH(“%H) = Ay € A. Therefore,

Jp * 0 = Ay < </ and the proof is complete. O
Fix a strongly quasi-invariant measure A on G/H arises

from the rho-function p. Here and in the rest of sequel we

set

C’(G:H) = {(pr’H =@ony- pl/” :p € C(G/H)},

and also take L7 (G:H) = Cé’(G:H)H‘H”, forall 1 <p<oo.In

a similar calculation in Farashahi (2013), Kamyabi-Gol and
Tavalaei (2009) and Reiter and Stegeman (2000), one can
see that C?(G:H) is a left ideal of the algebra C.(G). Then

Ty :L”(G) — [’(G/H) defined by TL(f)(xH) =
fH h), /,, dh is a surjective and bounded operator with

||TZ|| <L Consider the surjectivity of
T4 : [P(G:H) — L’(G/H), for all 1<p<oo. By using
Proposition 3. 39 in Folland (1995), we know that ¢, *
Y, belongs to L7(G:H). Then one can define:

@ * Y (xH) =Tp(@r, * Yy, ) (xH)

@(yH)Y(hy™'xH) plhyx) l/pdhd/l(yH),
G/ p(x)

for all ¢ € L'(G/H) and € L’(G/H). Let 6 € M(G/H)
and ¢ € [’(G/H), there exist 6p, € M(G:H) and ¢, €
L7(G:H) such that Tj(¢,,) and Ry(op,) = . Then we
define the function ¢ * ¢ in a natural way as follows:

- TZ(GPH * anH)(XH)‘

But we have the following calculation:

o % @(xH) = Ty (0p, * ¢r,) (xH)

_ / (97 % @my)c1)
no ple)'”

/fa P, (¥ 'xn )dap, (y )(h7

1/1;
= /H PG /G " /H Pr, (h~'y ™ 2)dhda (yH)dn
= /G ” / / o(h~ 1y 'xH) (W)l/pdhdhdo(ym
]X
= [ ot (P57
and in a similar calculation we get

oro— /G LA /H o(xhy~H) (p(%)yc)l))l/pdhda(yH).

o @(xH)

1/p
) dhde(yH),
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Proposition 2.17 Suppose 1 <p <oo and let 6 € M(G/H)
and also ¢ € I’(G/H). Then ¢+ ¢ € [P(G/H) and
llo* oll, <llollllell,

Proof Fix ¢ € M(G/H) and ¢ € L[’(G/H). Considering
definition of T%, the function ¢ * ¢ belongs to L’(G/H).
Using the fact that the mapping 7% and Ry are isometric on
I[?(G:H) and M(G : H) , respectively, we get

IT5(opy * @z ), =llory * @ry,ll, <llopy 0,1,

=7 OPy H\Pry)llp:
IR (o2, 1 T7 (¢, )

This implies [|o * ]|, < ||a|| o], O
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